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Foreward
Speech processing technology has been a mainstream area of research for more than 50

years. The ultimate goal of speech research is to build systems that mimic (or potentially surpass)
human capabilities in understanding, generating and coding speech for a range of human-to-human
and human-to-machine interactions.

In the area of speech coding a great deal of success has been achieved in creating systems that
significantly reduce the overall bit rate of the speech signal (from order of 100 kilobits per second,
to rates on the order of 8 kilobits per second or less), while maintaining speech intelligibility
and quality at levels appropriate for the intended applications. The heart of the modern cellular
industry is the 8 kilobit per second speech coder, embedded in VLSI logic on the more than 2
billion cellphones in use worldwide at the end of 2007.

In the area of speech recognition and understanding by machines, steady progress has en-
abled systems to become part of everyday life in the form of call centers for the airlines, financial,
medical and banking industries, help desks for large businesses, form and report generation for
the legal and medical communities, and dictation machines that enable individuals to enter text
into machines without having to explicitly type the text. Such speech recognition systems were
made available to the general public as long as 15 years ago (in 1992 AT&T introduced the Voice
Recognition Call Processing system which automated operator-assisted calls, handling more than
1.2 billion requests each year with error rates below 0.5penetrated almost every major industry
since that time. Simple speech understanding systems have also been introduced into the mar-
ketplace and have had varying degrees of success for help desks (e.g., the How May I Help You
system introduced by AT&T for customer care applications) and for stock trading applications
(IBM system), among others.

It has been the area of speech generation that has been the hardest speech technology area to
obtain any viable degree of success. For more than 50 years researchers have struggled with the
problem of trying to mimic the physical processes of speech generation via articulatory models of
the human vocal tract, or via terminal analog synthesis models of the time-varying spectral and
temporal properties of speech. In spite of the best efforts of some outstanding speech researchers,
the quality of synthetic speech generated by machine was unnatural most of the time and has been
unacceptable for human use in most real world applications.In the late 1970s the idea of gener-
ating speech by concatenating basic speech units (in most cases diphone units which represented
pieces of pairs of phonemes) was investigated and shown to bepractical once researchers learned
how to reliably excise diphones from human speech. After more than a decade of investigation as
to how to optimally concatenate diphones, the resulting synthetic speech was often highly intelli-
gible (a big improvement over earlier systems) but regrettably remained highly unnatural. Hence
concatenative speech synthesis systems remained lab curiosities but were not employed in real
world applications such as reading email, user interactions in dialogue systems, etc. The really big
breakthrough in speech synthesis came in the late 1980s whenYoshinori Sagisaka at ATR in Japan
made the leap from single diphone tokens as the basic unit setfor speech synthesis, to multiple di-
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phone tokens, extracted from carefully designed and read speech databases. Sagisaka realized that
in the limiting case, where you had thousands of tokens of each possible diphone of the English
language, you could literally concatenate the “correct” sequence of diphones and produce natural
sounding human speech. The new problem that arose was deciding exactly which of the thousands
of diphones should be used at each diphone position in the speech being generated. History has
shown that, like most large scale computing problems, thereare solutions that make the search for
the optimum sequence of diphones (from a large, virtually infinite database) possible in reasonable
time and memory. The rest is now history as a new generation ofspeech researchers investigated
virtually every aspect of the so-called “unit selection” method of concatenative speech synthesis,
showing that high quality (both intelligibility and naturalness) synthetic speech could be obtained
from such systems for virtually any task application.

Once the problem of generating natural sounding speech froma sequence of diphones was
solved (in the sense that a practical demonstration of the feasibility of such high quality synthesis
was made with unit selection synthesis systems), the remaining long-standing problem was the
conversion from ordinary printed text to the proper sequence of diphones, along with associated
prosodic information about sound duration, loudness, emphasis, pitch, pauses, and other so-called
suprasegmental aspects of speech. The problem of converting from text to a complete linguistic
description of associated sound was one that has been studied almost as long as synthesis itself;
much progress had been made in almost every aspect of the linguistic description of speech as in
the acoustic generation of high quality sounds.

It is the success of unit selection speech synthesis systemsthat has motivated the research of
Paul Taylor, the author of this book on text-to-speech synthesis systems. Paul Taylor has been in
the thick of the research in speech synthesis systems for more than 15 years, having worked at ATR
in Japan on the CHATR synthesizer (the system that actually demonstrated near perfect speech
quality on some subset of the sentences that were input), at the Centre for Speech Technology
research at the University of Edinburgh on the Festival synthesis system, and as Chief Technical
Officer of Rhetorical Systems, also in Edinburgh.

Based on decades of research and the extraordinary progressover the past decade, Taylor has
put together a book which attempts to tie it all together and to document and explain the processes
involved in a complete text-to-speech synthesis system. The first nine chapters of the book ad-
dress the problem of converting printed text to a sequence ofsound units (which characterize the
acoustic properties of the resulting synthetic sentence),and an accompanying description of the
associated prosody which is most appropriate for the sentence being spoken. The remaining eight
chapters (not including the conclusion) provide a review ofthe associated signal processing tech-
niques for representing speech units and for seamlessly tying them together to form intelligible
and natural speech sounds. This is followed by a discussion of the three generations of synthesis
methods, namely articulatory and terminal analog synthesis methods, simple concatenative meth-
ods using a single representation for each diphone unit, andthe unit selection method based on
multiple representations for each diphone unit. There is a single chapter devoted to a promising
new synthesis approach, namely a statistical method based on the popular Hidden Markov Model
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(HMM) formulation used in speech recognition systems.
According to the author, “Speech synthesis has progressed remarkably in recent years, and it

is no longer the case that state-of-the-art systems sound overtly mechanical and robotic”. Although
this statement is true, there remains a great deal more to be accomplished before speech synthesis
systems are indistinguishable from a human speaker. Perhaps the most glaring need is expressive
synthesis that not only imparts the message corresponding to the printed text input, but imparts
the emotion associated with the way a human might speak the same sentence in the context of a
dialogue with another human being. We are still a long way from such emotional or expressive
speech synthesis systems.

This book is a wonderful addition to the literature in speechprocessing and will be a must-
read for anyone wanting to understand the blossoming field oftext-to-speech synthesis.

Lawrence Rabiner August 2007



Preface
I’d like to say thatText-to-Speech Synthesiswas years in the planning but nothing could be

further from the truth. In mid 2004, as Rhetorical Systems was nearing its end, I suddenly found
myself with spare time on my hands for the first time since...,well, ever to be honest. I had no
clear idea of what to do next and thought it might “serve the community well” to jot down a few
thoughts on TTS. The initial idea was a slim “hardcore” technical book explaining the state of
the art, but as writing continued I realised that more and more background material was needed.
Eventually the initial idea was dropped and the more comprehensive volume that you now see was
written.

Some early notes were made in Edinburgh, but the book mainly started during a summer I
spent in Boulder Colorado. I was freelancing at that point but am grateful to Ron Cole and his
group for accomodating me in such a friendly fashion at that point. A good deal of work was
completed outside the office and I am enternally grateful to Laura Michalis for putting me up,
putting up with me and generally being there and supportive during that phase.

While the book was in effect written entirely by myself, I should pay particular thanks to
Steve Young and Mark Gales as I used the HTK book and lecture notes directly in Chapter 15 and
the appendix. Many have helped by reading earlier drafts, especially Bob Ladd, Keiichi Tokuda,
Rochard Sproat, Dan Jurafsky, Ian Hodson, Ant Tomlinson, Matthew Aylett and Rob Clark.

From October 2004 to August 2006 I was a visitor at the Cambridge University Engineering
depertment, and it was there that the bulk of the book was written. I am very grateful to Steve
Young in particular for taking me in and making me feel part ofwhat was a very well established
group. Without Steve’s help Cambridge wouldn’t have happended for me and the book probably
would have not been written. Within the department the otherfaculty staff made me feel very
welcome. Phil Woodland and Mark Gales always showed an interest and were of great help on
many issues. Finally, Bill Byrne arrived at Cambridge at thesame time as me, and proved a
great comrade in our quest to understand how on all earth Cambridge University actually worked.
Since, he has become a good friend and was a great encouragment in the writing of this book. All
these and the other members of the Machine Intelligence lab have become good friends as well
as respected colleagues. To my long suffering room mate GabeBrostow I simply say thanks for
being a good friend. Because of the strength of our friendship I know he won’t mind me having
the last word in a long running argument and saying that Ireland really is a better place than Texas.

It is customary in acknowlegdments such as these to thank one’s wife and family; unfortu-
natley while I may have some skill in TTS, this has (strangely) not transfered into skill in holding
down a relationship. None the less, no man is an island and I’dlike to thank Laura, Kirstin,
and Kayleigh for being there while I wrote the book. Final andspecial thanks must go to Maria
Founda, who has a generosity of spirit second to none.

For most of my career I have worked in Edinburgh, first at the University’s Centre for Speech
Technology Research (CSTR) and laterly at Rhetorical Systems. The book reflects the climate in
both those organisations which, to my mind, had a healthy balance between eclectic knowledge
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of engineering, computer science and linguistics on one hand and robust system building on the
other. There are far too many individuals there to thank personally, but I should mention Bob Ladd,
Alan Wrench and Steve Isard as being particular influential,especially in the early days. The later
days in the university were mainly spent on Festival and the various sub-projects it included. My
long term partner in crime Alan Black deserves particular thanks for all the long conversations
about virtually everything that helped form that system andgave me a better understanding on so
many issues in computational linguistics and computer science in general. The other main author
in Festival, Richard Caley, made an enormous and often unrecognised contribution to Festival.
Tragically Richard died in 2005 before his time. I would of course like to thanks everyone else in
CSTR and the general Edinburgh University speech and language community for making it such
a great place to work.

Following CSTR, I co-founded Rhetorical Systems in 2000 andfor 4 years had a great time.
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1 INTRODUCTION

This is a book about getting computers to read out loud. It is therefore about three things: the
process of reading, the process of speaking, and the issues involved in getting computers (as
opposed to humans) to do this. This field of study is known bothasspeech synthesis, that is the
“synthetic” (computer) generation of speech, andtext-to-speechor TTS; the process of converting
written text into speech. As such it compliments other language technologies such asspeech
recognition, which aims to convert speech into text,machine translation which converts writing
or speech in one language into writing or speech in another.

I am assuming that most readers have heard some synthetic speech in their life. We experi-
ence this in a number of situations; some telephone information systems have automated speech
response, speech synthesis is often used as an aid to the disabled, and Professor Stephen Hawking
has probably contributed more than anyone else to the directexposure of (one particular type of)
synthetic speech. Theidea of artificially generated speech has of course been around for a long
time - hardly any science fiction film is complete without a talking computer of some sort. In fact
science fiction has had an interesting effect on the field and our impressions of it. Sometimes (less
technically aware) people believe that perfect speech synthesis exists because they “heard it on
Star Trek”1. Often makers of science fiction films fake the synthesis by using an actor, although
usually some processing is added to the voice to make it sound“computerised”. Some actually
use real speech synthesis systems, but interestingly theseare usually not state of the art systems,
as these sound too natural, and may mislead the viewer2 One of the films that actually makes a
genuine attempt to predict how synthetic voices will sound is the computer HAL in the film 2001:
A Space Odyssey [265]. The fact that this computer spoke witha calm and near humanlike voice
gave rise to the sense of genuine intelligence in the machine. While many parts of this film were
wide of the mark (especially, the ability of HAL to understand, rather than just recognise human
speech), the makers of the film just about got it right in predicting how good computer voices
would be in the year in question.

1 Younger readers please substitute the in-vogue science-fiction series of the day
2 In much the same way, when someone types the wrong password ona computer, the screen starts flashing and saying
“access denied”. Some even go so far as to have a siren sounding. Those of us who use computers know this never
happens, but in a sense we go along with the exaggeration as itadds to the drama.

1
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Speech synthesis has progressed remarkably in recent years, and it is no longer the case
that state-of-the-art systems sound overtly mechanical and robotic. That said, it is normally fairly
easy to tell that it is a computer talking rather than a human,and so substantial progress is still to
be made. When assessing a computer’s ability to speak, one fluctuates between two judgments.
On the one hand, it is tempting to paraphrase Dr Johnson’s famous remark [61] “Sir, a talking
computer is like a dog’s walking on his hind legs. It is not done well; but you are surprised to
find it done at all.” And indeed, even as an experienced text-to-speech researcher who has listened
to more synthetic speech than could be healthy in one life, I find that sometimes I am genuinely
surprised and thrilled in a naive way that here we have a talking computer: “like wow! it talks!”.
On the other hand it is also possible to have the impression that computers are quite dreadful at
the job of speaking; they make frequent mistakes, drone on, and just sound plainwrong in many
cases. These impressions are all part of the mysteries and complexities of speech.

1.1 WHAT ARE TEXT-TO-SPEECH SYSTEMS FOR?

Text-to-speech systems have an enormous range of applications. Their first real use was in reading
systems for the blind, where a system would read some text from a book and convert it into speech.
These early systems of course sounded very mechanical, but their adoption by blind people was
hardly surprising as the other options of reading braille orhaving a real person do the reading
were often not possible. Today, quite sophisticated systems exist that facilitate human computer
interaction for the blind, in which the TTS can help the user navigate around a windows system.

The mainstream adoption of TTS has been severely limited by its quality. Apart from users
who have little choice (as in the case with blind people), people’s reaction to old style TTS is
not particularly positive. While people may be somewhat impressed and quite happy to listen to
a few sentences, in general the novelty of this soon wears off. In recent years, the considerable
advances in quality have changed the situation such that TTSsystems are more common in a
number of applications. Probably the main use of TTS today isin call-centre automation, where a
user calls to pay an electricity bill or book some travel and conducts the entire transaction through
an automatic dialogue system Beyond this, TTS systems have been used for reading news stories,
weather reports, travel directions and a wide variety of other applications.

While this book concentrates on the practical, engineeringaspects of text-to-speech, it is
worth commenting that research in this field has contributedan enormous amount to our general
understanding of language. Often this has been in the form of“negative” evidence, meaning that
when a theory thought to be true was implemented in a TTS system it was shown to be false; in
fact as we shall see, many linguistic theories have fallen when rigorously tested in speech systems.
More positively, TTS systems have made a good testing grounds for many models and theories,
and TTS systems are certainly interesting in their own terms, without reference to application or
use.
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1.2 WHAT SHOULD THE GOALS OF TEXT-TO-SPEECH SYSTEM DEVELOPMENT

BE?

One can legitimately ask, regardless of what application wewant a talking computer for, is it
really necessary that the quality needs to be high and that the voice needs to sound like a human?
Wouldn’t a mechanical sounding voice suffice? Experience has shown that people are in fact
very sensitive, not just to the words that are spoken, but to the way they are spoken. After only
a short while, most people find highly mechanical voices irritating and discomforting to listen
to. Furthermore tests have shown that user satisfaction increases dramatically the more “natural”
sounding the voice is. Experience (and particularly commercial experience) shows that users
clearly want natural sounding (that is human-like) systems.

Hence our goals in building a computer system capable of speaking are to first build a system
that clearly gets across the message, and secondly does thisusing a human-like voice. Within the
research community, these goals are referred to asintelligibility andnaturalness.

A further goal is that the system should be able to take any written input; that is, if we build
an English text-to-speech system, it should be capable of reading any English sentence given to
it. With this in mind, it is worth making a few distinctions about computer speech in general. It
is of course possible to simply record some speech, store it on a computer and play it back. We
do this all the time; our answer machine replays a message we have recorded, the radio plays
interviews that were previously recorded and so on. This is of course simply a process of playing
back what was originally recorded. The idea behind text-to-speech is to “play back” messages
that weren’t originally recorded. One step away from simpleplayback is to record a number of
common words or phrases and recombine them, and this technique is frequently used in telephone
dialogue services. Sometimes the result is acceptable, sometimes not, as often the artificially
joined speech sounded stilted and jumpy. This allows a certain degree of flexibility, but falls short
of open ended flexibility. Text-to-speech on the other hand,has the goal of being able to speak
anything, regardless of whether the desired message was originally spoken or not.

As we shall see in Chapter 13, there are a number of techniquesfor actually generating the
speech. These generally fall into two camps, which we can call bottom-up and concatenative.
In the bottom-up approach, we generate a speech signal “fromscratch”, using our knowledge of
how the speech production system works. We artificially create a basic signal and then modify it,
much the same way that the larynx produces a basic signal which is then modified by the mouth
in real human speech. In the concatenative approach, there is no bottom-up signal creation per
se; rather we record some real speech, cut this up into small pieces, and then recombine these to
form “new” speech. Sometimes one hears the comment that concatenative techniques aren’t “real”
speech synthesis in that we aren’t generating the signal from scratch. This point may or may not be
relevant, but it turns out that at present concatenative techniques far out perform other techniques,
and for this reason concatenative techniques currently dominate.
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1.3 THE ENGINEERING APPROACH

In this book, we take what is known as anengineering approachto the text-to-speech problem.
The term “engineering” is often used to mean that systems aresimply bolted together, with no
underlying theory or methodology. Engineering is of coursemuch more than this, and it should be
clear that great feats of engineering, such as the Brooklyn bridge were not simply the result of some
engineers waking up one morning and banging some bolts together. So by “engineering”, we mean
that we are tackling this problem in the best traditions of other engineering; these include, working
with the materials available and building a practical system that doesn’t for instance take days to
produce a single sentence. Furthermore, we don’t use the term engineering to mean that this field
is only relevant or accessible to those with (traditional) engineering backgrounds or education. As
we explain below, TTS is a field relevant to people from many different backgrounds.

One point of note is that we can contrast the engineering approach with the scientific ap-
proach. Our task is to build the best possible text-to-speech system, and in doing so, we will use
any model, mathematics, data, theory or tool that serves ourpurpose. Our main job is to build an
artefactand we will use any means possible to do so. All artefact creation can be called engineer-
ing, butgoodengineering involves more: often we wish to make good use of our resources (we
don’t want to use a hammer to crack a nut); we also in general want to base our system on solid
principles. This is for several reasons. First, using solid(say mathematical) principles assures us
we are on well tested ground; we can trust these principles and don’t have to experimentally verify
every step we do. Second, we are of course not building the last ever text-to-speech system; our
system is one step in a continual development; by basing our system on solid principles we hope
to help others to improve and build on our work. Finally, using solid principles has the advantage
of helping us diagnose the system, for instance to help us findwhy some components do perhaps
better than expected, and allow the principles of which these components are based to be used for
other problems.

Speech synthesis has also been approached from a more scientific aspect. Researchers who
pursue this approach are not interested in building systemsfor their own sake, but rather as models
which will shine light on human speech and language abilities. As such, the goals are different,
and for example, it is important in this approach to use techniques which are at least plausible
possibilities for how humans would handle this task. A good example of the difference is in the
concatenative waveform techniques which we will use predominantly; recording large numbers of
audio waveforms, chopping them up and gluing them back together can produce very high quality
speech. It is of course absurd to think that this is how humansdo it. We bring this point up
because speech synthesis is often used (or was certainly used in the past) as a testing ground for
many theories of speech and language. As a leading proponentof the scientific viewpoint states,
so long as the two approaches are not confused, no harm shouldarise (Huckvale [225]).
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1.4 OVERVIEW OF THE BOOK

I must confess to generally hating sections entitled “how toread this book” and so on. I feel that
if I bought it, I should be able to read it any way I damn well please! Nevertheless, I feel some
guidelines may be useful.

This book is what one might call anextended text book. A normal text book has the job of
explaining a field or subject to outsiders and this book certainly has that goal. I qualify this by
using the term “extended” for two reasons. Firstly the book contains some original work, and is
not simply a summary, collection or retelling of existing ideas. Secondly, the book aims to take
the reader right up to the current state of the art. In realitythis can never be fully achieved, but
the book is genuinely intended to be an “all you ever need to know”. More modestly, it can be
thought of as “all that I know and can explain”. In other words: this is it: I certainly couldn’t write
a second book which dealt with more advanced topics.

Despite these original sections, the book is certainly not amonograph. This point is worth
reinforcing: because of my personal involvement in many aspects of TTS research over the last 15
years, and specifically because of my involvement in the development of many well-known TTS
systems, including Chatr [53], Festival [55], and rVoice, many friends and colleagues have asked
me whether this is a book about those systems or the techniques behind those systems. Let me
clearly state that this is not the case;Text-to-Speech Synthesisis not a system book that describes
one particular system; rather I aim for a general account that describes current techniques without
reference to any particular single system or theory.

1.4.1 Viewpoints within the book

That said, this book aims to provide a single, coherent picture of text-to-speech, rather than simply
a list of available techniques. And while not being a book centred on any one system, it is certainly
heavily influenced by the general philosophy that I have beenusing (and evolving) over the past
years, and I think it is proper at this stage to say something about what this philosophy is and
how it may differ from other views. In the broadest sense, I adopt what is probably the current
mainstream view in TTS, that this is an engineering problem,that should be approached with the
aim of producing the best possible system, rather than with the aim of investigating any particular
linguistic or other theory.

Within the engineering view, I again have taken a more specialist view in posing the text-to-
speech problem as one where we have a single integrated text analysis component followed by a
single integrated speech synthesis component. I have called this thecommon form model (this
and other models are explained in Chapter 3.) While the common form model differs significantly
from the usual “pipelined” models, most work that has been carried out in one framework can be
used in the other without too much difficulty.

In addition to this, there are many parts which can be considered as original (at least to
my knowledge) and in this sense, the book diverges from beinga pure text book at these points.
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Specifically, these parts are

1. the common form model itself

2. the formulation of text analysis as a decoding problem,

3. the idea that text analysis should be seen as a semiotic classification and verbalisation prob-
lem,

4. the model of reading aloud,

5. the general unit selection framework.

6. the view that prosody is composed of the functionally separate systems of affective, aug-
mentative and suprasegmental prosody.

With regard to this last topic, I should point out that my views on prosody diverge consid-
erably from the mainstream. My view is that mainstream linguistics, and as a consequence much
of speech technology has simply got this area of language badly wrong. There is a vast, confus-
ing and usually contradictory literature on prosody, and ithas bothered me for years why several
contradictory competing theories (of say intonation) exist, why no-one has been able to make use
of prosody in speech recognition and understanding systems, and why all prosodic models that
I have tested fall far short of the results their creators saywe should expect. This has led me to
propose a completely new model of prosody, which is explained in Chapters 3 and 6.

1.4.2 Readers’ backgrounds

This book is intended for both an academic and commercial audience. Text-to-speech or speech
synthesis does not fall neatly into any one traditional academic discipline, and so the level and
amount of background knowledge will vary greatly dependingon a particular reader’s background.
Most TTS researchers I know come from an electrical engineering, computer science or linguistics
background. I have aimed the book at being directly accessible to readers with these backgrounds,
but the book should in general be accessible to those from other fields.

I assume that all readers are computer literate and have someexperience in programming.
To this extent, concepts such as algorithm, variable, loop and so on are assumed. Some areas
of TTS are mathematical, and here I have assumed that the entry level is that of an advanced
high school or first year university course in maths. While some of the mathematical concepts
are quite advanced, these are explained in full starting with the entry level knowledge. For those
readers with little mathematical knowledge (or inclination!) don’t worry; many areas of TTS do
not require much maths. Even for those areas which do, I believe a significant understanding can
still be achieved by reading about the general principles, studying the graphs, and above all, trying
the algorithms in practice. Digital filters can seem like a complicated and abstract subject to many;
but I have seen few people fail to grasp its basics when give the opportunity to play around with
filters in a GUI package.

My commercial experience made it clear that it was difficult to find software developers with
any knowledge of TTS. It was seen as too specialist a topic andeven for those who were interested
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in the field, there was no satisfactory introduction. I hope this book will help solve this problem,
and I have aimed it at being accessible to software engineers(regardless of academic background)
who wish to learn more about this area. While this book does not give a step by step recipe for
building a TTS system, it does go significantly beyond the theory, and tries to impart a feel for the
subject and tries to pass on some of the “folklore” that is necessary for successful development.
I believe the book covers enough ground such that a good software engineer should not have too
much difficulty with implementation.

1.4.3 Background and specialist sections

The book contains a significant amount of background material. This is included for two reasons.
Firstly, as just explained, I wanted to make the book seem complete to any reader outside the
field of speech technology. I believe it is to the readers’ benefit to have introductory sections on
phonology or signal processing in a single book, than have toresort to the alternative of pointing
the reader to other works.

There is a second reason however, which is that I believe thatthe traditional approach to
explaining TTS is too disjointed. Of course TTS draws upon many other disciplines, but the dif-
ferences between these to me are often overstated. Too often, it is believed that only “an engineer”
(that is someone who has a degree in engineering) can understand the signal processing, only “a
linguist” (again, degree in linguistics) can understand the phonetics and so on. I believe that this
view is very unhelpful; it is ridiculous to believe that someone with the ability to master signal
processing isn’t able to understand phonetics and vice versa. I have attempted to bridge these gaps
by providing a significant amount of background material, but in doing so have tried to make this
firstly genuinely accessible and secondly focused on the area of text to speech. I have therefore
covered topics found in introductory texts in engineering and linguistics, but tried to do so in a
novel way that makes the subject matter more accessible to readers with different backgrounds. It
is difficult to judge potential readers’ exposure to the fundamentals of probability as this is now
taught quite extensively. For this reason, I have assumed a knowledge of this in the body of the
book, and have included an reference section on this topic inthe appendix.

The book is written in English and mostly uses English examples. I decided to write the
book and focus on one language rather than make constant references to the specific techniques
or variations that would be required for every language of interest to us. Many newcomers (and
indeed many in the field who don’t subscribe to the data-driven view) believe that the differences
between languages are quite substantial, and that what works for English, is unlikely to work for
French, Finnish, or Chinese. While languages obviously do differ, in today’s modern synthesisers
these differences can nearly all be modelled by training andusing appropriate data; the same core
engine suffices in all cases. Hence concentrating on Englishdoes not mean we are building a
system that will only work on one language.



2
COMMUNICATION AND
LANGUAGE

Before delving into the details of how to perform text-to-speech conversion, we will first examine
some of the fundamentals of communication in general. This chapter looks at the various ways
in which people communicate and how communication varies depending on the situation and the
means which are used. From this we can develop a general modelwhich will then help us specify
the text-to-speech problem more exactly in the following chapter.

2.1 TYPES OF COMMUNICATION

We experience the world though our senses and we can think of this as a process of gaining
information . We share this ability with most other animals; if an animal hears running water it
can infer that there is a stream nearby; if it sees a ripe fruitit can infer there is food available. This
ability to extract information from the world via the sensesis a great advantage in the survival of
any species. Animals can however cause information to be created: many animals make noises,
such as barks or roars, or gestures such as flapping or head nodding, which are intended to be
interpreted by other animals. We call the process ofdeliberate creationof information with the
intention that it be interpretedascommunication.

The prerequisites for communication are an ability to create information in one being, an
ability to transmit this information, and an ability to perceive the created information by another
being. All three of these pre-requisites strongly influencethe nature of communication; for exam-
ple, animals that live in darkness or are blind would be unlikely to use a visual system. But despite
these restrictions, it is clear that they are still many possible ways to make use of the possibilities
of creation, medium and perception to communicate. We will now examine the three fundamental
communication techniques that form the basis for human communication.

2.1.1 Affective communication

The most basic and common type of communication isaffective communication, where we ex-
press a primary emotional state with external means. A good example of this is the expression
of pain, where we might let out a yell or cry upon hurting ourselves. A defining characteristic of

8
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Figure 2.1 (British) road sign, indicating a slippery road and high chance of skidding.

this type of communication is that the intensity of the external form is clearly a function of the
the intensity of feeling; the more intense the pain the louder the yell. Other primary mental states
such as happiness, anger and sadness can be expressed in thisway. This type of communication
is one that is common to most higher animals. While theability to express these affective states
is common among animals, the precise means by which these areexpressed is not universal or
always obvious. A high pitched yell, squeal or cry often means pain, but it by no means obvious
that a dog’s wagging tail or a cat’s purring are expressions of happiness.

2.1.2 Iconic communication

Though fundamental and powerful, affective communicationis severely limited in the range of
things it can be used to express. Happiness can readily be conveyed, but other simple mental
states such as hunger or tiredness are significantly more difficult to convey. To express more
complex messages, we can make use of a second communication mechanism known asiconic
communication. An iconic system is one where the createdform of the communication somehow
resembles what the intendedmeaning. We use the term “form” here in a technical sense that al-
lows us to discuss the common properties of communication systems: in acoustic communication,
“form” can be thought of as a type of sound; in visual communication form might be types of
hand signals, facial expressions and so on. For example, it is common to communicate tiredness
iconically by the “sleeping gesture”, where someone closesher eyes, puts her hands together and
places her head sideways on her hands. The person isn’t really asleep - she using a gesture that
(crudely) mimics sleep to indicate tiredness. Another goodexample of iconic communication is
the road sign shown in Figure 2.1.1. In this case, the form is the diagram, and the meaning is
slippery road, and the fact that the form visually resembles what can happen when a road is slippy
means that this communication is iconic. Note that just withthe sleep example, the form isn’t a
particularly accurate picture of a car, road, skid or so on; the idea is to communicate the essence
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of the meaning and little else.
Anecdotally, we sometimes think of pre-human communication also working like this, and

in such a system, the presence of a saber tooth tiger might be communicated by imitating its growl,
or by acting like a tiger and so on. Such systems have a certainadvantage of transparency, in that
if the intended recipient does not know what you mean, a certain amount of mimicry or acting
may get the point across. In essence, this is just like the road sign example, in that the form and
meaning have a certain direct connection. When travelling in a country where we don’t speak the
language, we often resort to miming some action with the hopethat the meaning will be conveyed.

Iconic systems though have several drawbacks. One is that while it may be easy to imitate a
tiger, it is less easy to imitate more abstract notions such as “nervous” or “idea”. More importantly
though, iconic systems can suffer from a lack of precision: when a first caveman imitates the tiger,
a second caveman may not get this reference exactly - he mightbe sitting there thinking, “well, it
could be a tiger, or perhaps a lion. Or maybe a large dog”. And by the time the first caveman has
mimed his way through this and the action of “creeping up behind”, both have probably departed
to the great cave in the sky. While useful and important, iconic communication clearly has its
limits.

2.1.3 Symbolic communication

In contrast to iconic and affective communication, we also havesymboliccommunication in which
we give up the idea that the form must indicate the meaning. Rather we use a series of correspon-
dences between form and meaning, in which the relationship is not direct. In symbolic systems,
a tiger might be indicated by waving the left hand, a lion by waving the right. There is no reason
why these forms should indicate what they do, it is merely a matter of convention. The advantage
is that it is easier to devise a system where the forms are clear and distinct from one another - less
confusion will arise. The disadvantage is that the fact thatleft-arm-wave means tiger, and right-
arm-wave means lion has to belearned, if you don’t know, seeing the movement in isolation won’t
give clue to the meaning. Despite the disadvantage in needing to learn, using conventions rather
than icons can be hugely advantageous in that the conventions can be relatively brief; one noise
or gesture may represent the tiger and this need not be acted our carefully each time. This brevity
and clarity of form leads to a swiftness and precision seldompossible with iconic communication.

Once a convention-based communication system is used, it soon becomes clear that it is the
notion ofcontrast in form that is the key to success. To put it another way, once the form no longer
needs to resemble the meaning, the communication system gains benefit from making the forms
as distinct from one another as possible. To show this point,consider the following experiment.

We grouped eight subjects into pairs, and in isolation, asked each pair to design a commu-
nication system based on colour cards. The premise was that the pair were in a noisy pub, one
individual was at the bar while the other was sitting down at atable. We said there were four basic
concepts to communicate: “I would like a drink of water”, “I would like some food”, “I would
like a beer” and “I would like to listen to some music”. Each pair was given a set of 100 different
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Figure 2.2 With three symbols in isolation only three meanings are possible. When we combine the
symbols in sequences the number of meanings exponentially increases, while the ability to uniquely
perceive the symbols is unaffected.

coloured cards arranged across the spectrum, and asked to pick one card for each concept and
memorise which colour was associated with which concept. Ina simple test, it was clear that the
pairs could remember the colours and their meanings, and could effectively communicate these
simple concepts with this system. The real purpose of the experiment was different though. While
three of the groups chose a blue colour for the concept “I wanta drink of water”, for the other cat-
egories there was no commonality in the choice. So “I want a beer” had two pairs chose green, one
yellow and one black. Interestingly most gave some justification as to why each colour was chosen
(green means “yes, lets have another”) and so on; but it is clear that this justification was fairly
superficial in that each group choose quite different colours. This demonstrates one of the main
principles of symbolic communication system, namely that the relationship between the form of
the symbol (in this case the colour) and its meaning is in general arbitrary . These form/meaning
pairs must be learned, but as we shall see, in many cases the “cost” of learning the pairing to an
individual is less than the “cost” of potential confusion and imprecision that can arise from having
the form resemble the meaning. This simple study demonstrates another vital point. In each case,
the pairs chose quite different colours; so group A chose a blue, a red, a yellow and a green, while
group B chose a red, a yellow, a light blue and a black. In no case did a group choose say a green,
a light blue, a medium blue and a dark blue for instance. In other words, the groups chose a set of
colours that had clear contrast with each other. In a way thismakes obvious sense; picking colours
that are significantly different from one another lessens the possibility that they will be confused,
but it does demonstrate a crucial point in symbolic systems,namely that the systems are based on
the notion of contrast between forms rather than the absolute “value” of each form.

2.1.4 Combinations of symbols

This simple communication system works well because we onlyhave four concepts we wish to
convey. What happens when we need to communicate more concepts? We can see that the simple
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colour contrast will eventually reach its limits. If say 20 concepts are required, it soon becomes
a difficult task to associate each with just one colour. Setting aside the issue of whether the
individuals can remember the colours (let us assume they have a crib sheet to remind them), a
major problem arises because as more concepts get added, a new colour is associated with each
one, and as the range of colours is fixed, each new added concept increases the likelihood that it
will get confused with another concept which has a similar colour. While it may be possible for an
individual to distinguish 20 colours, asking them to do so for 1000 colours seems unlikely to meet
with success. We therefore need a separate solution. The obvious thing to do is usecombinations
of colour cards. For instance, we could associate the colourblack with the conceptnot, pink with
large, and then use these and one of the original colours to indicate a much larger range of concepts
(so holding a black card, pink card and blue card would say “I don’t want a large drink of water”).
Note that this is different from holding a single card that isa mixed combination of black pink
and blue (which might be a murky brown). The reason why the combination system works is that
each colour card on its own is clear, distinct and unconfusable, but by combining them, we can
generate a large number of concepts from a small number of form/meaning pairs. The power of
combination is considerable; in the limit, the number of complex forms exponentially multiples,
so that if we haveN simple forms andM instances of them, we have a total ofNM complex forms;
so 10 forms combined in 10 different ways would produce over 10 billion different complex forms.

We call communication systems that use a fixed number of simple forms which can be com-
bined into a much larger number of forms asymbolic language. Here we use the term “language”
in both a very precise and general sense. Precise, in that it we use it only to mean this principle of
combination, but general in the sense that all human languages make use of this principle in this
sense, as are other systems, such as written numbers (we can create any number from a combina-
tion of the 10 digits), mathematics and even email addresses. Human language often goes under
the description ofnatural language and we shall use that term here to distinguish it from the
principle of languages in general. One of the main distinctive properties of natural language is the
sheer scale of things that it can express. While we can talk ofother animals having sophisticated
communication systems (bee dancing etc), none has anythinglike the scale of natural language,
where a person might know say 10,000 words, and be able to combine these into trillions and
trillions of sentences.

2.1.5 Meaning, form and signal

In our discussion so far, we have been somewhat vague and a little informal about what we really
mean by “meaning” and “form”. The study of meaning (often called semantics), is notoriously
difficult, and has been the subject of debate since the earliest philosophy. It is an inherently tricky
subject, because firstly it requires an understanding of theworld (what the world contains, how the
things in the world relate to one another and so on), and secondly, from a cognitive perspective,
it is exceedingly difficult to peer inside someone’s brain and find out exactly how they represent
the concept of “warm” or “drink” and so on. As we shall see, developing a precise model of
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semantics does not seem to be necessary for text-to-speech,and so we shall largely bypass this
topic in a formal sense.

Our notion of “form” also needs some elaboration. A proper understanding of this part of
communicationisvital for our purposes, but thankfully we can rely on an established framework to
help us. The main issue when discussing form is to distinguish the general nature of the form from
any specific instantiation it may have. Going back to our simple colour example; it is important to
realise that when one individual holds up a red card, it isn’tthe red card itself that is the important
point, rather that red was used rather than the other choicesof green, blue and yellow. So for
example, a different red card could be used successfully, and probably any red card would do, as it
is not the particular red card itself which is the form, but rather that the card has the property “red”
and it is this property and its contrasting values that is thebasis of the communication system. In
some accounts, the termmessageis used instead of form.

We use the termsignal to refer to the physical manifestation of the form. Here signal is
again used in a specific technical sense: it can be thought of as the thing which is stored or the
thing which is transmitted during communication. The idea of “red” (and the idea that it contrasts
with other colours) is the form; the physical light waves that travel are the signal. The above
example also demonstrates that the same form (red) can have anumber of quite different signals,
each dependent on the actual mode of transmission.

It is important to see that the relationship between meaningand form, and form and signal
are quite separate. For instance, in our example we have associated the colours red, yellow, blue
and green each with a concept. Imagine now the sender holds upan orange card. Most likely the
receiver will see this signal and correctly interpret the physical light-waves into a form “orange”.
After this however she is stuck because she can’t determine what concept is matched with this or-
ange form. The signal/form relationship has worked well, but it has not been possible to determine
the correct concept. This situation is similar to that when we read a new word - while are quite
capable of using our eyes to read the physical pattern from the page and create an idea of the letters
in our head, if we don’t know the form/meaning mapping of the word, we can not understand it.

Finally, we use the termchannelor medium to refer to the means by which we the message
is converted and transmitted as a signal. In this book, we deal mainly with thespoken channel
and thewritten channel.

2.2 HUMAN COMMUNICATION

The above examination of communication in the abstract has of course been leading us to an
explanation of how human communication operates. Taking spoken communication first, let us
make a primary distinction between the two main aspects of this, which we shall call theverbal
component and theprosodic component. We use the term “verbal” to mean the part of human
communication to withwords. In some books, the term “verbal” and “language” are synonymous,
but because “language” has so many other, potentially confusable meanings, we will stick with the
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terms “verbal” or “verbal component” throughout. The verbal component is a symbolic system
in that we have a discrete set of words which can be arranged insequences to form a very large
number of sentences.

In contrast, the prosodic component (often just calledprosody) is different in that it is not
primarily symbolic. We use prosody for many purposes: to express emotion or surprise, to em-
phasise a word, to indicate where a sentence ends and so on. Itis fundamentally different in that
it is not purely discrete, does not generally have units which combine in sequences and so has a
much more limited range of meanings that can be expressed. That said, prosody should not be
taken as a poor relative of the verbal component; if we say “its wonderful” with words, but use a
tone of voice that indicates disgust; the listener will guess we are being sarcastic. If the prosodic
and verbal component disagree, the prosodic information wins. To a certain extent, these systems
can be studied separately; in fact nearly all work in the fieldof linguistics is solely interested in
the verbal component. The two do interact though; first in theobvious sense that they share the
same signal (speech), but also in more complex ways in that prosody can be used to emphasise
one particular word in a sentence.

2.2.1 Verbal communication

The symbolic model of the verbal component states that the principle unit of form is thephoneme.
Phonemes operate in a contrastive system of sounds, in whicha fixed number of phonemes can
combine to a much larger number ofwords (a vocabulary of more than 10,000 words is common,
but many millions of words are possible). Next, these words are taken as the basic units, and
they further combine intosentences. Verbal language is therefore seen as a combination of two
systems; one that makes words from phonemes, and another that makes sentences from words.
As the word/sentence system has quite a large set of basic units to start with, the number of
combined units is vast. The two systems have different properties with regard to meaning. In the
first system, the basic building blocks, the phonemes, have no direct (arbitrary, iconic or other)
meaning, they are simply building blocks. These are combined to form words, and these do
have meaning. The relation between a word’s meaning and the phonemes which comprise it is
completely arbitrary and so the meaning and pronunciation of each word has to be learned. The
second system operates differently, in that the basic building blocks (the words) do have inherent
meaning, and the meaning of the sentence is related to the meaning of the components. Exactly
how the sentence meaning relates to the word meaning is stillan issue of considerable debate;
one the one hand there is considerable evidence that it is a function, in the sense that if we have
JOHN KICKED MARY1 we can substitute different people forJOHN andMARY (e.g. ANN KICKED

GEORGE), or different verbs (e.g.JOHN KISSED MARY) and predict the sentence meaning from
the parts. On the other hand, there is also considerable evidence that sentence meaning is not a
simple function, in thatJOHN KICKED THE BUCKET means John has died, and has nothing to do

1 From here we will use a small caps typeface when we refer to form/message such asJOHN and a courier typeface
for the written signal, e.g.john.
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with kicking or buckets.
From this basic model, we can now explore some of the fundamental features of language. In

doing so, we follow Hockett [214], who stated the principle defining properties of verbal language.
Among these are:

Arbitrary

Phonemes do not have inherent meaning but words do; a word is in effect a form/meaning pair in
which the correspondence between the meaning and the form (ie. the sequence of phonemes) is
arbitrary. Because of this, there is no way to guess the meaning of a word if it is not learned, so as
a reader, you won’t know the meaning of the wordPANDICULATION unless you are informed of its
meaning. From this, it follows that words of similar form canhave complete different meanings,
soBIT andPIT mean quite different things despite only having a slight sound difference, whereas
DOG andWOLF are similar in meaning, but share no sounds.

Duality

The duality principle states that verbal language is not onesystem but two; the first system uses a
small inventory of forms, phonemes, which sequentially combine to form a much larger inventory
of words. The phonemes don’t carry meaning but the words do, and this association is arbitrary.
The second system combines the large number of words into an effectively limitless number of
sentences.

Productive

The productive property means that there is an effectively unlimited number of things that one
can say in a verbal language. It is not the case that we have a fixed number of messages and in
communication simply choose one from this selection; rather many of the sentences we produce
are unique, that is, the particular combination of words we use have never been used before. Of
course many of the sentences we say are conventionalised (“How do you do?” etc), but most are
unique. It might seem questionable if this is really the caseas most people don’t feel they are being
particularly “original” when the speak. However, a simple examination of the combinatorics of
combining even a modest vocabulary of 10,000 words shows that a vast number of possibilities
exist (certainly larger that the number of atoms in the universe).

Discrete

Both the basic types of linguistic unit, the phoneme and the word, arediscrete. Phonemes are dis-
tinct from one another and form a finite and fixed set. The set ofwords is less fixed (we can create
new words), but nevertheless all words are distinct from oneanother and are countable. What
is remarkable about the discreteness property of language is that the primary signal of language,
speech, is not discrete and hence there is a mismatch betweenform and signal. Speech signals
are continuous functions of pressure over time (see Chapter10) and so speaking is a process of
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converting a discrete phoneme representation into a continuous acoustic one. This process is re-
versed during listening, where we recover a discrete representation from the continuous signal. As
we shall see, this is a remarkably complex process, and is oneof the main reasons why automatic
speech synthesis and speech recognition are difficult.

2.2.2 Linguistic levels

Another common way to look at verbal language is as a series ofso-called linguisticlevels. So
far we have talked about the duality of form such that we have aphonemes which combine to
form words which combine to form sentences. In our model, sentences, words and phonemes
are considered the primary units of form, and suffice to describe the basic properties of verbal
language. It is however extremely useful to make use of a number of secondary units, which
we shall now introduce.Morphemes are units used to describe word formation or the internal
structure of words. This describes for instance the connection between the three English words
BIG, BIGGER, BIGGEST, and the study of this is calledmorphology. Next we havesyntax, often
defined as the study of the patterns of words within a sentence. Syntax describes the process of
how nouns, verbs, prepositions and so on interact, and why some sequences of words occur but
not others. The fundamental units of syntax are thesyntactic phraseand sentence. With these
levels, we can for a given sentence describe asyntactic hierarchy where a sentence comprises a
number of phrases, each of these comprises a number of words,which then comprise morphemes,
which then comprise phonemes.

We can also consider thephonological hierarchy, which is a different, parallel hierarchy
which focuses on the sound patterns in a sentence. In this, wehave the additional units ofsyllables,
which are a structural sound unit used to group phonemes together; andphonological phrases,
another structural sound unit that groups words together within the sentence. Representations
using these units can also be expressed in a hierarchy of sentences, prosodic phrases, words,
syllables and phonemes.

The difference between the two hierarchies is that the phonological one concentrates on the
sound patterns alone, and is not concerned with any aspect ofmeaning, while the syntactic one
ignores the sound patters, and concentrates on the grammatical and semantic relationships between
the units.

Next we consider levels between the form and the signal, which in spoken communication is
an acoustic waveform. Here we havespeech acousticswhich involves working with the acoustic
speech sound signal. Next we havephonetics, which is often described as the study of the physical
speech sounds in a language. Phonetics is often studied independently of other linguistic areas, as
it is seen as part of the system which links form and signal rather than as part of the meaning/form
verbal linguistic system.Phonologyis the study of sound patterns as they relate to linguistic use;
in contrast to phonetics, thisis considered part of the core linguistic system as phonology describes
the form in the meaning/form system. That said, phonology and phonetics are closely related and
phonology is sometimes described as the organisational system of phonetic units.
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Semanticsis sometimes given a broad definition as the study of “meaning” in the general
sense, but is sometimes given a much narrower definition, andis concerned only with certain as-
pects of meaning, such as analytic truth, reference, and logic. Finallypragmaticsconcerns a num-
ber of related areas including the aspects of meaning not covered by semantics, the interaction of
language, a speaker’s knowledge and the environment and theuse of language in conversations and
discourses. Sometimes pragmatics is described as being “parallel” to semantics/syntax/phonology
etc as it is the study of how language is used.

It is important to realise that these terms are used both to refer to the linguistic level and the
area of study. In traditional linguistics these terms are often taken as absolute levels that exist in
language, such that one sometimes sees “turf wars” between phoneticians and phonologists about
who best should describe a particular phenomenon. From our engineering perspective, we will find
it more convenient to adopt these terms, but not worry too much about the division between each;
rather it is best to view these levels as salient points in a continuum stretching from pragmatics to
acoustics.

2.2.3 Affective Prosody

We now turn to a different component of human communication.Broadly speaking, we can state
that prosody has two main communicative purposes, termedaffective andaugmentative. The
affective use of prosody can be used to convey a variety of meanings: perhaps the most straight-
forward case is when is is used to indicate primary emotions such as anger or pain. Prosody is
particularly good at this; when we hurt ourselves and want totell someone we usually let out a
yell rather than say “look, I’ve cut off my fingers” in a calm measured tone. The use of prosody
to convey primary emotion is also largely universal; when listening to someone who speaks a dif-
ferent language we find they use more or less the same form to indicate the same meanings. In
fact this extends to animals too; we are often in little doubtas to what an animal snarl or growl is
trying to convey. Beyond primary emotions we can consider a whole range of meanings that are
expressible via prosody. These include secondary emotionssuch as angst or distrust, speech acts
such as question, statement and imperative; modes of expression such as sarcasm or hesitancy and
so on.

Many of these phenomena are language specific (in contrast toprimary emotion), and have a
conventional or arbitrary character such that a speaker of that language has to learn the appropriate
prosodic pattern in the same way that they learn the form/meaning correspondences for words in
verbal language. In fact we can see these effects as lying on ascale with universal systems lying
at one end and conventional arbitrary systems lying at the other. In many languages, a rising pitch
pattern at the end of a sentence indicates a question; but this is not universally so. Ladd [269]
shows that the pattern is reversed in Hungarian such that certain questions are indicate by a falling
pitch.

One of the central debates in the field of prosodic linguistics is just how far this scale extends.
Crudely speaking, the argument concerns whether prosody ismainly a universal, non-arbitrary
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system, with a few strange effects such as Hungarian question intonation; or whether it is in fact
much more like verbal language in that it ismainlyarbitrary, and has rules of syntax and so on.

2.2.4 Augmentative Prosody

The second aspect of prosody is calledaugmentative prosody. The basic purpose of this is to
augmentthe verbal component. Taking a simple example first, we see that many sentences are
highly confusable with respect to syntactic structure. In sentences such as

(1) BILL DOESN’ T DRINK BECAUSE HE’ S UNHAPPY

we see that there are two completely different interpretations which depend on which syn-
tactic structure is used. The speaker can choose to insert a pause, and if she does so, she will
bias the listener’s choice as to which interpretation is intended, and hence facilitate understanding.
In addition to helping with phrasing structure, this component of prosody is also used to draw
attention to words by emphasising them.

This use of prosody is called augmentative because it augments the verbal component and
therefore helps the listener to find the intended form and meaning from the signal. In contrast to
affective prosody, the use of augmentative prosody here does not add any new meaning or extra
aspect to the existing meaning, it is simply there to help findthe verbal content. One of the most
interesting aspects of augmentative prosody is that speakers show considerable variation in how
and when they use it. While one speaker may pause at a certain point, another speaker will speak
straight on, and we even find that the same speaker will quite happily use a pause on one occasion
and not on another. We can explain this variation by considering the range of conversational
situations where augmentative prosody might be used.

In general, when a speaker generates a message that is potentially ambiguous, it is often
entirely obvious from the form of words used, the backgroundknowledge and the situation what
interpretation is intended, and in such cases no or little augmentative prosody is used. In other
cases however, we may find that the speaker suspects the listener may have difficulty in interpre-
tation, we find that here the speaker does indeed make use of prosody. In other words, prosody
is usually only used when it is needed. Hence if we consider a sentence in isolation, it is nearly
impossible to predict what prosody a speaker will use. A consequence of this is that it is clearly
possible to use more or use less prosody for any given sentence. We can think of this as a scale
of prosodic intensity, and this applies to both affective and augmentative prosody. In many cases,
speakers utter sentences at the lower end of this scale, in which case we say they are speaking with
null prosody or neutral prosody to indicate that there is no true prosody being used.

2.3 COMMUNICATION PROCESSES

In this section, we will build a general model of communication that will serve as a framework in
which to analyse the various communicative processes involved in spoken and written language.
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Figure 2.3 Processes involved in communication between two speakers.

For illustration, let us consider a dialogue between two participants, A and B. In a normal con-
versation, A and B take it in turns to speak, and these are known asdialogue turns. Suppose, A
decides to say something to B. To do this, A firstlygeneratesa linguistic form, which we shall call
themessage. He thenencodesthis as aspeech signal, which is a form which can betransmitted
to B (lets assume they are in the same room). On receiving the signal, B firstdecodesthe signal
and creates her own message as linguistic form. Next she attempts tounderstand this message
and so find the meaning.

In line with our model of language explained before, we have three types of representation:
the meaning, the form and the signal. In communicating, A andB use 4 separate systems to move
from one to the other; these are:

generation : meaning to form

encoding : form to signal

decoding : signal to form

understanding : form to meaning

This model works equally well for written language; A converts his thought into a message,
then encodes this as writing and sends this to B (in this case the “sending” can be quite general,
for example an author writing a novel and a reader subsequently picking it up). Once received,
B attempts to decode the writing into a message, and then finally understand this message. A
diagram of this is shown in Figure 2.3.

2.3.1 Communication factors

We start our discussion by simply asking, why do the participants say the things they do? While
“free-will” plays a part in this, it it is a mistake to think that “free-will” is the sole governing factor
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in how conversations happen. In fact there are a number of guiding principles involved, which we
shall now explore.

The first concerns the understood conventions of communication. In human conversation,
participants don’t just say everything on their mind; to do so would swamp the conversation.
Rather, they only say what they need to in order to get their point across. We can state this
as a case ofeffectivenessand efficiency; we wish to effectively communicate our message so
that it is understood, but also to do so efficiently so that we don’t waste energy. In fact it is
clear that conversation works by adopting a set of understood conventions that govern or guide
the conversation. The most famous exposition of these principles was by Grice, who defined
four main principles, of conversation which are now commonly known asGrice’s maxims [184].
These principles state for instance that it is expected thatone participant should not be overly long
or overly short in what is said; one should say just the right amount to make the thought clear.
Grice’s maxims are not meant as prescriptive guides as to howconversation should progress,
or even statements about how they do progress, but rather a set of tacit conventions, which we
normally adhere to, and which we notice when they are broken.

The second factor concerns thecommon groundthat the participants share. This is a general
term which covers the background knowledge, situation and mutual understand that the conver-
sational participants share. When in the same room, they canpoint to objects or refer to objects,
actions and so on, in a different way to how such things can be referred to if they are more distant.
If one says “have a seat” and there is a chair in the room, this means something straightforward.
The situation can significantly alter the intended meaning of an utterance. Take for instance the
sentence “my car has broken down”. Now this can be taken as a simple statement of fact, but if
someone says this upon entering a mechanic’s workshop, the implication is that the person’s car
has broken down and he’d like the mechanic to fix it. If by contrast, this is the first thing someone
says when arriving for dinner, the intention might be to apologise for being late because an un-
forseen travel delay occurred. To take another example, if two experts in the same research field
are talking, they can talk assuming that the other has a detailed knowledge of the subject matter.
This is different to when an expert talks to a lay person.

Finally, the knowledge of thechannelhelps form the message. Participants don’t generate
messages and then decided whether to speak them or write themdown; they know what medium
is going to be used before they start. This allows the participants to best exploit the strengths
of each form of communication; in spoken language extensiveuse may be made of prosody; in
written language the author may take the liberty of explaining something in a complicated fashion
knowing that the reader can go back and read this several times.

2.3.2 Generation

In our model, the process of converting a meaning into a message is calledmessage generation
(elsewhere the termlanguage generationis often used, but this is too potentially confusing for
our purposes). To demonstrate how generation works, let us use the above mentioned communi-
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cation factors to consider situation where a participant ina conversation wants to know the score
in a particular football game. We should realise that the participant has considerablechoice in
converting this thought into a message. For example, the participant can make a statement “I want
to know the score” or a question “what is the score”; the participant has choices over mood, and
may choose to say “can you tell me the score?”, may choose between active and passive “who
has scored?” vs “have any goals been scored?”. The participant has choices over vocabulary, may
well qualify the message, may decide on a casual, formal, polite, demanding tone and so on. In
addition the participant can choose to emphasise words, pick different intonational tunes, perhaps
make a pointing gesture and so on. The important point is thatthe participant have a wide range
of options in turning the thought into the message. The result is the message, and a perfectly
transparent communication system would send this to the receiver will all this detail and with no
chance of error.

It is sometimes assumed that messages themselves convey or represent the communicated
meaning. While in certain cases this may be possible, we havejust demonstrated that in most
conversations, to extract (understand) the correct meaning one must know the situation and shared
knowledge.

2.3.3 Encoding

Encoding is the process of creating a signal from a message. When dealing with speech, we talk
of speech encodingand when dealing with writing we talk ofwriting encoding. Speech encoding
by computer is more commonly known asspeech synthesis, which is of course the topic of this
book.

The most significant aspect of speech encoding is that the nature of the two representations,
the message and the speech signal, are dramatically different. A word (e.g. HELLO) may be
composed of four phonemes, /h eh l ow/, but the speech signal is a continuously varying acoustic
waveform, with no discrete components or even four easily distinguishable parts. If one considers
the message, we can store each phoneme in about 4-5 bits, so wewould need say 2 bytes to store
/h eh l ow/. By contrast, a reasonably high fidelity speech waveform2 would need about 20,000
bytes, assuming that the word took 0.6 seconds to speak. Where has all this extra content come
from, what is it for and how should we view it?

Of course, the speech signal is significantly moreredundant than the message: by various
compression techniques it is possible to reduce its size by afactor of 10 without noticeably affect-
ing it. Even so, this still leaves about three orders of magnitude difference. The explanation for
this is that the speech waveform contains a substantial amount of information that is not directly
related to the message. First we have the fact that not all speakers sound the same. This may
be a fairly obvious thing to say, but consider that all English speakers can say exactly the same
message, but they all do so in subtly different ways. Some of these effects are not controllable by

2 Say 16 bits dynamic range and 16,000Hz sampling rate. (See Chapter 10 for an explanation)
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the speaker and and determined by purely physiological means. Some are due to prosody, where
for instance, the speaker can have different moods, can affect the signal by smiling when talking,
can indicate different emotional states and so on. This factis hugely significant for speech synthe-
sis, as it demonstrates that encoding the message is really only part of the problem; the encoding
system must do several other tasks too if the speech signal isto sound genuinely human-like to the
receiver.

2.3.4 Decoding

Decoding is the opposite of encoding; its job is to take a signal and create a message.Speech
decoding is the task of creating a message from the signal; the technology that does this is most
commonly known asspeech recognition. The challenges for speech decoding (speech recogni-
tion) systems are just the converse of speech encoding; froma continuous signal, which contains
enormous amounts of information, the system must extract the small amount of content that is the
message. Speech recognition is difficult because of the problem of ambiguity. For each part of
a message, a word or a phoneme, if one studies the speech patterns produced from that one sees
that there is an enormous amount of variability. This is partly caused by the factors we described
above, namely speaker physiology, emotional state and so on, and partly from the encoding pro-
cess itself, where a phonemes characteristics are heavily influenced by the other phonemes around
it. This variability wouldn’t be a problemper se, but it turns out that the patterns for each phoneme
overlap with one another, such that given a section of speech, it is very hard to determine which
phoneme it belonged to. These aspects make speech recognition a difficult problem.

Text decoding, also calledtext analysis, is a similar task where we have to decode the
written signal to create a message. If the writing is on paper, we face many of the same problems as
with speech recognition; namely ambiguity that arises fromvariability, and this is particularly true
if we are dealing with hand writing. Computerised writing issignificantly easier as we are dealing
with a much cleaner representation in which the representation is discrete and each character is
uniquely identified.

For many types of message, the text decoding problem is fairly trivial. For instance, for
simple text such asthe man walked down the street, it should by possible for a simple
system to take this and generate the correct message all the time. Significant problems do arise
from a number of sources. First, ambiguity exists even in computerised written signals. One type
is homograph ambiguity, where two different words have the same sequenceof characters (e.g.
polish can mean “from Poland” or “to clean”,console can mean “to comfort” or “a part of a
machine”).

One final point should be made when comparing text and speech decoding. In speech recog-
nition, the problem is understood as being difficult, and so error rates of say 10% are often seen
as good system performance on difficult tasks. As we have seentext decoding is fundamentally
easier, but along with this so are expectations. So while forsome tasks the vast majority of words
may be decoded successfully, the expectation is also high and so error rates of 0.1% may be seen
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as too hight.

2.3.5 Understanding

Understanding is the process of creating a thought from the message. Understanding can be
thought of as the reverse of generation and also bears similarity to decoding in the sense that we are
trying to recover a thought from a representation (the message), which also includes information
generated from other sources such as the background, situation and so on.

In understanding, we also have an ambiguity problem, but this is quite different from the
ambiguity problem in decoding. For example, it is perfectlypossible when hearing a speech
signal to decode it into the correct message, but then fail tounderstand it because of ambiguity.
For instance, if someone says “did you see the game last night”, it is quite possible to correctly
identify all the words, but fail to determine which game is being referred to.

2.4 DISCUSSION

This chapter has introduced a model of communication and language that will serve as the basis for
the next chapter, which looks at text-to-speech conversionin detail, and the subsequent chapters,
which explore the various problems that occur and the techniques that have been developed to
solve them. We should stress that what we have presented hereis very much amodel; that is a
useful engineering framework in which to formulate, test and design text-to-speech systems.

In building this model, we have drawn from a number of fields, including semiotics, informa-
tion theory, psychology, linguistics and language evolution. These fields have overlapping spheres
of subject matter, but unfortunately are often studied in isolation such that none really gives as
complete and detailed a model of communication as we might wish for. Each of these separate
disciplines is a vast field in itself, so we have only touched on each area in the briefest possible
way.

Considering semiotics first, we should look at the works of Ferdinand de Saussure, who
is widely acknowledged to have invented the field of semiotics and is considered by many as
the first modern linguist. Saussure was the first to emphasisethe significance of the arbitrary
nature of form and meaning in communication and proposed that the study of the relationship
between the two should be the central topic in linguistics [391], [392]. The philosopher Charles
Sanders Pierce also pioneered early work in semiotics and semantics, and gave us the framework
of iconic and symbolic semiotics which is used here [350]. The second main area we draw from
is communication theory or information theory, and from this we have the principles of encoding,
decoding, channels, messages and signals. The pioneering work in this field was produced by
Claude Shannon [400], who was originally interested in the problem of accurate transmission of
information along telephone wires (he worked for the telephone company AT&T). It soon became
clear that the implications of this work were much broader (Weaver [401]) and it has been widely
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adopted as an approach to the analysis of signals arising from linguistic sources, such that this
information theoretic approach is now dominant in speech recognition and many other fields.
Saussure did not in general deal much with signals, and Shannon and Weaver did not deal much
with meaning, but their work clearly intersects regarding the issue of form and message (the term
form is used in linguistics and semiotics and message in information theory, but they both refer to
the same thing.)

The field of linguistics is often described as the science of language, but in the main this
field focuses very much on just the meaning/form verbal part of language, as opposed to the
entire process which includes participants, conversations, signals and so on. Linguistics generally
approaches language without reference to use; the idea is that a language is an entity and it can
be studied independently of any purpose to which it is put3. This approach is part tradition and
part pragmatic; as linguistics can trace its lineage back tothe philosophical musings of ancient
Greek philosophers. In addition there is the practical justification that by isolating effects it makes
them easier to study. In modern times, the field of linguistics has been dominated by Noam
Chomsky[89], [90], [88], who in addition to many other innovations has championed the idea that
the primary function of language is not communication at all, but rather forms the basis of the
human mind; it evolved for this reason and its communicativepurpose was a useful by product.
Despite this mismatch between linguistics and our more practical needs, this field does provide the
basics of a significant chunk of the overall picture of human communication, including the models
of phonetics, phonology, words, syntax and so on that are central to our problem. Many linguistics
text books tend to be heavily skewed towards one of the many incompatible theories within the
discipline, so care needs to be taken when reading any book onthe subject. A good introductory
book which explains the “hard issues”, which is accessible to those with a scientific background
and which doesn’t follow any particular theory is Lyons [290].

The study of human communication in terms of participants, conversations, background
knowledge and so on is often performed outside the field of mainstream linguistics by psycholo-
gists and philosophers. Good books on human conversation and language use include Clark [95]
and Clark and Clark [96], Searle [395], Grice [184] and Power[361].

2.5 SUMMARY

Communication

• A semiotic system has three levels of representation; meaning, form, and signal.

• in affective communication, the meaning, form and signal are continuous and simply related.

• in iconic communication, the form resembles the meaning in some way. Iconic systems can
be either discrete or continuous

3 In fact in surveying more than twenty introductory text books in linguistics found in the Cambridge University book
shop, I did not find even one that mentioned that language is used for communication!
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• in symbolic communication, the form does not resemble the meaning and the correspon-
dences between these have to be learned.

• Symbolic systems are discrete, and this and the arbitrary meaning/form relationship mean
that communication of complex meanings can occur more effectively than with the other
types.

• Human language operates as a discrete symbolic system.

Components of language

• Human communication can be divided into two main components:

– The verbal component describes the system of phonemes, words and sentences. It is a
discrete symbolic system in which a finite number of units canbe arranged to generate
an enormous number of messages.

– The prosodic component is by contrast mostly continuous, and in general expresses
more basic meanings in a more direct

• Affective prosody is when a speaker uses prosody to express emotion, speech act or other
information which is conveyed sentence by sentence

• Augmentative prosody is used to disambiguate and reinforcethe verbal component.

• Both types of prosody are optional, in that speakers can choose to use no prosody if they wish
and just communicate via the verbal component. Writing in fact uses just this component.

Communication

• We can break communication into four processes in spoken communication:

1. generation is the conversion of meaning into form by the speaker
2. encoding is the conversion of form into signal by the speaker
3. decoding is the conversion of signal into form by the listener
4. understanding is the conversion of form into meaning by the listener

• The equivalent processes exist for written communication also, where we have a writer and
reader instead of a speaker and listener.



3
THE TEXT-TO-SPEECH
PROBLEM

We now turn to an examination of just what is involved in performing text-to-speech (TTS) syn-
thesis. In the previous chapter, we described some of the basic properties of language, the nature
of signal, form and meaning, and the four main processes of generation, encoding, decoding and
understanding. We will now use this framework to explain howtext-to-speech can be performed.

In TTS, the input is writing and the output speech. While it issomewhat unconventional to
regard it as such, here we consider writing as a signal, in just the same way as speech. Normal read-
ing then is a process of decoding the signal into the message,and then understanding the message
to create meaning. We stress this, because too often no distinction is made at all between signal
and form in writing; we here about “the words on the page”. More often an informal distinction is
made in that it is admitted that real writing requires some “tidying up” to find the linguistic form,
for instance by “text normalisation” which removes capitalletters, spells out numbers or separates
punctuation. Here we take a more structured view in that we see linguistic form as clean, abstract
and unambiguous, and written form as a noisy signal that has been encoded from this form.

The process of reading aloud then is one of taking a signal of one type, writing, and con-
verting it into a signal in another type, speech. The questions we will explore in this chapter
are:

• How do we decode the written signal?

• Does the message that we extract from the written signal contain enough information to
generate the speech we require?

• When someone is reading aloud, what are the relationships between the author, reader and
listener?

• What do listeners want from a synthetic voice?

3.1 SPEECH ANDWRITING

It is clear that natural (human) language developed first using sound as its medium. While humans
clearly also communicate with facial and hand gestures and so on, these systems are not able
to express the same wide range of expressions as natural language. Quitewhy human language

26
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evolved using sound as its medium is not clear, perhaps it wasdown to an ability to make distinct
patterns more easily with the mouth, than say by waving hands. It is important to realise that this
choice of sound may well have been a complete accident of evolution, today we communicate in
many different ways with vision either by reading or by interpreting sign language. For most of
human history, speech was the only (sophisticated) means ofcommunication, but a second key
invention, perhaps 10,000 years ago, was that of writing.

To begin with, we need to look at the nature of speech and writing in more depth. We will
do this from a number of angles, looking first at the physical differences between these signals,
before moving on to look at how these differences influence communication.

3.1.1 Physical nature

The speech signal is a continuous, acoustic waveform. It is created by the operation of the vocal
organs in response to motor control commands from the brain.We only have a partial understand-
ing of how this process works, but it is clear that the coordinated movement of the vocal organs to
produce speech is extremely complicated. One of the main reasons why the relationship between
the speech signal and the message it encodes is that speech iscontinuous and the form is discrete.
In addition to this, speech is highly variable with respect to the discrete message as many other
factors, including prosody, speaker physiology, a speaker’s regional accent and so on all affect the
signal. A single message can generate many potential signals. Finally, speech is not permanent;
unless a recording device is present, once something is spoken, it is lost for ever and if no listener
is present or a listener does not hear the speech then the message that the speech encodes will
never be decoded.

Writing is fundamentally different from speech in a number of ways. Firstly writing is
primarily seen asvisual: traditionally, writing always took the form of visible marks on a page
or other material, and today we are quite used to seeing writing on computer and other screens.
This is not however a complete defining property; we considerbraille a form of writing and its key
benefit is of course that one does not need to be able to see to read it. It has been argued [199] that
the main defining feature of writing is that it ispermanent in a way that speech is not. Whether
the writing is created with a pen on ink or impressions on a page, the key point is that once written
it does not disappear. We can of course destroy what we have done, but this is not the point; the
idea is that with writing we can record information, either so that we can access it at a later date,
or send it over some distance (as a letter for instance).

What then does writing record? Writing can be used to record natural language, but in saying
this we should make it clear that writing attempts to record the linguistic form of a message, rather
than the actual signal. That is, if we write down what someonesays, we do not attempt to record
all the information in the speech, such that a reader could exactly mimic the original; rather we
decode the speech into a linguistic message, and then encodethat. Of course quite often the
message we wish to write has never been spoken, and so when writing we generate a linguistic
form from our thoughts, and then encode this as writing without ever considering speech.
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We explained in Chapter 2 that spoken language had a dual structure of sentences made of
words, and words comprised of phonemes. We have a similar dual structure in written communi-
cation, where sentences are made of words (as before), but where words are made ofgraphemes.
Graphemes are in many ways analogous to phonemes, but differin that they vary much more from
language to language. In alphabetic languages like Englishand French, graphemes can be thought
of as letters or characters (we will define these terms later); in syllabic writing like Japanese hira-
gana, each grapheme represents a syllable or mora, and in languages like Chinese each grapheme
represents a full word or part of a word.

It should be clear that even apart from the visual and permanency aspects writing signals
and speech signals are very different in nature. The most important differences is that writing is
discrete and “close to the message”, while speaking is continuous, more complex, and does not
encode the message in any trivial way. The complexities of the speech encoding and decoding
arise because we are using an apparatus (the vocal organs) for a purpose quite different from
their original one. In fact, one can state that it is a marvel that speech can be used at all for
communication messages. In contrast, writing is a culturalinvention, and was designed explicitly
and solely for the purposes of communicating form. If we consider it a “good” invention, it
should not be surprising that the encoding mechanism between linguistic form and writing is much
simpler. This is not to say that the reading and writing process are trivial; it takes considerable
skill for the brain to interpret the shapes of letters and decode messages from them; but this skill is
one shared with other visual processing tasks, and not something specific to writing. The difficulty
of decoding a written signal depends very much on the specificmessage. Often the relationship
between the writing on the page and the words is obvious and transparent; but often it is complex
enough for the decoding and encoding processes to be non-trivial, such that we have to resort to
sophisticated and principled techniques to perform these operations.

3.1.2 Spoken form and written form

We have just explained the differences between spoken and written signals. Turning now to form,
we can ask how (if at all) do the spoken and written form differ? One way of looking at this is
to consider the combined generation/encoding process of converting meaning into a signal. In
general we can convert the same meaning into either a spoken signal or a written one, so we see
that speech and writing (in general) share the same meaning representation but different signal
representations. The question now is, how much of the overall language system do the two share?
It is difficult to answer this conclusively, as to do so (in humans at least) would require a much
more thorough understanding of the processes than we currently have. It is however possible to
consider a model where the meaning to form systems for both spoken and written language share
a common system from meaning to the second level of form. In other words, the meaning-to-word
system is the same for both. The divergence occurs when we consider the primary level of form;
in spoken language words are comprise of phonemes, in written language, they are comprised
of graphemes. From this point until the signal, the two systems are separate. Depending on the
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language, the primary forms may be broadly similar (for instance in Spanish) such that one can
deduce the pronunciation from the spelling and vice versa, or quite different, (for example in
Chinese).

While a few problems certainly occur, this model seems to fit the facts very well. Whether
we write or say the sentenceTHE MAN WALKED DOWN THE STREET, there are six words and they
occur in the same order in the spoken and written versions. This fact may be so obvious as to seem
superfluous, but it is in fact vital to our discussion. One would find it difficult for instance to teach
someone to read French text and speak English words: even if we learned that the pronunciation
for chien was /d ao g/, we would find it difficult to understand why the written French sentence
has different numbers of words in different orders from the spoken English version.

The main point in this realisation of the commonality between the first level of form in
written and spoken language is that it shows that if we can decode the form from the written signal,
then that we have virtually all the information we require togenerate a spoken signal. Importantly,
it is notnecessary to go all the way and uncover the meaning from the written signal; we only have
to perform the job of text decoding and not text understanding. There are two qualifications we
need to add to this. Firstly, some understanding may be required, or may make the job easier when
we are resolving ambiguity in the written signal. For example, when encountering the homograph
polish it may help in our disambiguation to know that the topic of thesentence is above people
from Poland. Secondly, we may need to generate prosody when speaking, and this may not be
obtainable from the writing. This issue is dealt with below (Section 3.5.5).

This conclusion is so important for our system that it is worth restating again; by and large,
the identity and order of the words to be spoken is all we require to synthesise speech; no higher
order analysis or understanding is necessary.

3.1.3 Use

Speech and writing are used for different purposes. When do we use one instead of the other? In
certain cases we have no real choice; in face to face communication it is normal to speak: while we
could write something down and pass it to our friend to read, this is in general cumbersome. When
writing a book, or an article we normally use writing; that isthe standard way in which material is
stored, copied and distributed. Before the computer era it was fairly clear which communication
mode was used for what purpose.

Modern technology certainly gives us more choices; with telephones we can communicate
over distance, whereas in the past this was only possible by letter. We can also now quickly send
written messages electronically, by email, phone messaging, computer messaging and by other
means. Computer or “instant” messaging is particularly interesting in that it assumes many of
the characteristics of speech, but exists as a written signal. When phone messaging (“texting” or
“sms”) first arrived, many though the idea absurd; why would you ever want to send a message in
writing with a phone when you could simply call the person directly? In fact, many “functional”
uses have been found; a common one is for someone to send an address as a text message as this
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is easier for the receiver than having to listen and write theaddress down in case it is forgotten.
Uses go beyond this though, and today we see “texting” as particularly popular among teenagers.
Anecdotally, we believe that by using text, teenagers can think about, plan and edit their messages
so as to seem more confident, funny and so on; this saves the embarrassment that may ensue from
having to actuallytalk to someone.

One major difference is that speech is in generalspontaneous. During a normal conversa-
tion, we usually speak with little planning or forethought;we can’t simply suspend the conver-
sation until we have thought of the best possible way to say something. This accounts for the
disfluenciesin speech, such as hesitations, pauses and restarts. Writing is usually free of these
effects, but it is important to realise that this is not because of any property of writing itself, but
more because the writer can spend time over difficult sections, or can go back and correct what
has been written.

Another significant difference is that in spoken communication the speaker can often see
or interact with the listeners. In face to face communication the speaker can see the listener and
see how they react to what is being spoken; in addition to the listener responding directly (“Yes,
I agree”), they may nod their head, give an acknowledgment orshow confusion and so on. In
response, the speaker can alter or modify their behaviour accordingly. This also happens over the
phone, where verbal cues (“uh-huh”, “yeah...”) are given bythe listener to help show the speaker
their level of comprehension and agreement. This is less effective than with the visual cues; anyone
who has taken part in a multi-person call can attest to the difficulty involved in sensing everyones
understanding and participation in the conversation.

If we compare this to a typical situation where written communication is involved, we see
some important differences. For example, imagine someone is reading a newspaper on a train.
Here the author of a particular column will not personally know the reader, in fact the author will
probably know only a handful of people who read the column. The author and reader are separated
in time and space and the communication is one way only (the reader may comment on the article
to someone else, but this will not reach the author). Becauseof these factors, the situation with
respect to common ground is very different. First, the author is writing for many readers, and all
will have somewhat different degrees and types of background knowledge. Secondly, as no feed-
back is possible, it is necessary for the author to “get it right first time”, there is no possibility of
starting an article and then checking to see if the reader is following. These situational distinctions
account for many of the differences in content between spoken and written language; for example,
because the level of background information can not be known, writing is often more explicit in
defining references, times and places and so on. Informally,we can describe the writing as being
“more exact” or “less ambiguous”. Of course, these terms only make sense when considering the
speech or writing in isolation; as explained above, most ambiguity is instantly resolved when the
situation is taken into account.
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3.1.4 Prosodic and verbal content

One of the most notable features of writing is that it nearly exclusively encodes the verbal compo-
nent of the message alone: the prosody is ignored. This feature seems to be true of all the writing
systems known around the world. Because of this it is sometimes said that written language is
impoverishedwith respect to spoken language as it can only express part ofthe message. It is of
course possible to represent effects such as emotion in written language, (one can simply write “I
am sad”) but this is done by adding information in the verbal component and is different from the
systematic use of prosody to indicate this emotion. Quite why prosody is not encoded in writing
is not well understood. Possible explanations include the fact that it is often continuous, which
creates difficulties if we are using a discrete coding system. Prosody is most powerful for emotive
language; and while this is an important part of literature,the ability to express emotion directly
is not needed so much for legal documents, newspapers, technical manuals and so on.

We do however have a limited prosodic component in written language. Punctuation can be
used to show structure; and underlined, italicised or bold text is used to show emphasis. These
are clearly encoding augmentative prosody in that the punctuation and italics are there to help the
reader uncover the correct verbal form from the writing. Affective prosody on the other hand is
nearly entirely absent; there is no conventional way to shown anger, pain or sarcasm. The only
aspect that is present is the ability to express sentence types such as question, statement and imper-
atives with punctuation at the end of a sentence. It is interesting to note that in most early writing
systems (e.g. Ancient Greek) no punctuation was used at all,but as writing evolved punctuation
appeared and more recently italics and other font effects have become commonplace due to the
wide availability of computer word processing. In the last few years, a system of “emotions” has
become common in email and other electronic communication,in which punctuation is used to
indicate happy faces :-) and other effects, which attempt toencode affective prosody. Quite why
this trend is present is again not clear; while we can ascribethe rise of smiley faces to writing
being used for more informal purposes, this doesn’t explainthe trend from classical Greek to the
English of 200 years ago with its commas, semi-colons and full stops.

3.1.5 Component balance

From the outset, a person knows whether a message should be spoken or written: it is not the
case that the person first generates the message and then decides what channel it should be sent in.
This principle gives rise to another set of differences between spoken and written signals. Because
he knows that a certain message is to be written, the person will, from the outset, structure the
message so as to take account of the component balance available in that signal. So if for instance,
if a writer wishes to convey something happy, he is quite likely to express this happiness in the
verbal component, as the ability to encode affective prosody is not available. So he might say “I’m
thrilled that you got that place” instead of perhaps “well done that you got that place”, which could
give the impression of being somewhat unmoved. With appropriate expression, the “well done...”
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version may sound very enthusiastic if spoken. The different use of components in written and
spoken language is calledcomponent balance.

Simply put, a speaker has a open choice of how much prosody or how much verbal content
to put in a message; they will balance these against each other, to create a final signal that conveys
the message they wish in a way that is balanced between efficiency and effectiveness. A writer
on the other hand has only a very limited ability to use prosody; and so has to rely on the verbal
component more. Because of this, he is likely to “beef-up” the verbal component, so that it is less
ambiguous and more explicit than the spoken equivalent. In addition, the writer will “verbalise”
any emotion if that is required (that is, explicitly explainthe emotion by using words).

It is this awareness of the prosodic deficiencies of written language and the ability to get
around them that enables good writers to make themselves understood. It should be noted that the
majority of people don’t really write anything more than theodd note or shopping list in their day
to day lives. While we all learn to read and write at school, itis readingthat is the essential skill
to cope with modern life; only a few of us regularly write. This point is worth making because
writing well, that is so that one communicates effectively,is actually quite difficult. One of the
main aspects of this is that the ability to encode emotions, make writing unambiguous, and have a
good picture of a potential reader in mind while writing, areall skills that require some mastering.
We have seen this with the advent of email - many new users of emails send messages which are
far too brief (e.g. “yes” in reply to something that was askeddays ago) or that come across as
being quite rude - the writer has written the words that he would normally use if he were speaking
face to face, but without the prosody, the emotion (which could be humour or politeness) is lost
and the words themselves seem very abrupt.

3.1.6 Non-linguistic content

In our discussion so far we have equated speech as being the signal used to communicate linguistic
messages acoustically and writing as the signal used to communicate linguistic visually or over
time. This in fact simplifies the picture too much because we can use our speaking/listening and
reading/writing apparatus for types of communication which don’t involve natural language. Just
as we can use our vocal organs for whistling, burping, coughing, laughing and of course eating,
breathing and kissing, we find a similar story in writing, in that we can use writing for many other
purposes than just to encode natural language.

This is a significant concern for us, in that we have to accurately analyse and decode text, and
to do so we need to identify any non-linguistic content that is present. When considering “non-
linguistic” writing, it helps again to look at the evolutionof writing. The key feature of writing
is that it is more permanent than speech it can be used to record information. Even the earliest
forms of Egyptian and Sumerian are known to have recorded numerical information relating to
quantities of grain, livestock and other “accounting” typeinformation. Furthermore, there are
several cultures who developed methods for recording and communicating accounting information
without developing a system for encoding their language: the most famous of these is the Inca
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quipu system, in which numbers could be stored and arithmetic performed. This ability for writing
systems to encode non-linguistic information is thereforean ancient invention, and it continues
today in printed mathematics, balance sheets, computer programs and so on.[64], [19], [6]

Consider for a moment numbers and mathematics. Without getting to far into the debate
about what numbers and mathematics actually are, it is worthdiscussing a few basic points about
these areas. Firstly, in most primitive cultures, there is only a very limited number system present
in the language; one might find a word for one, two and three, then a word for a few and a word
for lots.

More sophisticated number communication systems (as opposed to numbers themselves) are
a cultural invention, such that in Western society, we thinkof numbers quite differently, and have
developed a complex system for talking and describing them.Most scientifically and mathemati-
cally minded people believe that numbers and mathematics exist beyond our experience and that
advancing mathematics is a process of discovery rather thaninvention. In other words, if we met
an alien civilisation, we would find that they had calculus too, and it would work in exactly the
same way as ours. Whatis a cultural invention is our system of numerical and mathematical no-
tation. This is to some extent arbitrary; while we can all easily understand the mathematics of
classical Greece, this is usually only after their notational systems have been translated into the
modern system: Pythagoras certainly never wrotex2+y2 = z2. Today, we have a single commonly
used mathematical framework, such that everyone knows thatone number raised above another
(e.g. x2) indicates the power. The important point for our discussion is to realise that when we
write x2+y2 this isnotencoding natural language; it is encoding mathematics. Now, it so happens
that we cantranslate x2+y2 into a language such as English and we would read this as something
like “x to the power of two plus y to the power of two”. It is vital to realise thatx2 + y2 is not
an abbreviated, or shorthand form of the English sentence that describes it. Furthermore, we can
argue that while mathematics can be described as a (non-natural) language, in that it has symbols,
a grammar, a semantics and so on; it is primarily expressed asa meaning and awritten form only;
the spoken form of mathematical expressions is derivative.We can see this from the ease at which
we can write mathematics and the relative difficulties we canget in when trying to speak more
complex expressions; we can also see this from the simple fact that every mathematically literate
person in the western word knows whatx2 + y2 means, can write this, but when speaking has to
translate into words in their own language first (e.g.EKS SQUARED PLUS Y SQUAREDin English
IX QUADRAT PLUS YPSILON QUADRAT in German).

3.1.7 Semiotic systems

A semiotic systemis a means of relating meaning to form. Natural language is a semiotic system,
and probably has by far the most complicated form to meaning relationship, and as we have just
seen mathematics is another. Most semiotic systems are muchsimpler than natural language as
they are cultural inventions rather than biological processes (recall that while mathematics itself
may be a property of the universe, the mechanism we use for itsform and encoding are cultural
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inventions). In addition to these examples, we also have computer languages, email addresses,
dates, times, telephone numbers, postal addresses and so on. Just as with mathematics, a telephone
number is not part of natural language, it is a complete meaning/form/signal system in its own
right.

If it were just a case of each semiotic system having its own writing system, we could design
a separate system to process each. The problem arises because frequently we mix these systems
in the same signal and using the same characters to do so. For example, in the above text, we saw
the sentence

(2) Pythagoras certainly never wrote x2 +y2 = z2.

in which we clearly mixed natural language text with mathematical text. There are many other
cases too; while the mathematics example uses different fonts and so on, many systems share the
same characters as natural language writing, so that we get:

(3) a. I was born on 10/12/67

b. It weighed 23Kg

c. I’ll send it to paul@yahoo.com

and so on. The point is that these numbers, dates and email addresses are encoded using the same
signal as natural language writing. To be able to process this type of writing, we have to identify
which parts of the text relate to which semiotic systems.

3.1.8 Writing Systems

To the best of our knowledge1, the first writing system was that of Sumer which developed into
Cuneiform. Perhaps the best known early writing system is the hieroglyphic writing of the Ancient
Egyptians, although it is not entirely clear whether these two systems are related.

Initially these systems werelogographic in nature, meaning that one symbol usually rep-
resented one word or one morpheme. Furthermore, the scriptswerepictographic meaning and
that the symbols were often iconic, ie pictorial representations of the entity the word stood for. As
these systems developed, the iconic nature became less obvious, developing into a more abstract
logographic script. Additionallyalphabeticelements were developed in the language that allowed
writers to “spell out” words. These developments should come as no surprise; in Section 2.1 we
saw that it is quite natural for a communication system to start highly iconic and then progress to
a state when the relation between meaning and form is more arbitrary as this general allows for
experienced users to communicate more quickly and more accurately.

Most writing systems can be described as belonging to one of the following groups, but
in some cases, e.g. Japanese, the complete writing system uses more than one of these types.
Logographic systems, as we have just seen use one symbols to represent words or morphemes.
Syllabic systems use one symbol per syllable, such as in Japanese hiragana.Alphabetic systems

1 If only someone had taken the trouble to write down this key discovery!
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Figure 3.1 Basic model of reading aloud, which shows in the informationflow between the author,
reader and listener.

use a small list of symbols which roughly correspond to the phonemes of a language. The latin
alphabet is of course the most widely used, but its relation to phonemes varies greatly from lan-
guage to language.Abjad systems are ones primarily based on consonants, vowels are usually
not written. It is a basic fact of human language that most information that discriminates words
is carried by the consonants, and so ignoring these in written language is possible (this is why the
abbreviation forDOCTOR is dr and notoo). The semitic family of languages, including Hebrew
and Arabic are abjads.

Writing systems are an important consideration in TTS as in general we have to be able to
design a system for any language, and this means being able tohandle all writing systems. Prob-
lems that have to be solved include, identifying the language, identifying the writing system (for
example Japanese uses a logographic and a syllabic system),identifying the computer encoding
used, the writing direction and many other issues specific toeach language.

3.2 READING ALOUD

We now turn to the problem ofreading aloud, that is, how to read text and then speak what we
have read.

3.2.1 Reading silently and reading aloud

The process of reading, as we normally understand it, is one of taking some text, decoding it into
a message, and then understanding it. For clarity, we call this processreading silently. By and
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large, the process of decoding the text is relatively straightforward for us, and in say a newspaper,
we can often successfully decode all the text without error.Understanding is more difficult, in
that we may not completely understand an article, and we can perhaps think of various degrees of
understanding that we might achieve with respect to a text.

The other participant in this process is the author, and exactly the same factors govern the
way she generates a message as with our conversation exampleof section 2; she assumes some
background knowledge on behalf of the reader, makes an assumption about the reader’s situation,
and is guided by the conversational principles outlined before.

In addition to all these though, she generally assumes that the reader will be reading in the
way just described; that is, decoding the writing into the message and then understanding this.
This last point is highly significant because this carries with it an assumption that the spoken part
of the communication process is not relevant to the task of normal, silent, reading. Examples
of the effect of this include a situation where a journalist may include the name of a foreign
person or place, but not have to explain how this should be pronounced. The word structure of the
sentences can be different, because unlike speaking, thereis no need to limit the length of phrase
or sentences to chunks that are possible to say with one breath. Far more significantly though,
there is little or no specification of prosodic information;it is assumed that the verbal content is
enough to create the correct understanding, and emotional or other thoughts are communicated via
the verbal component. These problems cause no problem for normal reading, as this speech isn’t
involved in this process.

Now consider the act ofreading aloud, that is, reading the text and simultaneously speaking
it. This is considerably more complicated in that it involves three agents; an author, a reader and
a listener, and two types of signal, text and speech. A diagram of this process is shown in Figure
3.1. This type of reading of coursedoesinvolve speech; and herein lies the problem, because in
the majority of cases, the text that has been written has onlybeen written to be read silently; it
was never intended to be read aloud. The problem is that as we explained in Section 3.1.5, the
component balance is now wrong; a message that was intended to be communicated by writing
is now being communicated by speech. While sometimes this isunproblematic, often difficulties
can arise from this mismatch, and we can class these difficulties into those to do with prosody and
those to do with the verbal content and style. We now investigate these in detail.

3.2.2 Prosody in reading aloud

We have seen already that the written signal contains littleor no prosodic information, and when
this is decoded, it is decoded into a message that has verbal content only; the prosodic content is
generally missing. This is not a problem for reading silently, the reader can understand the thought
without needing the prosodic information, and the assumption is that the author has made strong
use of the verbal component to compensate for the lack of prosody. If the message is to be spoken
aloud we face the issue of what and how much prosody to use. Formessages which have little
emotion and/or are highly propositional in content, there should not be much of a problem. We
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decide to use neutral prosody, and the suprasegmental effects that need to be synthesised can be
found from the verbal part of the message. For more emotive messages, or in cases where we
think we need significant use of augmentative prosody, we have a fairly serious problem. This
is because we have no means of knowing what prosody the speechshould be encoded with; the
message that we found from the text has no explicit clues as towhat the prosody should be.

The only solution is for the reader to generate their own prosody. This is very different from
what they are doing with the verbal content; there they are simply decoding from one medium
and encoding in another, no imagination, creativity or understanding is required. With prosody
generation however, the message does not contain the necessary content, and so the speaker must
generate this themselves. We don’t really know exactly how people perform this task, but it is
plausible that some understanding of the message is undertaken, and from this an attempt is made
to generate prosody that the speaker believes is appropriate for the verbal content. Another way of
looking at this, is that they in some sense attempt to reproduce the prosody that the author would
use if they had decided to speak the message rather than writeit.

It is crucial to realise the difference between the process of finding the message by decoding
the writing, and the process of prosody generation. In the first, there is a clear right and wrong;
the source generated this partial representation, it was clear and specific, and it is our job to find it.
Any difficulties that may arise are solely because some distinctions in the structured representation
are lost when the message is encoded in the signal (they are ambiguous). In the case of prosody
generation, there can be no right or wrong; this informationnever existed in the first place and so
we cannot recover it.

3.2.3 Verbal content and style in reading aloud

Another issue concerns the situation where the reading process is taking place. In our canonical
example, the author is writing with the intent that the reader silently reads the text. If the text is then
read aloud, we face a potential problem in that the communication convention assumptions used
to generate the message have been violated, and we are now converting the message into a signal
that it wasn’t intended for. A simple example will demonstrate this. Many written documents are
quite long; simplisticly we can say that this is necessary because the author has a lot to say and it
may not be easy to get this across except in a long document (say a book). The author of course
assumes that the reader will read this at a time that is convenient and at his own rate. Furthermore,
while the author may not explicitly desire this, it is understood that the reader can skip ahead,
glance through sections, or reread sections again.

If we now consider the situation of a human or computer reading this document out loud, we
see that many of these assumptions no longer apply; the speech progresses linearly from the start
of the book, the rate of reading is more or less constant, and that the reader doesn’t directly decide
when the reading should start and stop. Potentially, this can cause severe problems and we may
find that although the system is reading and speaking the textperfectly adequately, the user is not
satisfied with the experience because of these violations ofcommunicative norms.
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Figure 3.2 The common-form model showing the two processes of text decoding, which finds the
words, and speech encoding from those words. For illustration we have shown the different primary
levels of form for speech and writing as graphemes and phonemes to show that these are not directly
connected.

3.3 TEXT-TO-SPEECH SYSTEM ORGANISATION

The above discussion shed light on some of the issues of spoken and written communication, and
the particular process of reading aloud. From our understanding of these processes, we can now
define a model of how text-to-speech conversion by computer can be carried out. The next section
describes the model we adopt throughout the book, and the sections after that describe alternative
models and how these compare.

3.3.1 The Common Form model

In the common form model, there are essentially two components; a text analysis system
which decodes the text signal and uncovers the form, and a speech synthesis system which encodes
this form as speech. The first system is one of resolving ambiguity from a noisy signal so as to
find a clean, unambiguous message; the second system is one where we take this message and
encode it as a different, noisy, ambiguous and redundant signal. The core idea is that writing and
speech share a “common form” and that that, and that alone is the single and correct intermediate
representation between the two types of signals. A diagram of this is shown in Figure 3.2.

For purposes of basic explanation, we should take the word “form” here to mean “the words”.
Hence, in analysis phase, we are trying to find the unambiguous, underlying words from the text;
and in the synthesis phase we are attempting to create a speech signal from these words. In the
basic common form model, we always read the words as they are encoded in the text; every word
is read in the same order we encounter it. No understanding orother higher level analysis is
performed, and as such everything is read with a neutral prosody.

The key features of this model are;

• There are two fundamental processes; text analysis and speech synthesis.
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• The task of analysis is to find the form, ie. the words, from thetext.

• The task of synthesis is to generate the signal from this form.

• No understanding is required, an accurate decoding of the text into a linguistic form is suffi-
cient.

• Prosodic information can not in general be decoded from the text, and so everything is spo-
ken with neutral prosody.

3.3.2 Other models

A number of different models are found in TTS systems and we will briefly examine these now.
These models are not mutually exclusive and many real life systems are a combination of two or
more models.

Signal-to-signal model In this model, the process is seen as one of converting the written signal
into a spoken one directly. In such models, the process is notseen as one of uncovering a
linguistic message from a written signal, and then synthesising from this, but as a process
where we try and directly convert the text into speech. In particular, the system is not divided
into explicit analysis and synthesis stages.

Pipelined modelsQuite often the signal-to-signal model is implemented as a pipelined model
were the process is seen as one of passing representations from one module to the next.
Each module performs one specific task such as part-of-speech tagging, or pause insertion
and so on. No explicit distinction is made between analysis and synthesis tasks. These
systems are often highly modular, such that each module’s job is defined as reading one type
of information and producing another. Often the modules arenot explicitly linked so that
different theories and techniques can co-exist in the same overall system.

Text as language modelsIn this model, the process is seen as basically one of synthesis alone.
The text itself is taken as the linguistic message, and synthesis is performed from this. As the
text is rarely clean or unambiguous enough for this to happendirectly, atext normalisation
process is normally added, as a sort of pre-processor to the synthesis process itself. The idea
hear is that the text requires “tidying-up” before it can be used as the input to the synthesiser.

Grapheme and phoneme form modelsThis approach is in many ways similar to the common
form model in that first a grapheme form of the text input is found, and this in then converted
to a phoneme form for synthesis. Words are not central to the representation as is the case
in the common form model. This approach is particularly attractive in languages where
the grapheme-phoneme correspondence is relatively direct; in such languages finding the
graphemes often means the phonemes and hence pronunciationcan accurately be found. For
other languages such as English, this is more difficult, and for languages such as Chinese
this approach is probably impossible. If it can be performed, a significant advantage of the
grapheme/phoneme form model is that, an exhaustive knowledge of the words in a language
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is not necessary; little or no use is needed for a lexicon. This fact makes this approach still
attractive for small footprint systems.

Full linguistic analysis models The common form model is based on the idea that all we need to
uncover from the text is primarily the identity of the words;we don’t make heavy use of any
other linguistic form or meaning representations. Some systems go much further in terms of
linguistic analysis and perform morphological analysis, part-of-speech tagging and syntactic
parsing. To some extent, all these are useful for finding the words; the issue is really whether
these should be performed as separate stand-alone tasks whose output feeds in to the word
finding system, or whether we can find the words with a single, integrated approach. This
issue is addressed in detail in Chapter 5. In addition to wordidentity detection, parsing and
other types of linguistic analysis are often seen as being useful for helping with prosody.

Complete prosody generationThe common form model allows us to describe the three types of
prosody independently. Suprasegmental “prosody” is modelled by the verbal component,
and for utterances which have little affective prosody. This means that only augmentative
prosody has to be explicitly generated. This contrasts withmany systems which state that the
F0, phrasing, stress and so on in an utterance are all directly determined by prosody, and so
to generate speech we have to generate all these quantities with an explicit prosodic model.
If this is the case, then the prosodic part of the system playsa much bigger role.

Prosody from the text Following from the assumptions of the complete prosody model, we find
that if every utterance requires a detailed prosodic specification, then this must somehow be
generated. A common assumption is that the text does in fact contain enough information to
determine prosody, and so many TTS systems have modules which try and predict prosodic
representations directly from the text, often with the assumption that this is an analysis pro-
cess with a right and wrong answer.

3.3.3 Comparison

While some of the above systems may seem quite different fromthe common form model that we
adopt, it should be realised that in many cases the differences can be somewhat superficial and
that “under-the-hood” many of the same underlying operations are being performed. It formulates
text analysis as a decoding problem, and this allows us to bring many of the powerful statistical
text processing techniques to bear on the problem. This is a more powerful approach than the
alternatives of either treating text as the synthesis input, which in some way must be normalised;
or the approach of performing a full traditional linguisticanalysis, which can often be errorful
while the reason why we have chosen the common form model is that it simplifies the overall
design of the system. The text decoding approach allows us tofocus on a single well defined
problem such that we are often able to perform this in a single, optimised system. Secondly, by
avoiding the “complete prosody” assumption, we bypass manyof the difficulties (and we believe
impossibilities) that arise from trying to determine the prosodic content from the text.

The common form approach is what one can also term anintegratedapproach. In many
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TTS systems, one often finds a huge list of modules arranged ina pipeline; a typical system
of this kind might include modules for preprocessing, tokenisation, text normalisation, part-of-
speech tagging, parsing, morphological analysis, lexicon, post-lexical rules, intonation, phrasing,
duration, F0 generation, unit selection and signal processing. The problem with this approach is
that if each module operates independently, it may only be marginally contributing to the overall
process. Each module will have to make “hard decisions” to generate its output, and this can
lead to a propagation of errors through the system. Furthermore, from an analysis of errors and
performance, it may in fact be clear that many of these modules (e.g. a parser) would only be of
marginal benefit even if their output was always correct. An integrated approach on the other hand
aims to avoid these problems by optimising the system performance on a single metric. In the case
of text decoding, the idea is to go from raw text to a word list in a single step. While some of
the tasks performed by modules in a pipelined system may still be performed, they will be done
implicitly, with few hard decisions until the final output isrequired.

3.4 SYSTEMS

3.4.1 A Simple text-to-speech system

To demonstrate the common form model, let us now sketch how a text-to-speech system actually
works. The input text arrives as a sequence of ascii characters, which can be of any length. To
make the processing more manageable, we break input text into separate sentences using a sen-
tence splitting algorithm. The input may only have one sentence, but we don’t know this so we
always attempt to find sentence boundaries. For each sentence, we then further divide the input
into a sequence of tokens, based on the presence of whitespace, punctuation and so on. Often
tokens are just the written encodings of individual words, but can also be encodings of numbers,
dates and other types. Next we find the semiotic class of each token. For non-natural language
tokens, we use a separate system for each type to decode the text into he underlying form, and then
using rules, we translate this form into a natural language form with words. For natural language
tokens, we attempt to resolve any ambiguity and so find the words. We attempt a basic prosodic
analysis of the text. Although much of the information we might ideally like is missing from the
text, we do the best we can and use algorithms to determining the phrasing, prominence patterns
and intonational tune of the utterance. This concludes the text and prosodic analysis phase.

The first stage in the synthesis phase is to take the words we have just found and encode
them as phonemes. We do this, because this provides a more compact representation for further
synthesis processes to work on. The words, phonemes and phrasing form an input specification to
the unit selection module. Actual synthesis is performed byaccessing a database of pre-recorded
speech so as to find units contained there that match the inputspecification as closely as possible.
The pre-recorded speech can take the form of a database of waveform fragments and when a
particular sequence of these are chosen, signal processingis used to stich them together to form a
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single continuous output speech waveform.
This is essentially how (one type) of modern TTS works. One may well ask why it takes

an entire book to explain this then, but as we shall see, each stage of this process can be quite
complicated, and so we give extensive background and justification for the approaches taken.
Additionally, while it is certainly possible to produce a system that speakssomethingwith the
above recipe, it is considerably more difficult to create a system that consistently produces high
quality speech no matter what the input is.

3.4.2 Concept to speech

It is not strictly speaking necessary to start with text as input in creating synthetic speech. As we
have clearly stated, our TTS model is really two processes, an analysis one followed by a synthesis
one, and these are quite different in nature. As the analysissystem will never be perfect, it is quite
reasonable to ask whether there are situations where we can do away with this component and
generate speech “directly”. Often this way of doing things is calledconcept-to-speechin contrast
to text-to-speech. We shall stick with the generally used term “Concept-to-speech”, but we should
point out that this can however mean a number of different things which we will now explain.

Clearly, in our model, if we do away with text analysis, then the input to the system must
be the input to the synthesiser itself, that is, the word-based form or message. We could call this
“message-to-speech” or “form-to-speech” synthesis. The idea is that a message-to-speech system
would be a component in a larger computer natural language system, and that the message would
be generated by a natural language generation system. As this system knows whether it said
PROJECT-NOUN or PROJECT-VERB, it can pass this directly into the synthesiser and so bypassany
errors the text analysis system may make here. While this would certainly bypass any inadequacies
of text analysis, it does suffer from a significant problem inthat we don’t have a standard definition
of what form actually is. Even with systems that conform to the common-form model, each may
have a slightly different idea of what this form should take;one system may just use words, another
may use syntax as well. We therefore face a situation of each system potentially exposing a quite
different interface to an external system developer. A standard interface could be designed, but
standardisations of systems often progress along a lowest common denominator strategy and may
end up being somewhat ineffective.

An alternative strategy is to propose a “meaning-to-speech” system, in which semantic rep-
resentations are the input. Here the message generation andspeech encoding parts would be
combined into a single system. While this bypasses the nature of how the message should look,
it opens up an even thornier problem in that we have even less agreement about how semantic
representations should look. Such a system would have a significant advantage in that it could
solve the prosody generation problem. As we are synthesising directly from meaning, it would in
principle be possible to generate prosody in the signal directly, and so bypass problems of prosodic
impoverishment in the text, or problems with how to represent prosodic form.

A final solution is that we use a TTS system as before, but augment the input so as to reduce
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ambiguity and explicitly show the system where to generate prosodic effects. This can be done by
a number of means, including the use of XML or other markup (explained in Chapter 17). While
this will inevitably lack the power and fine control of the twoabove methods, it has the advantage
in that the input is in a more standard form, such that a systemdeveloper should be able to get this
working and switch from one system to another. It also has theadvantage in that one can easily
vary how close the system is to “raw” text or “clean” text.

The message-to-form and augmented-text approaches are well covered in this book in the
sense that they can be adapted from our main common-form TTS system. Meaning-to-speech
is considerably more difficult and has only been researched in a very tentative manner to date.
Mainly for this reason, we do not cover this approach in any detail here.

3.4.3 Canned Speech and Limited Domain Synthesis

Today, most applications which use speech output do not use text-to-speech. Rather they make
use of a set of recordings which are simply played back when required. These are calledcanned
speechor pre-recorded promptsdepending on the application. A typical way these are deployed
is that a designer creates an exhaustive list of the utterances that are needed for an application.
Quite often these utterances are specific to that application and a new set will be created and
recorded for a different application. Once the utterances have been designed, a speaker is asked
to read these, they are recorded and then stored as waveform files. The application then plays
back the required file at the required time. A typical system of this kind might be deployed in a
train station announcement system or an automated credit card booking system, where the users
interacts with the system by speech recognition and automated dialogue control.

Such systems initially compare unfavorably with TTS in thatthey require a new set of ut-
terances for each application, compared to a TTS system which would just be deployed once and
can be used for any application. Furthermore, the canned speech approach can only say a very
fixed number of things, which can limit the scope of the application (for instance it would be very
difficult to speak a user’s name). Finally, if the application has to be updated in some way and
new utterances added, this requires additional recordingswhich may incur considerable difficulty
if say the original speaker is unobtainable. Despite these apparent disadvantages, canned speech
is nearly always deployed in commercial systems in place of TTS. Part of the reason behind this
is technical, part cultural. Technically canned speech is perfectly natural and as users show ex-
treme sensitivity to the naturalness of all speech output this factor can outweigh all others. In
recent years, TTS systems have improved considerably in terms of naturalness, and so it is more
common to find TTS systems in these applications. There are other non-technical reasons; canned
speech is seen as a simple, low-tech solution whereas TTS is seen as complex and hi-tech. The
upshot is that most system designers feel that they know where they stand with canned speech,
whereas TTS requires some leap of faith. There may be purely business reasons also; while the
canned speech approach incurs up front cost in an application, it is a one off cost, and does not
increase with the size of deployment. TTS systems by contrast can often be sold like normal soft-
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ware where extra licences (and hence cost) is required when the size of the deployment increases.
The main technical drawback of canned speech is that it can only say a fixed number of

things. This can be a severe drawback in even simple applications where for example a telephone
number is to be read in an answer machine application. A common solution is to attempt to splice
together recordings of individual words or phrases so as to create new utterances. The result of
such operations varies greatly from acceptable (but clearly spliced) to comically awful. That said,
even the resultant poor naturalness of this is often chosen over TTS in commercial situations.

Faced with the choice between fully natural but inflexible canned speech, and somewhat un-
natural but fully flexible TTS, some researchers have proposed limited domain synthesissystems
which aim to combine the benefits of both. There are as many different approaches to this. Some
systems attempt to mix canned speech and TTS. Black and Lenzo[52] proposed a system for clev-
erly joining words and carrier phrases, for use in applications such as a talking clock. Thephrase
splicing approach of Donovan et al [139] used recorded carrier phrases and cleverly spliced with
unit selection synthesis from recordings of the same speaker. A somewhat different approach is
to use what is basically the same system as for normal unit selection synthesis but to load the
database of recordings with words and phrases from the required domain [440], [436], [394], [9].

3.5 KEY PROBLEMS INTEXT-TO-SPEECH

In this section we identify the main challenges in high quality text-to-speech. First we describe
four areas which we believe are the key problems that have been recognised as the main goals of
TTS system building (but note, the problems are not always described in this way). Then we go
on to describe two additional problems, which are starting to attract more attention and which we
believe will be central to TTS research in the future.

3.5.1 Text classification with respect to semiotic systems

As we explained, it is a mistake to think that text is simply oralways an encoding of natural
language. Rather, we should see text as a common physical signal that can be used to encode
many different semiotic systems, of which natural languageis just one (rather special) case.

There are two main ways to deal with this problem. The first is the text-normalisation
approach, which sees the text as the input to the synthesiserand tries to rewrite any “non-standard”
text as proper “linguistic” text. The second is to classify each section of text according to one of
the known semiotic classes. From there, a parser specific to each classes is used to analyse that
section of text and uncover the underlying form. For naturallanguage the text analysis job is
now done; but for the other systems an additional stage is needed, where the underlying form is
translated into words.

Let us consider the semiotic class approach. Assume for a moment that we can divide an
input sentence into a sequence of text tokens, such that the input sentence



Section 3.5. Key problems in Text-to-speech 45

(4) Tuesday September 27, 10:33 am ET

would be tokenised as

(5) Tuesday
September
27,
10:33
am
ET

Semiotic classification is therefore a question of assigning the correct class to each of these tokens.
This can be done based on the patterns within the tokens themselves (e.g. three numbers divided
by slashes (e.g.10/12/67) is indicative of a date) and optionally the tokens surrounding the one
in question (so that if we find “1967” preceded by “in” there is a good chance that this is a year).

Once the class has been identified, it is normally quite straightforward for classes other
than natural language to analyse this token to find its underlying form. In dealing with times for
instance, the text token might say10:45am and from this we would find a form something like
(hours=10, minutes=45, timeof day=morning). Finally, we cantranslate this into words. In one
sense this is often straightforward as there are often simple well-accepted rules which describe
this. In our time example, the word version could be read asTEN FORTY FIVE A M, and it is fairly
easy to see how the form-to-words rules would be written for this example. Two issues complicate
the matter however. Firstly, often there are many differentlegitimate ways to translate the same
form; with our time example we could have

(6) a. A QUARTER TO ELEVEN

B. A QUARTER OF ELEVEN

C. A QUARTER TO ELEVEN IN THE MORNING

D. TEN FORTY FIVE IN THE MORNING

E. TEN FORTY FIVE

F. TEN FORTY FIVE A M

and so on. All are legitimate, but as the system can read only one, we have to be sensitive to which
one this should be. Sometimes preferences depend on the user; in particular a British English
speaker may prefer one, an American speaker another. In addition, the context and genre of the
text may have an effect; in an airline reservation system it would be useful to make absolutely sure
the user knows the time is in the morning, in a business appointment system this may be obvious.
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The important point to realise is that there is often no single correct answer to the translation issue,
and so systems need to be sensitive to the user expectations.

A further difficulty with translation is that for some content there is no commonly agreed
rendering in words. While times, dates and currencies normally present no problem, classes such
as email addresses, computer programs and other technical information has no agreed reading. For
example, taking the email address:

(7) pat40@cam.ac.uk

We can easily parse this into

user = pat40
top level domain = uk
secondary domain= ac
local domain = cam

In effect as all email programs do just this. The problem is how should we read this? Should
pat40 be readP A T FOUR ZERO, P A T FORTY, or PAT FORTY?

In summary then, there are three tasks involved here.

1. Identify which semiotic class a token belongs to. This is often the most difficult task.

2. Analyse each token to find its underlying form. Apart from the case of natural language, this
is often quite easy as the semiotic systems are cultural inventions and have been designed to
be easy to understand.

3. Translate into natural language. It is often quite easy togenerate at leastone legitimate
translation but sometimes difficult to generate the particular version that a user expects.

3.5.2 Decoding natural language text

While most semiotic systems have a fairly simple and direct signal-to-form mapping, this in gen-
eral is not so for natural language. Once the text has been properly classified in terms of its
semiotic class, the general level of ambiguity with respectto form is greatly reduced; it is only in
the area of natural language where significant ambiguity still remains.

Ambiguity occurs in many different guises. The most basic ishomographambiguity, where
two words share the same form. In cases such as

(8) lets now project the image

and

(9) the project was running behind schedule

we see that two separate wordsPROJECT-VERB and PROJECT-NOUN both share the same letter
sequence, but have different meanings and different pronunciations. In addition to homograph
ambiguity,syntactic ambiguity is also reasonably common. In the example (from [363])
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(10) Police help dog bite victim

we (at least) two different possible syntactic patterns that could give rise to these tokens:

(11) a. (POLICE HELP DOG) BITE VICTIM

b. POLICE HELP(DOG BITE VICTIM)

The question when building a TTS system is just how much of this ambiguity we actually
need to resolve. A comprehensive approach would attempt to resolve all the ambiguity in the text
and create a rich, structure for the form. In recognition that the more we attempt the more likely
we are to make an error, and also in recognition of the basic engineering principle of efficiency,
we could also take a minimalist approach, which would adopt the principle that we should only
resolve those ambiguities that affect pronunciation. The word SET is used in many different ways
in English, but it is always spelt the same and always pronounced the same, and so we can ignore
the multitude of meanings and uses. If we know that some text could be two or more underlying
forms, but realise that all these forms are spoken the same way, then we shouldn’t bother resolving
the ambiguity.

3.5.3 Naturalness

We take the view that a major goal of TTS research is to make thesystem asnatural sounding as
possible. By natural we mean that the system should sound just like a human; and so eventually
we would like our TTS system to be able to create the full rangeof human speech.

Sometimes the question is raised as to whether we really wanta TTS system to sound like a
human at all. The concern is raised that if the system sounds too much like a human listeners will
get confused and mistake it for a person. We think that in reality this is highly unlikely. All the
time we hear “perfect” recordings of people’s voices, view photographs, watch films and so on,
and are rarely confused. In fact, most of us are used to hearing recorded voices on the telephone
in the form of people’s answering machines, introductory messages or recorded prompts in IVR
systems. Rarely do these confuse us. So no matter how good a system is, it will rarely be mistaken
for a real person, and we believe this concern can be ignored.

We still have to ask however whether people reallywantnatural sounding voices: wouldn’t
they be happy with a “robotic” sounding one instead? (which would after all be much easier for
us to produce). This is really an empirical question that needs to be resolved from user trials.
From what we know however, the answer is over whelming in thatpeople give much higher
satisfaction and acceptance ratings to natural sounding systems. In fact we can go so far as to
say that most listeners are extremely intolerant of unnaturalness to the extent that they will refuse
to use non-natural sounding systems regardless of what other benefits are provided. Quite why
this should be so is somewhat of a mystery; after all in many situations we are quite happy with
visual caricatures of people as evidenced by cartoons and animation. Somehow we don’t consider
a drawing of Homer Simpson a pathetic rendition of reality, but we are insistent on him having a
natural voice, such that in the Simpsons (and all other cartoons) a real actor is used for his voice.
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What then makes one voice sound more natural than another? Again, this is a question that
we are not in a position to answer fully, but we can provide a sketch of the factors involved. Firstly,
any system that produces obviously non-human artefacts in the speech will readily be judged as
unnatural. It is all too easy to generate speech with pops, clicks, buzzes and an endless variety
of other mechanical sounds. Even speech that is absent from any of these “error” type of sounds
can readily sound unnatural. While speech exhibits considerable variability in the realisation of a
particular phoneme, this is controlled by a number of factors including phonemic context, position
in sentence, supra-segmental influence and so on. Getting this variation just right is a key task.
Beyond this, we can consider a number of issues which are related to individuality. In normal
speech, any given instance of speech is obviously speechfrom someone; there is no such think
as speaker-neutral speech. So in a sense, we are completely conditioned to the fact that speech
comes from people, all of whom sound slightly different. So when listening to a synthesiser, one
naturally thinks that it is from someone, and to sound natural, this someone must have a believable
sounding voice. This aspect of naturalness has virtually nothing to do with the message being
spoken, it is entirely a property of the system that encoded the speech. Hence we must make the
synthesiser sound like someone, either a copy of a real person’s voice, or the creation of a new
voice that could pass for a real person unproblematically.

3.5.4 Intelligibility: encoding the message in signal

The final central task isintelligibility . For our purposes, we define intelligibility as the ability of
a listener to decode the message from the speech. As such, this does not include any measure of
comprehension directly, but the idea is that if the listenercan decode the message properly they
should be able to understand it with the same ability as they could the same message spoken by a
human. Because of that we can sometimes measure intelligibility with comprehension tests; this
is usually done with content that may be hard to decode, but isoften not difficult to understand
(e.g. a simple sentence address or telephone number).

Of all the TTS problems, intelligibility is probably the easiest to solve. In fact, it is possible
to argue that this problem was solved some time ago, as was possible to generate fairly intelligible
sounding speech in TTS systems from the late 1970s onwards. In fact, it can be shown in tests
that the intelligibility of a modern TTS system is often onlymarginally better than much older
systems such as MITalk [10], once any text errors have been dealt with2. From this it is wrong
to conclude that little progress has been made on this issue.Crudely speaking, the story is that
while the intelligibility of older systems was reasonably good, research focused on improving
naturalness which was uniformly rated as being very poor with these systems. Hence the idea in
the research community (though rarely stated as such) was toimprove naturalness without making
intelligibility any worse.

2 Today’s systems are massively more accurate with respect totext analysis, and so any text processing errors in
systems such as MITalk have to be eliminated if a comparison of synthesis encoding with respect to intelligibility is to
be performed.
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The relationship is by no means deterministic or simple, butit is possible to see that in many
synthesis paradigms there is an inverse correlation between naturalness and intelligibility. To
achieve high intelligibility, formant systems and early diphone systems used very “safe” speech,
which was well articulated and close to the average realisation for the message in question. In a
sense, this speech was too safe, and containing none of the fluency, slurring, rhythm and heavy
coarticulation found in real speech. As these effects are added, there is a chance that they will
be added inappropriately, and in so doing will actually cause a loss of intelligibility. The trick
therefore is to add in extra naturalness by synthesising variation more appropriately, but to do so
in a way that does not cause unnatural variation to occur.

3.5.5 Auxiliary generation for prosody

We now consider the first of the more advanced problems; specifically how to create speech that
encodes the full range of prosodic effects and not just the neutral prosody of most of today’s
systems. Recall that this is difficult because while the textencodes the verbal message that the au-
thor generated, it does not do the equivalent with prosody. The author of course (subconsciously)
knows this. As such, it is not the case that he generates a message with verbal and prosodic content
as he would do if speaking, rather he generates a message thatonly contains verbal content; the
prosody was neither generated or encoded, and so it we can never recover this from the writing.
How then are we to generate prosodic content if we can’t uncover it from the text?

Firstly, let us separate the issue of generating a signal which contains a particular prosodic
effect (for example surprise, or accentuation of a particular word) from the issue of deciding how
to do this automatically from the text. The issue of the realisation of a particular prosodic form
is by no means easy, but it is certainly more tractable than the second issue. In essence it is no
different from other parts of the synthesis problem in that we can collect data with this effect,
study how supra-segmental features vary with respect to this effect and so on.

It is really the second issue; that of how to determine automatically which prosodic effects
to use from the text that is the more difficult problem. We termthis processauxiliary generation
to show that it is a generation (and not text decoding) issue,and that this is done as a separate,
auxiliary task to the process of verbal decoding and encoding. How then are we to approach this
problem of auxiliary generation? First let us state that just because there is no definite right or
wrong, this doesn’t imply an “anything goes” policy. One would not think highly of a system
that read a message “we are regret to inform you of the sad demise of Mr...” with a humorous or
flippant paralinguistic tone. Furthermore, we probably wouldn’t think too highly of a system that
placed emphasis as follows “THE share price is AT and all TIMEhigh because of uncertainties
caused BY the forecast of PROFESSOR Merton...” and so on. Nowthere is nearly always some
context which we can construct that makes the emphasis of anyparticular word seem reasonable.
However, using the same knowledge and context that we used todecode the writing, we can see
that some emphasis patterns seem more appropriate than others. This leads us to the proposal
that the approach to prosody generation should be one ofassumed intent, which means that we
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have to make aguessas to what the authormight have specified in the structured representation
if he had intended to speak rather than write the message. This is by no means a certain or easy
task but it does give us a reasonable basis on which to solve this problem. We should make two
final points about this. Firstly, as we are making an assumption as to what the author might have
done, there is no clear right or wrong about this task. Secondly, we have to from the outset build
the notion of generation choice into our model of auxiliary completion: just as the author can
choose to represent a thought in a number of different ways, we have to assume that he could have
exercised choice over the prosodic and paralinguistic components. Therefore, as well as being
uncertain because we are making an assumption, it is also perfectly valid to assume that there are
a number of equally valid choices.

3.5.6 Adapting the system to the situation

The issue here is that unlike the “normal” communicative situations of reading silently or having
a conversation; in the case of reading aloud we have three agents; the author, the listener and the
reader (i.e. the TTS system). Most text was never written with the intention that it be read aloud,
and because of this, problems can occur in that faithful readings of the text can lead to situations
where the reader is speaking something that the listener cannot understand, has no knowledge of
or is not interested in hearing. When people take on the role of the reader, they often stray from
the literal text, using explanatory asides, paraphrasing,synonyms and other devices to make the
author’s message understood. Just how faithful the reader is to the text depends very much on the
situation; we sometimes describe a good reader as someone who has a good awareness of both the
listener and the intent of the author and as such can steer a good compromise between faithfulness
and acceptability.

Very few TTS systems themselves make any serious attempt at solving this issue; it is nor-
mally seen as a problem for the application to resolve such issues. Even so, it is possible for the
TTS to facilitate better control; this can be done by providing natural and easy to control ways to
change the speed of the speaking, to have a phrase repeated, aphrase skipped and so on.

3.6 SUMMARY

Speech and writing

• We can consider both speech and writing/text as signals which encode a linguistic, or other,
message.

• The primary functional difference is that writing is an invention used to record messages; as
such it is significantly “closer” to the message than is the case with speech.

• Most writing is written with the intention that the reader reads it silently. This can present
difficulties if this writing is then read aloud.
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• Not all writing encodes linguistic messages, it is used to encode messages in many other
semiotic systems also.

Reading aloud

• To a large extent, we can perform the task of reading aloud, bydecoding a written signal into
a message, and the re-encode this into a speech signal.

• In many cases, no prosody is required, but in others a more sophisticate approach is to
attempt to generate prosody that is appropriate for the message. This can not however by
decoded from the text as that information was never encoded there in the first place.

• These observations lead us to build our system within the framework of the common form
model. This has two fundamental processes.

1. Text analysis; a decoding process that finds the message from the text
2. Speech synthesis; a encoding processes that creates a signal from the message.

Text to Speech Key Challenges

• We can identify four main challenges for any builder of a TTS system:

1. Semiotic classification of text
2. Decoding natural language text
3. Creating natural, human sounding speech
4. Creating intelligible speech

• We can also identify two current and future main challenges

1. Generating affective and augmentative prosody
2. Speaking in a way that takes the listeners situation and needs into account.



4
TEXT SEGMENTATION
AND ORGANISATION

The next three chapters of the book deal with how to extract linguistic information from the text
input. This chapter can covers various pre-processing issues, such as how to find whole sentences
in running text or how to handle text various markup or control information in the text. Chapter 5
describes the main processes of text analysis itself, such as how to resolve homograph ambiguity.
Finally, Chapter 6 describes how to predict prosody information from an often impoverished text
input. In many ways, this subject shares similarities with text analysis. There is an important
difference however in that while we can view text analysis asa decoding problem with a clear right
and wrong, prosody prediction has no strict right and wrong as we are attempting to determining
prosody from an underspecified input.

4.1 OVERVIEW OF THE PROBLEM

The job of the text analysis system is to take arbitrary text as input and convert this to a form more
suitable to subsequent linguistic processing. This can be thought of as an operation where we try
to bring a sense of order to the often quite daunting range of effects present in raw text. If we
consider

(12) Write a cheque from acc 3949293 (code 84-15-56), for $114.34, sign
it and take it down to 1134 St Andrews Dr, or else!!!!

we can see that this is full of characters, symbols and numbers all of which have to be interpreted
and spoken correctly.

In view of our communication model (Chapter 2), we can more precisely define the job of
the text analysis system to take arbitrary text and perform the task of classifying the written signal
with respect to its semiotic type (natural language or other, e.g. a date),decoding the written
signal into an unambiguous, structured, representation, and in the case of non-natural language,
verbalising this representation to generate words. Importantly, the text analysis process only
involves finding an underlying word form from the input, it does not attempt any understanding
or further analysis. A simple overview of the processes involved in text analysis and prosody
prediction is given below;

52
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1. Pre-processing: possible identification of text genre, character encodingissues, possible
multi-lingual issues.

2. Sentence splitting: segmentation of the document into a list of sentences.

3. Tokenisation: segmentation of each sentence into a number of tokens, possible processing
of XML.

4. Text analysis

(a) Semiotic classification: classification of each token as one of the semiotic classes of
natural language, abbreviation, quantity, date, time etc.

(b) Decoding/parsing: finding the underlying identities of tokens using a decoderor parser
that is specific to the semiotic class.

(c) Verbalisation: Conversion of non-natural language semiotic classes intowords.

5. Homograph resolution Determination of the correct underlying word for any ambiguous
natural language token.

6. Parsing Assigning a syntactic structure to the sentence

7. Prosody prediction Attempting to predict a prosodic form for each utterance from the text.
This includes

(a) Prosodic phrase break prediction

(b) Prominence prediction

(c) Intonational tune prediction

In this chapter, we concentrate on a number of preliminary, document processing and archi-
tectural issues. Firstly we attempt to define the precise goal of most of these operations, which is
to uncover the underlying linguistic form. Mostly, this involves defining a precise notion of what
we mean by a word and a sentence and how it relates to its spokenand written form. Secondly, we
examine many of the initial tasks mentioned above, specifically those of classifying documents,
handling markup, splitting documents into sentences and splitting sentences into tokens. The to-
kens which are an end result of this are then used as the input to the further text analysis modules.
Finally, we discuss how to store and communicate information within a TTS system.

4.2 WORDS AND SENTENCES

This section examines the notion of just what we mean by aword and asentence. We may think
we are so familiar with these entities that we don’t have to consider it further but as we saw in
Chapter 2 we nearly all make one basic confusion which is to confuse words with their written
form. The next sections therefore attempt to define the notions of words and sentences with some
rigour.
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4.2.1 What is a word?

In the model of text analysis used in this book, we always maintain a clear distinction between a
word and its written form. The basic idea is that each word is aunique linguistic entity, which can
be expressed in either speech or writing. To do so, it must be expressed as aform , and so we talk
of the spoken and written form of a word. People rarely confuse a word with its pronunciation,
but often the identity of a word and its written form are confused, so we will take extra care to
explicitly show the difference. This is highly beneficial because we can then see text analysis as a
process of determining words from text, rather than a process of say assuming that there are words
actually in the text, such that all text analysis essentially becomes a process of tidying up these
words (e.g. expanding abbreviations). Making text analysis a process of uncovering words from
superficial text is a cleaner and more powerful formulation.

The idea behind our use of underlying words is to try to define some notion of word that
captures the essential essence of the linguistic unit of word, but is free from distinctions that
are not directly linked to word identity itself. Hence whilethe capitalisation difference between
Captain andcaptain may provide some useful information, in essence, these are written
variants of the same word. We use the concept of word to reflectthis, and so we state that the
CAPTAIN is the underlying word ofCaptain andcaptain.

Next, we use this concept to help us with the ambiguity problem, namely that sometimes
difference words have the same written form. If we consider the text formDr we see that this is
highly ambiguous as it can meanDOCTORor DRIVE, or less commonlyDOOR (4Dr car). Dr is
anabbreviation, ie anorthographiclyshortened form of a written word. Abbreviations are often
created by leaving characters out (usually vowels) of the original word, and the omission of these
characters can create the ambiguity. So the full written form of the wordsDOCTORandDRIVE are
not confusable, but the abbreviated forms are and so we term theseabbreviation homographs.
Note that the abbreviation only happens in the written form of the language: when people speak
they say /d aa k t er/ and /d r ay iv/ in its full form, and not /d r/.

We also have words such aspolishwhich is ambiguous (someone from Poland and some-
thing to shine your shoes with), but not because of a short cut: there is no other way to write this
word. Such words are calledtrue homographs as the ambiguity is not caused by writing style
or abbreviation, but rather due to the defined spelling of theword. There are two ways in which
true homographs come into a language. First, there are many words such aspolish in which
it is a pure coincidence that the two words have the same written form. These are calledacci-
dental homographs. Secondly, we have words which are related, such asrecord in I want
to record this andjust for the record. These words are clearly related and form
a verb/noun pair and such homographs are calledPart-of-speech homographs.

We finish this section with a note on the definitions and terminology we will use for the
remainder of the book. The termword will always be used for the unambiguous, underlying
identity of a word, and never used to indicate its written or spoken form. Words will always
be marked in aSMALL CAPS FONT. The termswriting , orthography and text are used more
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or less interchangeably, and all text will be display in acourier font. A Token is a term
used for the written form of a word (for reasons explained below). The written form of a word
is often described in terms ofgraphemes, letters or characters. Here we will use the term
character throughout, as it represents the normal computer science view as a single unit of writing.
Characters are always defined in terms of a standardised computer character set such as ASCII,
and so when working with a character set each character is simple a member of that set. The
term grapheme is often taken as the minimal unit of written language, but isquite confusing
in some respects because often common character sequences such asch andth in English are
considered graphemes. As we only deal with computerised sequences of characters as input, we
will use the termcharacter throughout, and avoid grapheme and letter except to name thefield
known asgrapheme-to-phonemeconversion (This is the standard name and we will stick to it;
in our scheme strictly speaking this would be termedcharacter-to-phonemeconversion.) We
will reserve the termletter to mean the word which we used to speak a character, so that we
speak of “the letters ABC” we that we are talking about three individual words calledLETTER-A,
LETTER-B andLETTER-C.

4.2.2 Defining words in text-to-speech

A word is a linguistic device that relatesform and meaning. In spoken language, words are
composed of sequences of phonemes, and we call this the form of the word. The key concept
of words is that the relation between form and meaning is arbitrary: we have /d ao g/ being the
form of DOG and /k ae t/ being the form ofCAT but there is nothing canine about the particular
phone sequence /d ao g/, virtually anything would suffice. The association of forms and meanings
has arisen over the years during the development of the language; and it is important to note that
people need no knowledge of how a word developed or where it came from to use it properly.
With the advent of written language, words where given an additional form to the spoken one. In
alphabetic languages, there is often an clear relationshipbetween the spoken and written form,
as we see in the two formslook and /l uh k/. Often though this relationships isn’t so clear and
both the spoken and written form of a word have to be learned. In logographic writing systems
(such as Chinese) there is no connection whatsoever betweenthe spoken and written forms. We
can represent the relationship between spoken form, written form and meaning as follows:

meaning

WORD

orthography pronunciation

type of table or seat

BENCH

bench /b eh n ch/
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In a “perfect” language1, every word would have a unique meaning, written form and spoken
form; upon encountering a written form, there would be no doubt as to what it meant, upon wishing
to express a meaning, only one spoken or written form could bechosen. In such a language,
enumerating the words in a language would be trivial. Of course, this is not the case, andmainly
by historical accidentmany words have arisen which share one of more of the written form, spoken
form or meaning. Because of this, identifying the set of words is not trivial, and we have to make
decisions about whetherbank, polish andrecord are one word or two. We will now study
this issue in some detail with the aim of determining an exactdefinition of word that is best suited
for text-to-speech. In doing so, our basic method is to use form and meaningdistinctionsbetween
pairs of potential words. Idealistically, we can think of the following exercise as one where we
have all the form-meaning pairs in a language and one by one compare them and make a decision
as to whether they are the same word or not.

Let us begin by saying uncontroversially that we can assume that words which are different
in orthography, phonetics and meaning are in fact differentwords. So if we have:

animal

xa

dog /d ao g/

fruit

xb

apple /ae p ax l/

it is same to assume that these are different words and soxa 6= xb. Let us also say, trivially, that if
two pairs have (exactly) the same meaning, written form and spoken form that they are in fact the
same word. Now let us consider words in which at least one formis the same, such as:

shine, clean

xa

polish /p aa l ih sh/

from Poland

xb

polish /p ow l ih sh/

It is highly desirable that these be considered different words; it is only a quirk of orthography that
they could be considered the same in any case; they clearly have different meanings and different
sounds, and it would be a bad mistake to speak one with the spoken form of the other. We call
words which have the same written formhomographs, and the process of determining the word
given only the written form is known ashomograph disambiguation. Now consider pairs which
have the same spoken form but a different written form such as:

1 meaning of course, one that would be easy for engineers to deal with.
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animal

xa

bear /b eh r/

naked

xb

bare /b eh r/

Again it is intuitive to think of these as two different words; they mean different things, are spelt
differently and are used differently. Pairs such as these are termedhomophonesand as with the
homograph example, it is only a historical quirk that these have the same spoken form, they are
not related in any other way. Consider now the following:

medic

doctor

doctor /d aa k t er/

medic

doctor

Doctor /d aa k t er/
medic

doctor

Dr /d aa k t er/

As withbear andbare these have different written forms but the same spoken form.But should
we really regard them as different words? In general this is inadvisable as in doing so we wouldn’t
be able to make use of the fact that apart from written form, these act identically in all other ways.
The essential difference between thedoctor cases and thebear andbare is in themeaning:
in one case the meaning is the same while in the other it is different. Rather than count these as
different words we say the different text forms are writtenvariants of a single word,DOCTOR(we
can list more such asDr., dr. and so on). A word such asDRIVE, which shares some written
variants withDOCTOR is considered a different word because it differs in meaningand spoken
form:

type of street

drive

drive,Drive,Dr,Dr. /d r ay v/

Thus words can be considered homographs if only one of their written forms is the same. A single
word can also havephonetic variants, and this is found in words such asEITHER andECONOMIC:
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finance, money

ECONOMIC

economic /iy k ax n aa m ax k/, / eh k ax n aa m ax k/
choice

EITHER

either /iy dh er/, / ay dh er/

In general, written variants are more common that pronunciation variants because they are usually
the result of creativity on the part of writing practices rather than aspects of the language itself.

In traditional linguistics, pairs of words which have the same meaning but different surface
forms are calledsynonymsso that we haveHIGH andTALL or QUICK andSPEEDY. Our intuition
tells us that these are indeed different words that just happen to have the same meaning. In modern
linguistics, the existence of synonyms is disputed in that there is always some context where a
significant difference between the words seems to arise, so that she is very tall seems
to mean something different fromshe is very high. There are a number of words though
which do seem to have exactly the same meaning in that they refer to the same entity, but which
have both different written and spoken forms. Considerhercales, pronounced /h eh r k ae l iy
z/ andhercules pronounced /h eh r k y ax l iy z/. These clearly relate to the same (mythical)
person, but they have different surface forms. Should we consider these as the same word? To
answer this, we look at the issue of the author’s intention and state that while it is hardly a disaster
if one readshercules but says /h eh r c aa l iy z/, the author clearly intended one form over the
other, and we should stick with his wishes. Most examples of this type relate to different surface
forms of a name (e.g.Peking andBejing) and while they in some regards the same, they may
carry subtle intended differences which may be important with respect to the author’s intentions.
Hence we add to our definition of word the distinction that units in which both surface forms are
different are different words, regardless of meaning.

Finally we consider cases where the written and spoken form are the same, but where we
can argue there is more than one underlying word. If we look atsing andsang it is clear that
according to the definitions given above that although related (one is the past tense of the other)
these are two different words. But what about words such ascut? This too has a present and
past tense, but only one surface form. Other words have the same form but more than one part
of speech:walk can be a noun or a verb, but in both cases it is spelt the same andpronounced
the same. As a final case, we can consider words such asbank which, even as a noun, has
two distinct meanings (bank of a riverandsomewhere to keep money). Pairs such as bank are
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termedhomonyms, but traditionally this term covers both homographs and homophones; words
which have difference in meaning and in which both surface forms are the same we shall callpure
homonyms. Distinctions such as this pose the most difficultly for our definition of word. The
problem is basically this; while it is clear that in general use these words are different, for text-to-
speech purposes the distinction is largely unnecessary.cut is pronounced /k uh t/ regardless of
its tense, andbank is again pronounced the same way regardless of meaning.

It is important to realise that we should be wary of taking a position of “lets make the distinc-
tion anyway, just in case”. The more distinctions we make, the bigger the feature space becomes
and as problems with dimensionality and sparse data are everpresent, making unnecessary dis-
tinctions may harm the performance of subsequent modules. If we consider words such asSET, we
find more than fifty different uses (which cover many meanings) in the Oxford English Dictionary
(a chess set, set in stone, a mathematical set, a film set and soon) and we run a sever risk of unnec-
essarily exploding the feature space for little gain. Because of this, we will complete our definition
criteria by saying that words which have identical written and spoken form will be considered the
same word, regardless of meaning. We can justify this on the grounds that collapsing this distinc-
tion is acceptable for text-to-speech purposes, but it should be noted that for other purposes, say
machine translation between one language and another, distinguishing between these words may
be vital. But in such systems we could probably make other assumptions, for instance completely
ignoring differences in spoken form in a text based machine translation system.

We can summarise our definition in the following table, whichdescribes the effect of simi-
larities or differences between pairs of potential words. The table compares the meaning, written
form and spoken form, gives a name to each, and shows whether we consider such pairs as the
same or difference words.

meaning written form spoken form name distinction
different different different different different CAT, DOG

different different same homophones different BEAR, BARE

different same different homographs different BASS-FISH, BASS-MUSIC

same different different synonyms different HIGH, TALL

different same same pure homonyms same BANK

same different same phonetic variants same EITHER, /iy dh er/ or /ay dh er/
same same different orthographic variantssame LABOUR: labor, labor,
same same same identical same

4.2.3 Scope and morphology

Our discussion so far has assumed we already have our units delimited in some way. That is,
we have assumed we know where one word stops and the next word starts. When first studying
phonetics and speech, most people are surprised to learn that there are no gaps between the words
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in speech; we are naturally think that language is writing, so that we think of words as well
delimited units (at least for speakers of European languages). In normal speech however, the flow
of speech is continuous with no acoustic boundaries marked.Furthermore, while some phonemes
are more likely to occur near word beginnings and ends, therereally is no way to bottom-up find
word boundaries from acoustic evidence. The sceptical observer might well then ask, do words,
as distinct units in time, really exist, or are they simply a invention of linguists (both traditional
and modern)?

These problems ofscope(that is where one word stops and the next starts) can be seen
as problems ofmorphology, the study of how words are composed. In practice, the main issue
concerns whether we should explicitly regard all theinflected forms of alexemeas words in their
own right, or whether we should only consider the as a true word. A lexeme (e.g.BIG) is defined
as the most basic form of a word, and itsinflections are composed from this so that we have
BIG, BIGGER andBIGGEST. In addition we havederivational morphology, which explains how
words such asCREATION are formed fromCREATE. In earlier text-to-speech systems it was often
considered wasteful to list all the forms, rather the lexemewas stored and the other forms were
derived. This approach of course is more expensive computationally as processing has to be used
to derive the forms from the lexeme. Today it really is a matter of engineering expediency which
approach is chosen as it is quite possible to store all the forms of a lexeme.

4.2.4 Contractions and Clitics

We will now turn to the issue of whether longer units form words in their own right. First let
us considercontractions, which are written forms created from particular combinations of two
words. Common examples are:

(13) I’ve, can’t, won’t ,they’ll, he’d

Contractions arenot abbreviations. Abbreviations are words which have a shortened written form
only, such as (Dr 7→ DOCTOR). By contrast, contractions have shortened forms in both the written
and spoken form, sothey’ll, formed from the contraction ofTHEY andWILL is pronounced
/dh ey l/ and not /dh ey w ih l/. We can state more properly that contractions are shorted spoken
combinations of words, whose properties are reflected in writing conventions. The question with
contractions is whether we should regard the contraction asone word or two. First note that the
contraction isn’t always simply a case of concatenating a first written form to a shortened second
written form. Whilethey’ll is created this way,won’t meaningWILL NOT is not formed
this way, and similarly withaint. While don’t can be formed from the concatenation ofdo
andnot followed by the replacement ofo with ’, phonetically the process is different in that the
vowel of DO, /uw/ changes to /ow/ indon’t. Furthermore, sometimes the apostrophe occurs at
the place where we would break the forms (e.g.they’ll) but sometimes not e.g.don’twould
break intodo andn’t, notdon and’t).

As with previous problems, we settle this issue by deciding what we think is best for TTS.
While it is common in natural language parsing to expand contractions and regard them as two
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words, in TTS, they arespokenexactly as a single word would be, and for this reason we regard
all these forms as single words. In further support of this wefind that contractions can be very
ambiguous with respect to the second word, for examplehe’d can either beHE HAD or HE

WOULD. If we chose to expandhe’dwe would have to decide which word the’d was a form of.
Luckily in text-to-speech, both forms are written the same and are pronounced the same (/h iy d/),
so we don’t have to resolve the ambiguity. Contractions comeclose to forming a closed class, in
that they vast majority of contractions are formed from pronouns plus auxiliaries (I’ll, he’d)
or with negationscan’t, won’t, but it is in fact possible to form contractions from normal
nouns as in:

(14) The roads’ll be busy tonight

(15) The boy’s got to learn

(16) The team’ve really shown their strengths

which means the set is not truly closed.
Clitics have similar written forms to contractions in that they use aapostrophe, and that the

written pattern follows through to the spoken form (unlike abbreviations). Clitics differ though
in that they are not contractions of two words, but rather function more like an affix joined to a
normal word. There is only one use of a clitic in English, which is the genitive’s, as used in
Paul’s book. Other languages have much richer use for clitics. In this sense, clitics can be
thought of as affixes; indeed some argue that it is only a historical quirk of English printing that
the generative apostrophe is used at all; there is no structural linguistic reason why we shouldn’t
write Pauls book. As with contractions, we view a form with a clitic as a singleword.

A final type of modified word is theshortened form where a normal word has been short-
ened in some way. Examples includelab (from laboratory),phone from telephone and
so on. These are distinct from abbreviations in that both thewritten and spoken form are short-
ened. This is an important distinction because we assume that when an author writeslab he does
in fact mean just this and if he were to speak it aloud he would say /l ae b/ not /l ax b ao r ax t
ao r ii/. Despite the commonality in meaning, we therefore regardLAB andLABORATORY as two
separate words.

4.2.5 Slang forms

An additional type of contraction is what we termslang forms which include forms such as
gonna, wanna, gotcha and so on. Despite the lack of the apostrophe that we find with the
other contractions, these are similar to contractions in that the written form clearly represents the
combination of two words as a single word. The issue here is again whether to representgonna
as two words (GOING andTO) or one. At first glance, the answer to this may seem to be the same
as with the other contractions we looked at, such asI’ve etc, and that they should be regarded as
a single word. Recall however that our definition of a contraction was one of two words becoming
a single surface form inboth the written and spoken form. The problem withgonna is that it is
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not clear exactly what the status of the spoken form is. In reality, the sequence<GOING, TO> is
realised in a wide variety of fine spoken forms, and it is only an accident that two (going to and
gonna) have become standard in the orthography. Whilegonnamay be a genuine case, there are
actually quite a number of less standard forms such asgotcha (GOT YOU), (whadaya WHAT

DO YOU) and so on. If it wasn’t for the fact that these forms span two words, we would describe
them as orthographic variants of the same word, in the way we would withnite andthru and
so on. Weighing up these competing arguments and the discussion on pronunciation variation that
we will have in Chapter 8, we decide thatgonna and other similar forms should be represented
by two words and should not be regarded as bona fide contractions.

4.2.6 Hyphenated forms

So far our discussion has centred on whether forms which we normally delimit by whitespace
should be considered as full words or further broken down, and we have seen that apart from a
few exceptions, whitespace in conventional writing is actually a quite reliable guide as to word
boundaries. But there are certain cases where we can argue that forms separated by whitespace
should in fact be treated as a single word. Most of this involves issues to do with hyphens and
compounding. Consider the following examples:

(17) a. last ditch, last-ditch

b. spokes woman, spokes-woman, spokeswoman

c. web site, web-site, website

d. new line, new-line, newline

e. steam boat, steam-boat, steamboat

f. vice chancellor, vice-chancellor

g. lock nut, lock-nut, locknut

Here we have a different set of words in which we can have the same two words combined to form
up to three written forms; either as separate written forms separated by whitespace, as forms sepa-
rated by a colon, or as a single written form. These patterns raise a number of issues. Firstly, there
can be a huge number of forms such asSPOKESWOMAN, in which two relatively common words
combine to form a single token. While we could again put everyform of this type in the lexicon
as is, there are likely to be several unknown forms. Secondly, words likespokeswoman act like
separate words for the purposes of inflection; the plural ofspokeswoman is spokeswomen
and notspokeswomans, and so the orthographic form uses the irregular plural formof one of
its constituents. Thirdly, as shown in the list of examples,the written conventions actually used
vary considerably, and one finds that theweb site, web-site andwebsite forms are all
common, when it is clear that they are all just written variant forms of the same word. Finally,
many of these words act like a single phonological word. Of course, in all cases, there is no
silence between the words in when spoken fluently, but there is also the problem of stress. In
normal adjective noun patterns (e.g.large site) the stress normally goes on the second word,
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but in cases such asweb site it goes on the first, as would be the case in single words such
asPARASITE. This helps show the reason over the variability and behavior of the written form; in
speaker’s minds this acts like a single word. There is no realway to resolve this issue as we feel we
must allow words likeblackbird to be represented by a single word, but it is also impossible
to know where to draw the line.

In summary, we use the following guidelines and rules to delimit words:

• Words include free stems and all inflected and derived forms of a stem

• Contractions and forms containing clitics are single words

• Slang forms created from two words are not single words

• Compounds, hyphenated words and multi words are consideredsingle words on a case by
case basis.

• In conventional writing, whitespace and is quite a good guide to word boundaries.

4.2.7 What is a sentence?

As with our discussion with words, we find that there are many possible definitions of a sentence,
and we need to investigate this a little further before discussing any algorithms which process
sentences. It is frequently asked whether people really “speak in sentences” at all. When listening
to politicians being interviewed, they have an uncanny ability to avoid ever ending a sentence; if
they did they could be interrupted. As they wish to hog the floor, they avoid ending a sentence at all
costs (to the extent thateven morerubbish is spoken). In spontaneous dialogue, it is again uncertain
whether sentences are the main unit. Thankfully this is one area where our cross-over between
written and spoken language does actually help. While it is unclear whether people engaged in
interviews or dialogues use sentences, it is clear that the vast majority of conventional writing is
indeed clearly written in sentences. Furthermore, when people read aloud, they effortlessly find
the sentence boundaries and adopt the appropriate sentence-final prosody, such that the boundaries
are preserved in the spoken signal. For our purposes, the situation is complicated somewhat by the
use of non-natural language writing. In an email header, there are no sentences explicitly marked,
and it is part of the verbalisation process that we find suitable sentence boundaries. Again, this
problem is one we share with a human reader - when they are given an email header and told to
read it, they also suffer from not knowing exactly how to go about this. Nonetheless, our task in
sentence splitting is therefore to find the written sentenceboundaries in conventional and all other
types of writing.

In the linguistic literature, many different ways of defining what a sentence is have been
proposed. One approach is what we can term the discourse approach, which states something like,
a sentence is the smallest possible answer to a question, or that it is the smallest unit that can
bear functional meaning and so on. Another approach is to define sentences using more formal
mechanisms; this can take the form of saying that a sentence is a linguistic unit with a subject-
predicate structure, or even more formally, a sentence is the full expansion of any formal grammar
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(this final point of course doesn’t attempt to define sentences “in nature” but just says that they
are a logical by product of a formal grammar). A third definition based on writing, which would
define a sentence as something like “the words between two full stops” or, “it starts with a capital
letter and ends with a full stop”. With certain caveats (see below) we will adopt this definition as
we can’t rely on using any deeper linguistic analysis to assess the internal coherence of a sentence.

4.2.8 The lexicon

In all modern TTS systems we make extensive use of alexicon. The issue of lexicons is in fact
quite complicated, and we discuss this in full in Chapter 8 when we start to talk about pronunci-
ation in detail. For our current purpose, its main use is thatit lists the words that are known to
the system, and that it defines their written form. A word may have more than one written form
(labour andlabor) and two words may share the same written formpolish etc. It is by
using a lexicon as a place to define what is a possible word and what its written forms may be, that
we can use the decoding model we are adopting in this book.

4.3 TEXT SEGMENTATION

Now that we know what we are looking for (underlying words) wecan turn our attention to the
problem of how to extract these from text. While in principlethis could be achieved in a single
process, it is common in TTS to perform this in a number of steps. In this section and the next we
deal with the initial steps oftokenisation andsentence splittingwhich aim to split the input se-
quence of characters into units which are more easily processed by other processes which attempt
to determine the word identity. subsequent

4.3.1 Tokenisation

Formally, we can think of the input as a sequence of characters which encode a sequence of words:

< w1,w2,w3, ...wN > 7→< c1,c2,c3, ...cM >

and so our problem in text analysis is simply one of reversingthis process so that we can uncover
the word sequence from the character sequence, as in the following:

(18) The old lady pulled her spectacles down→< THE, OLD, LADY , PULLED,
HER, SPECTACLES, DOWN >

In most cases of conventional writing, the words don’t overlap with respect to the characters, so
we can also represent this relationship as:

(19)

THE
︷︸︸︷

The

OLD
︷︸︸︷

old

LADY
︷ ︸︸ ︷

lady

PULLED
︷ ︸︸ ︷

pulled

HER
︷︸︸︷

her

SPECTACLES
︷ ︸︸ ︷

spectacles

DOWN
︷ ︸︸ ︷

down
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We can clearly see that the written sentence is easily segmented by using whitespace as a delimiter.
This is only possible in this because the incidence of whitespace in the input always indicates the
presence of a word boundary. There are numerous cases however where this simplistic approach
fails. In a sentence such as:

(20) In 1997, IBM opened a Polish lab

problems occur because a section of the text may be ambiguousas to its word:

(21) polish→ POLISH COUNTRY or POLISH SHINE

problems where whitespace is insufficient to act as the only guide to segmentation:

(22) IBM→< LETTER I, LETTER B, LETTER >

cases where the token does not map to an word:

(23) ,→ NULL

and cases where both ambiguity and segmentation problems exist:

(24)

a. 1997→< NINETEEN, NINETY, SEVEN >

b. or< ONE, THOUSAND, NINE, HUNDRED, AND, NINETY, SEVEN >

c. or< ONE, NINE, NINE, SEVEN >

so we see in this last example that the process of converting sentences into words is one of both
segmentation and classification of the written form of the sentence. As the classification and seg-
mentation interact, it is not possible to do one then the other. Rather, our approach is to first
perform aprovisionalsegmentation into potential written forms calledtokens, followed by a sec-
ond step whereby we examine each token in turn and resolve anyambiguity. This first process
is called tokenisation; the step which then generates the words from the tokens is called text
analysisand is the subject of the next chapter

So in our first example, the tokenisation process would perform the following mapping:

(25) The old lady pulled her spectacles down→< the,old,lady,pulled,
her, spectacles,down >

The advantage of dividing the problem this way is that it makes it much easier to perform
the text analysis step. By tokenising (segmenting) the text, we are making it possible for the text
analysis algorithms to focus on one token at a time: while theanalysis algorithms may examine
the tokens on either side of the one in question, only a few areusually consulted, and this makes
the writing of rules and the training of algorithms quite a bit easier.

4.3.2 Tokenisation and Punctuation

In languages like English, it is obvious that the presence ofwhitespace in the input is a very good
guide to tokenisation. In most conventional writing, splitting on whitespace will often leave a



66 Chapter 4. Text Segmentation and Organisation

one-to-one mapping between tokens and words. The difficulties soon arise however: when we
encounter sequences of capital characters such asIBM we could guess that this will be a letter
sequence and therefore go someway towards the classification and rewrite process by splitting this
into three tokens. But there are several forms such asNATO andUNICEF which don’t follow this
convention; furthermore, sometimes normal words are put into upper case for effect:lets GO!.

Dealing with punctuation properly is one of the main issues in tokenisation. In sentences
such as

(26) So, he went all that way (at considerable cost) and found no-one
there

we see the classic uses of punctuation. Firstly it creates a boundary between two tokens which
might otherwise be assumed to be linked, or it creates a link between two tokens which might
otherwise be assumed to be separate. So a full stop ends a sentence, a comma ends a clause and
both create a boundary between the tokens that precede and follow them. Within this use, we have
status markers, so that while., ? and! all indicate the end of a sentence, they each assign
a different status to that sentence. Hyphens and apostrophes link tokens that might otherwise be
assumed to be more separate (assuming that whitespace wouldbe used if there were no hyphen or
apostrophe).

More difficult problems arise with technical language. First the rules of using whitespace in
conjunction with punctuation are often different; so that in a time we find10:34am in which there
is no whitespace after the colon. Furthermore, some of the verbalisations of technical language
speak the punctuation as words, so that the words foryahoo.com are<YAHOO, DOT, COM>,
where the. is spoken asDOT. It helps in cases like these to make some distinctions. First
we need to distinguishunderlying punctuation from text punctuation. Underlying punctuation
is the abstract notion of what we normally think of as punctuation in conventional writing, and
text punctuation is its written form. These are clearly the punctuation equivalent of words and
tokens. So, while we may have two types of underlying punctuation DASH and HYPHEN there
may in fact be only one written form in our character set. Thisuse of one character for two
underlying punctuation marks causes ambiguity and this must be resolved. In addition, as we
have just mentioned, punctuation is sometimesspokenin technical language. We deal with this
phenomenon by using our model of verbalisation, so that inyahoo.com the sequence is analysed
firstly as an email address, then verbalised into natural language and then spoken. In such cases,
we will represent the word that the punctuation is spoken asWORD COMMA, WORD COLON and
so on, to distinguish from the silent form ofCOMMA andCOLON.

4.3.3 Tokenisation Algorithms

We will now describe a basic tokenisation algorithm:

1. Create an empty list for the tokens to be placed in.

2. Define a start point before the first character of the sentence.
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3. Move forwards through the sentence, examine each character and the character following it,
and decide whether there should be a token boundary at this point

4. If yes, append an entry to the token list and copy (without modification) the characters from
the start point to the boundary point.

5. Reset the start point to be at the boundary point
6. If at the end of the sentence stop, otherwise go to step 3.

The heart of the algorithm is therefore the part which decides whether a boundary should be
placed between two characters of the input. This works on thefollowing criteria:

1. Split on whitespace, but don’t include the whitespace itself in any token.
2. Split on punctuation, create a separate token for each punctuation character.
3. Split when a contiguous non-whitespace sequence changesfrom one character grouping to

another (e.g.10cm→ 10 cm).
4. Don’t split in any other cases.

Sometimes more complex (or more accurate) tokenisation algorithms are used. The amount
of resource put into tokenisation to some extent depends on the sophistication of the process that
follows it. If this can handle errors or noise in the tokenisation, then a fairly simple algorithm
should suffice. If however the subsequent algorithms require more accurate tokenisation a number
of approaches can be applied. The deterministic approach can be extended by considering greater
numbers of cases and writing rules by hand which deal with each case in turn (e.g. email addresses,
times, dates and so on). Alternatively, a data-driven approach can be taken where we label a corpus
with token boundaries and train an algorithm to learn the correspondence. Such an approach is a
classic use of a data-driven technique in speech and language processing, and discussion of this
will be deferred until the general discussion of this in Section 5.2.1.

4.3.4 Sentence Splitting

Many of the algorithms in TTS work a sentence at a time. This isbecause most linguistic units
smaller than this (words, syllables) etc are heavily influenced by their neighbours which makes
autonomous processing difficult. Sentences on the other hand don’t interact with each other much,
and apart from some specific phenomena, we can by and large process each sentence indepen-
dently without problem. The input to the TTS system is not necessarily in sentence form however,
and in many cases we are presented with a document which contains several sentences. The task
of sentence splittingthen is to take the raw document and segment it into a list of sentences.

While sentence splitting is not the most complex of tasks in TTS, it is important to get right
and this is mainly due to the fact thatsentence-final prosodyis one of the phenomena that listeners
are most sensitive to. Generating the high quality sentence-final prosody is hard enough in its own
right, but if the sentence boundary is in the wrong place, then the system has no chance.

For conventional writing we make use of the fact that in most cases the writer has clearly
marked the sentence boundaries; and so our job is simply to recover these from the text. Perhaps



68 Chapter 4. Text Segmentation and Organisation

ironically then, our algorithm is based on the lay notion of finding upper case characters at begin-
nings of sentences and period characters at the end, and marking sentences as what lies between.
The situation is not quite that simple; as we know the period character can be used for a variety of
purposes, as can upper case characters. The task is therefore one of finding instances periods and
related characters, and classifying them as to whether theyindicate sentence boundaries or not.

A basic sentence splitting algorithm for conventional writing can be defined as follows:

1. Start a new sentence at the beginning of the input
2. Search forwards through the input to find instances of the possible end of sentence characters

., ! and?.
3. Using the immediate context of these characters, determine whether a sentence boundary

exists; if so complete the current sentence and start a new one.
4. End the current sentence at the end of the document (regardless of whether the last characters

are., ! or ?.)

The heart of the algorithm is the decision as to whether an instance of an text form of.,
! or ? constitutes a sentence of not. The most difficult case is. as this can be used as part of
an abbreviation, a number an email address and so on. In conventional writing, a space always
follows the full stops at a sentence end, and the next sentence always starts with an upper case
letter. In fact the onlyconventionalother use of. is in abbreviations, so that we might find:

(27) Dr. Jones lives in St. James Road

In fact, in most modern writing, the use of. in this sort of abbreviation is not common. Profes-
sional publishers make use ofstyle manualsto help authors with various issues in writing and
layout. Conventions differ, but instructions from one academic journal include:

• Do not use periods in titles, henceDr Jones, Mr Mark Johnson Jr

• Do not use periods in letter sequences, henceUSA, IBM
• Do use periods for abbreviations in personal names, henceJ. R. R. Tolkein (note

that a space follows the period)
• Do use periods for latin letter sequences, hencee.g. andet. al.

These guidelines show that the incidence of periods in abbreviations is probably less com-
mon that expected, but there are still potentially confusing situations. Remarkably, many style
guides are aware of this and even advise writers “do not starta sentence with an abbreviation”. Of
course, real life is never so simple, and even in conventional writing, one sees frequent variations
on the above guidelines, such that we must in principle allowfor a period after any abbreviation
(For example, one seesJRR Tolkein, J.R.R. Tolkein, J R R Tolkein andJ. R.
R. Tolkein all on writing from the Tolkein Society alone). Usage patterns are potentially sig-
nificant, in that while we may allow a period after any abbreviation, a probabilistic algorithm could
make use of the fact that they are rarely found in some cases. And of course, if these really were
universal conventions they wouldn’t have to be spelled out in a style guide, authors would simply
know.
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For less casual conventional writing, the situation can be more difficult. In email messages,
one finds that some writers do not use an upper cases characters at the start of a sentence, or that
new-lines are used as sentence boundaries and no ending punctuation is found. We also come
across the problem in email that the form of the headers is intended for email programs to parse
and process and not for reading aloud. So the notion of “sentence” is unclear here. To get around
this, we simply have to decide in what form we will read this information and so what form the
sentences will take in these genres. One approach is to have each line as a sentence, another is to
somehow process the header into a spoken list or other structure.

4.4 PROCESSINGDOCUMENTS

4.4.1 Markup Languages

It is useful to be able to control the behavior of the TTS system at run time. While global parame-
ters can be set in a number of ways, often it is useful to have very precise instructions which affect
specified words. This is most effectively done by interleaving instructions to the TTS system with
the actual text to be spoken. In older TTS systems, it was common for each to have its own type
of markup. So for example in the Bell Labs system [411],, there are special sequences of escape
characters that help the user specify what behaviour the system is to follow.

The disadvantage of this is that these special characters would mean nothing to a different
TTS system, so a document marked up for one TTS system would not work with another. To
get around this, Taylor and Isard [435], [444] proposed thespeech synthesis markup language
(SSML) which aimed to provide a general set of markuptags which could in principle be used
by any TTS system. This was extended by a number of further projects including thespoken text
markup language by Sproat et al [411], and thejava speech markup languagedeveloped by
Andrew Hunt at Sun Microsystems. These served as the basis ofthe synthesis part of the W3C
standardVoiceXML (also called SSML, but not to be confused with the original).

All these schemes are based on the idea ofgeneralised markup, first developed in the type-
setting industry. There, the idea ofmarkup had been around for a long time, where a typesetter
would mark some text to be printed in 12 point, or in italics orso on. The problem with such
markup is that instructions is that they arephysical, meaning that they are very specific to the type
of printing being used. If someone wished to print the document in a bigger font for instance, the
insistence on using 12 point (which may have seemed large in a10pt document) means that the
intended effect is not achieved. Generalised markup attempts to get round this by splitting the type
setting into a two stage process. The author, or editor, addslogical markup to the text, for example
by indicating that something is a heading, or requires emphasis. In the second stage, this is then
rendered by a process much more specific to the actual printing mechanism being employed. As
the document itself only contains logical instructions, itis much more portable, and can be printed
on a number of devices and in a number of styles.
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The speech synthesis markup languages followed a similar philosophy, so instead of spec-
ifying that a word should be spoken at 150Hz (which would havedifferent effects for different
speakers), instead more abstract or “logical” instructions are used, which for instance state that a
particular word is to be emphasised. A few simple examples will now be explored.

tag Example Explanation
<s> This tag can be used <s>

to override the decisions
of the <s> sentence
splitting algorithm.

This tag indicates that a sentence break
should be placed at this point. It is a
good way for the author to over ride
any possible shortcomings in the sen-
tence splitting algorithm.

<emphasis> Sometimes we
<emphasis>need</emphasis>
to give a word special
emphasis.

This is used to give particular empha-
sis to a word or group of words. Note
how abstract or “logical” this tag is; no
reference is made to the phonetics of
how to render the emphasis as height-
ened pitch, longer duration and so on.

<voice> <voice gender="female"
age="20"> This is a
female voice </voice>
<voice name="mike">
And this is a male one
<break/> Hope you’re OK.
</voice>

Many TTS systems have the capabil-
ity of speaking in more than one voice.
This tag can switch between voices in
by specifying general attributes or spe-
cific voice names:

In an SSML document, the tags are interleaved with the text tobe spoken. It is of course
important that the two are distinguished, and so the first stage in processing an SSML document is
to perform an XML parsing step. There are a number of standardparsers which do this and which
subsequently produce a structure in which the text and tags are clearly separated. From there, it is
up to the TTS system itself to decide how to interpret each tag. The tags vary considerably in their
purpose, and hence they require processing by different modules in the TTS system. The standard
way of dealing with this is to do a partial processing of the XML initially, and then leave hooks
in the tokens which tell subsequent modules what to do. As canbe seen with the<s> tag, XML,
tokenisation and sentence splitting can interfere, and so it is often a good idea to perform all the
required processing in a single step.

4.4.2 Interpreting characters

Since computers have been around they have been used to storetext, but as computers only operate
in ones and zeros, text can not be represented directly. Rather a character encodingscheme
is used which maps internal computer numbers to characters.So long as the same convention
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is maintained by the readers and writers, chunks of memory can be used to represent encoded
text. The issue for a TTS system is to identify the character encoding being used and process
it appropriately. Partly due to the sheer diversity of the worlds writing systems and partly due
to historical issues in the development of character encoding schemes, there are several ways in
which characters can be encoded.

One of the earliest and most common encodings wasASCII (the American Standard Code
for Information Interchange), which gave a character valueto the first 127 values in an 8-bit byte
of memory (the final bit was left unused). Ascii is of course a standard that was developed in the
United States, which could only represent the 26 charactersof the standard English alphabet. Most
of the worlds languages of course require different characters and so ascii alone will not suffice
to encode these. A series of extensions were developed primarily with use with other European
characters, often by making use of the undefined eighth bit inascii.

The ISO 8859standard defines a number of encodings. For exampleISO 8859-1encodes
enough extra characters for most western European languages such as French and German.ISO
8859-2encodes eastern European languages, whileISO 8859-7encodes Greek characters. These
are all 8-bit encodings are can be used without trouble so long as it is known which is in use. All
contain ascii as a subset so have the advantage of backwards compatibility. Many languages, in
particular south east Asian languages have far more characters than can be included in 8 bits, and
so cannot be accommodated in single byte encoding schemes. Anumber of incompatiblewide
character encodings were developed for these languages before a universal standardunicodewas
developed in the early 1990s. This provides an encoding for virtually all languages, although some
controvosies (largely political rather than technical) still prevent its completely universal adoption.

Unicode simply defines a number for each character, it is not an encoding scheme in itself.
For this, a number of different schemes have been proposed.UTF-8 is popular on Unix machines
and on the internet. Is is a variably width encoding, meaningthat normal ascii remains unchanged
but that wider character formats are used when necessary. BycontrastUTF-16 popular in Mi-
crosoft products, uses a fixed size 2 byte format. More recentextensions to unicode mean that the
original 16 bit limitation has been surpassed, but this in itself is not a problem (specifically for
encodings such as UTF-8 which are extensible).

4.5 TEXT-TO-SPEECHARCHITECTURES

The various algorithms described here all produce output, and this has to be passed to the next
module in the TTS system. As the next module will produce output too, it makes sense to have a
general mechanism for storing and passing information in the system, This brings us to the issue
of how to design our text-to-speecharchitecture.

Most TTS systems have adopted a solution whereby a single data structure is passed between
each module. Usually, this data structure represents a single sentence, so the TTS system works by
first splitting the input into sentences by the sentence splitter, forming a data structure containing
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the raw text for each sentence, and then passing this data structure through a series of modules
until a speech waveform is generated. We will term this theutterance structure.

In many early systems, the utterance structure was no more than a string that was passed
between modules. In doing this systems could adopt either anoverwrite paradigm or aaddition
paradigm. For instance in an overwrite system if the input text was

The man lived in Oak St.

The text normalisation module might produce output like:

the man lived in oak street

And the subsequent pronunciation module might then produceoutput like:

dh ax m a n l i v ax d ax n ou k s t r ii t

The point is, in each case, the module takes its input and onlyoutputs the particular results from
that module. In an addition paradigm, each module adds its output to the output from the previous
modules. So in the above example, the output from the text normalisation module might produce
something like:

The|the man|man lived|lived in|in Oak|oak St|street .|null

And the subsequent pronunciation module might then produceoutput like:

The|the|/dh ax/ man|man|/m ae n/ lived|lived|/l ih v ax d/

in|in|/ax n/ Oak|oak|/ow k/ St|street|/s t r iy t/ .|null

The advantage of addition systems is that it is often hard to know in advance of development
what each module requires as input, and if we delete information we run the risk of supplying a
module with impoverished input. For example, we might find that the phrasing module (which
is called after the text normalisation module) requires punctuation, which can clearly not be used
if the information has been deleted. The trouble with stringbased addition systems is that they
can become unwieldy rather quickly. Even in the example above, with a short sentence and the
operation of only two modules, we see that the string is rather difficult to read. Furthermore, each
module will have to parse this string, which becomes increasingly more complicated as the string
becomes richer.

It is common therefore for modern systems to adopt an approach which follows the addition
paradigm, but does so in a way that allows easier and clearer access to the information. Two of the
most widely used formalisms are theheterogeneous relation graphor HRG formalism [441],
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used in the Festival system, and thedelta system [201], used in a number of commercial and
academic systems.

Both these are based on the idea of building data structures based on linguisticitems2 An
item can be any single linguistic unit, including a word, phone, syllable, pitch accent or other.
The item is afeature structure which is a data structure common in computational linguistics
which defines a collection of properties as an unordered listof key-value pairs also known as
attribute-value pairs. Attributes must be atomic and drawn from a finite set of defined values.
Attributes must also be unique within the feature structure, so that when given an attribute, at most
one value will be found. From a computer science perspective, feature structures are very similar
to associative arraysor maps, and can also be though of aslookup tables or dictionaries. In
mathematics, they can be thought of asfinite partial functions ; that is, functions which have a
finite domain, and for which not all domain values are defined.An example feature structure is
given below:

word :










NAME abuse1
POS noun
TEXT abuse
PRON /@buws/










(4.1)

In the above example, all the values areatomic. It is also possible to have feature structures
themselves as values, which is useful for grouping particular types of information together:

phone:














NAME p
STRESS 1

DISTINCTIVE FEATURES








VOICED f alse
MANNER stop
PLACE bilabial





















(4.2)

(4.3)

These items represent a single linguistic entity. As there are usually several of these in each
sentence we need an additional data structure to store these. In the HRG formalism,relations are
used to group items of a similar type. In the standard HRG formalism, we have three types of
relation: list, tree andladder. Many types of linguistic data are best stored in lists, and this is how
word, syllable and phone information is normally stored. Other types of linguistic data are most

2 For clarity, we will adopt HRG terminology throughout our explanation.



74 Chapter 4. Text Segmentation and Organisation

(c)(b)(a)

Figure 4.1 The three types of relation: a) list relation, b) tree relation and c) ladder relation

S

VP

NP

(a)

(b)

this is

parent

daughter1

daughter2

parent

daughter2

an example

daughter1

this is

next

previous

next next

previous previous

an example

daughter2

Figure 4.2 a) list relation containing word items. b) syntax relation containing syntax items
.

suited to trees, and this is how syntax, prosodic phrasing and syllable structure can be stored. Less
common is the use of ladders, which are used to represent connections between linguistic data
that is not organised hierarchically, as in a tree. The ladder structure can be used to implement
the data structures ofautosegmental phonology[179], which is used for instance to represent the
relationship between syllables and intonation accents. The three types of structure are shown in
Figure 4.1.

One way of configuring the data structures is to have a separate relation for the output of each
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Figure 4.3 Example of a word and syntax relation in which the items in theword relation are also
in the syntax relation.

module, and so overwriting the output of previous modules isavoided. While straightforward, this
configuration can makes the utterance structure very dependent on the particular TTS setup, so that
a module that performs pronunciation in one step would generate one relation, whereas one that
performs lexical lookup, letter-to-sound rules and post-lexical processing as three separate mod-
ules would generate three relations. An alternative is to separate relations from particular modules
and instead use relations to store information for each linguistic type, so we can have a “phone” re-
lation which comprises a list of phone items, a syllable relation, word relation, intonation relation
and so on.

The relations are graphs of nodes arranged in the form of lists, trees and ladders. Each node
can be linked to an item, and in this way the relation can show the contents of the items and the
relationship between them. Named links such asnext(), previous(), daughter() andparent() and
so on are used to navigate through the relation. Examples of alist and tree relation are shown in
Figure 4.2.

One of the key features of the HRG architecture is that items can be in more than one relation
at once. For example, word items can be be in both the word relation and the syntax relation. This
is useful because often we wish to process the words left to right as a list: the word relation is
used for this. Sometimes, however, we want to access the syntax relation, which is a tree in which
the words form the terminal nodes. Having the same information in the two different places is
unappealing as an update to one item requires an update to theother, and this is often awkward
to achieve. Figure 4.3 shows the syntax and word stream together. This ability to include items
in multiple relations means that usually any information inthe utterance structure can be accessed
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from any other item by navigating through the relations.
An alternative to the HRG formulation is the Delta formulation [201]. This mainly differs

in that the connection between the relations (called streams in Delta) is determined by achart.
An example of a delta structure is shown in Figure 4.4. Here, each stream/relation is a list, but
navigation is performed by going to the edge of the item and ascending or descending through the
chart. The delta system is somewhat simpler and often easierto use than the HRG formalism, but
is somewhat less powerful in that it cannot represent general tree information.

4.6 DISCUSSION

4.6.1 Further Reading

The ontological status of linguistic entities was a prime concern of linguistics in the middle part of
the 20th century, but surprisingly has not been the subject of more recent work. Good references
that discuss the nature of words, sentences, phonemes and soon include Lyons [290] and Bloom-
field [57]. Tokenisation in general does not receive much attention in the literature as it is always
assumed to be a relatively minor (and simple) task.

The original SGML book is Goldfarb [178], which describes indetail the justification for
markup languages based on logical rather than physical markup. XML is by is inherently tied in
with the development of the web, and so good references for itcan be found on the W3C website
(www.w3c.org). The original SSML and justification for its use in TTS can be found in Taylor
and Isard [444]. As the current version of SSML was developedas a web standard and references
to this can again be found on the W3C website.
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4.6.2 Summary

Words and sentences

• It is important to distinguishwords which are unique linguistic entities fromtokenswhich
are their textural instantiation.

• The chapter attempts to provide a rigourous definition of thenotion of word so that the
process of finding these from the text has a clear target.
• Homographsare sets of words which share the same text form. There are three reasons why

homographs arise:

1. The samelexemebeing used as a noun or verb which have different pronunciation (e.g.
project)

2. From abbreviated forms of two words producing the same written form (e.g.DOCTOR

andDRIVE producingDr).
3. By historical accident (e.g.BASS-MUSIC andBASS-FISH).

• We use a series of tests to define our set of words by looking at distinctions in written form,
spoken form and meaning.
• Sentences have a number of possible valid definitions. We useone based on the writing as

this is most helpful to TTS.

Text Segmentation

• Top make subsequent processing easier we require that the input be segmented into sentences
and tokens.
• It is hard to divide the input into sequences of characters which align one-to-one with the

words, hence tokenisation often produces a provisional segmentation of the text.

• Deterministic algorithms are often accurate enough to produce acceptable tokenisation and
sentences.

Documents

• A number ofmarkup languagesexist for speech synthesis, based onXML the successor to
XML .

• These markup languages can be used to give extra instructions to the TTS system to override
default behaviour.
• In modern systems, this markup takes the form oflogical rather thanphysical instructions.

Text-to-speech Architectures

• All TTS systems are composed of a series of modules and all systems have to pass data from
one module to the next.
• Early systems typically used strings for this purposes
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• More modern systems use sophisticated structures where each type of linguistic information
(e.g. words, syllables, phonemes) can be accessed separately.

• TheHRG system anddelta system are two popular systems for this purpose.



5
TEXT DECODING:
FINDING THE WORDS
FROM THE TEXT

5.1 OVERVIEW OF TEXT DECODING

The task of text decoding is to take a tokenised sentence and determine the best sequence of words.
In many situations this is a classical disambiguation problem: there is one, and only one correct
sequence of words which gave rise to the text, and it is our jobto determine this. In other situations,
especially where we are dealing with non-natural language text such as numbers and dates and so
on, there may be a few different acceptable word sequences.

So in general, text decoding in TTS is a process of resolving ambiguity. The ambiguity
arises because two or more underlying forms share the same surface form, and given the surface
form (i.e. the writing), we need to find which of the underlying forms is the correct one. There
are many types of linguistic ambiguity, including, word identity, grammatical and semantic, but in
TTS we need only concentrate on the type of ambiguity which affects the actual sound produced.
So while there are two words which share the orthographic form bank, they both sound the same
and so we can ignore this type of ambiguity for TTS purposes. Tokens such asrecord can be
pronounced in two different ways, and so thisis the type of ambiguity we need to resolve.

’In this chapter, we concentrate on resolving ambiguity relating to the verbal component of
language. At its core, this means identifying the correct sequence of words for every sentence,
but we shall also consider in brief the issue of resolving ambiguity in the syntactic structure of a
sentence also, as this is thought by some to have a lesser but still significant impact on speech. In
the next chapter, we concentrate on the corresponding process for prosody, where we attempt to
find a suitable underlying prosodic representation from thetext.

This process boils down to the following tasks:

1. Determine the semiotic class (number, date, natural language etc) for each token.

2. For each sequence of tokens in the same semiotic class find resolve any ambiguity and find
their underlying forms

3. For non-natural language classes, perform a verbalisation process, which converts their un-
derlying forms into a sequence of words which can be spoken.

Generally, non-natural language tokens are quite easy to decode; the difficulty is not in

79
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knowing how to decode the token1997 once we know it is a year, but rather in determining it is
a year in the first place. With natural language tokens, even once we have established that they are
indeed natural language, we still can face considerable difficulty in determining their underlying
form as different words can share the same text form.

While there are many subtle issues involved in text decoding, in essence then it reduces to
two main problems;semiotic classification, i.e. the assignment of a semiotic class to each token,
and homograph disambiguation where we determine the correct word for ambiguous natural
language tokens. Both these tasks involve assigning a category to a token, and as we shall see,
both can be solved with very similar algorithms. Because of this, we now turn our attention to a
general overview of text disambiguation.

5.2 TEXT CLASSIFICATION ALGORITHMS

5.2.1 Features and algorithms

In both semiotic classification and homograph disambiguation, our goal is to assign alabel to each
token, where the label is drawn from a pre-defined set. This process is one ofclassification, which
as we shall see, crops up all the time in TTS to the extent that we use a number of basic approaches
again and again for various TTS problems.

More formally, we say that for each unit (tokens in this case)we wish to assign a labell i
drawn from a set of labelsL = {l1, l2, ...lN}. Our decision is based on analysing a number of
features each of which has set of legalvalues. These serve as information as to which label is
best in each case. This process can be defined as a functionC

C : F 7→ L

which maps from a feature spaceF to a label spaceL.
Let us consider a simple example where we wish to disambiguate the tokenreadwhich can

encode the past tense wordREAD-PAST, pronounced /r eh d/ or the present tense/infinitive word
READ-PRESENT, pronounced /r iy d/. In this case, our label set comprises two labels such that
L = {l1 = READ-PAST, l2 = READ-PRESENT}. If we now consider some example sentences:

(28)

a. I was going to read it tomorrow.

b. I read it yesterday.

c. It is vital that young people learn to read at the correct stage.

d. It read him the riot act.

We see that the other words/tokens in the sentence, and the way they interact with the to-
kenread gives us strong clues as to which word is correct in each case.These “clues” can be
formulated as features, so in the above examples we might have features and values defined as:
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Name Feature legal values
F1 Time token TOMORROW, NOW, YESTERDAY

F2 Is the preceding wordTO ? yes, no
F3 Is the sentence part of a narrativeyes, no

Hence a classification algorithm working on this is defined as

C(F1,F2,F3) 7→ l1 or l2

Below we describe a range of algorithms which operate in thisway. Some are explicitly formulated
by a human designer and by convention we call such algorithmshand written (although obviously
it is the brain which really writes the rules). In these approaches, a human designer has considered
the effect of the features and has by one means or another written a system which performs the
above mapping. The other common approach isdata driven where the mapping is learned by
analysis of a database of examples. Often this database islabelled, meaning that it comprises a set
of pairs of feature values and labels, with the idea that an algorithm can be trained to reproduce
this correspondence. Not all data driven algorithms work inthis way, some areunsupervised
meaning that they look at the inherent patterns in the data and attempt to come up with a mapping
that way. An important sub-class of data-driven algorithmsarestatistical or probabilistic .

Regardless of which approach is taken, the goal is effectively the same, and all encounter the
same problems to be overcome. The difference between hand written and data driven is not as large
a difference as it is often portrayed in that even if a human designs the rules, they presumably do
this based on experience of the problem, in which they have encountered data with these features
and labels. Conversely, using an arbitrary data driven algorithm on data generally produces poor
results; better results are obtained by pre-processing thefeatures and constraining the model in
some way, which of course requires knowledge of the problem.

The basic problem in all classification algorithms, no matter what type, comes from the
issue of how features interact. In general, the features cannot be considered independent, such
that we count the evidence from one feature, then the next andso on and then combine these to
make a final decision. If we could do this, then the design of classification algorithms would be a
simple matter. Rather the features tend to interact, so in the above example, instead of examining
a separate situation for each feature, we have to considerall combinations of feature values. If we
had say three values for the first feature (TOMORROW, NOW, YESTERDAY)), and yes/no values for
the second and third, this would give use a total of 3×2×2= 12 possible feature combinations.

The fundamental issue in classifier design is how to deal withthis feature combination issue.
On the one hand, features hardly ever operate independently, so the effect of particular combina-
tions needs to be taken into account. On the other, it is generally impossible to deal with ever
feature combination uniquely as there are simply far too many. If one uses hand written rules there
are too many cases to deal with, if one uses a statistical algorithm the amount of data required
is too large. The worst case is where the feature combinations are completely unpredictable, in
which case the only answer is alookup table which lists every combination of feature values and
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specifies a label:

F1 F2 F3 Label
YESTERDAY yes yes READ-PRESENT

YESTERDAY yes no READ-PRESENT

YESTERDAY no yes READ-PAST

YESTERDAY no no READ-PAST

NOW yes yes READ-PRESENT

NOW yes no READ-PRESENT

NOW no yes READ-PAST

NOW no no READ-PRESENT

TOMORROW yes yes READ-PRESENT

TOMORROW yes no READ-PRESENT

TOMORROW no yes READ-PAST

TOMORROW no no READ-PRESENT

Our above example is quite small in fact, more realisticallywe might have 10 or 20 features
that we used and in such cases the number of feature combinations might be in the thousands or
even millions. In general of course, the more features we use, the more accurately we should be
able to make our prediction. But as we add more features, the number of feature combinations
increases and we become less likely to observe a full set. This problem is known in statistics as
thecurse of dimensionalityand gives rise to the phenomenon known asdata sparsity meaning
the inability to obtain sufficient examples of each feature combination. While using fewer features
will result in less data sparsity, it also runs the risk that the classifier will be too crude and miss
out on important distinctions. Thankfully, thepathological casewhere every feature combination
operates differently is very rare; and in general while features rarely operate independently, they
do have well behaved effects, such that we can build models, or make assumptions about feature
interactions that allow us to avoid the lookup table case.

As we shall see, all the classification approaches below workby using some knowledge or
assumptions about how the features interact in order to reduce the number of parameters than
need to be specified. One common approach is totransform the original features into a new
feature space in which the new features do in fact operate independently. Another approach is to
determine which features interact most, model the dependencies between these and then assume
that the other features do in fact operate independently. Inour above example, we may decide
for instance that whileF1 andF3 often interact,F2 operates independently, which means we can
reduce the size of the lookup table to six entries.
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F1 F3 Label
YESTERDAY yes READ-PAST

YESTERDAY no READ-PRESENT

NOW yes READ-PRESENT

NOW no READ-PRESENT

TOMORROW yes READ-PAST

TOMORROW no READ-PRESENT

which can then just be combined with the value forF2.
In general, hand written rules can be quite successful when the number of features is low

and the training data is small. A knowledgeable designer canquite often use insight to design a
classifier that gives reasonable performance. This becomesincreasingly difficult as the number
of features increases and the interactions between these get more complicated. Another way of
looking at this is to say as we acquire more training data, it becomes possible to use more features
and possible to model the interactions between these more easily. The complexity of this soon
exceeds human capabilities, and so a data-driven algorithmwill tend to deliver better performance.

5.2.2 Tagging and word sense disambiguation

Semiotic classification and homograph disambiguation are close enough in terms of formalism
that by and large the same techniques can be used for either problem. We find that for these,
and related problems, we have two main types of technique. The first is known astagging and
is the generalisation of the subject ofpart-of-speech (POS) tagging. In POS tagging, the goal
is to assign a part-of-speech tagc, drawn from a pre-defined setC to each tokent. Hence for a
sentence:

(29) The man took a walk in the park

We assign a POS tag to each word as follows

(30) The/det man/noun took/verb a/det walk/noun in/prep the/det park/shelf

Where the ambiguous tokenwalk, which could be a noun or a verb, has been assigned a noun
label. In general then, atagger assigns a label to every token, and these are drawn from a single
setC.

The second type of algorithm performsword sense disambiguation (WSD). The difference
between this and tagging is that in word sense disambiguation, we define multiple sets of labels
L1,L2, ...,LM and choose a label from one of these sets for only some of the tokens. In natural
language processing, WSD is often used for semantic disambiguation to resolve cases such as:

(31) I took the money to the bank

where we are only really concerned with the disambiguation of the tokenbank. This has 2 senses
BANK MONEY andBANK RIVER and these are particular to that token only (i.e. these labels are
meaningless to the tokentook). In TTS we are of course only concerned with homonyms if they
affect pronunciation, so that instead we would look at examples such as:
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(32) He played bass guitar

with the aim of resolving it to

(33) He played bass/BASS-MUSIC guitar

Similar techniques can be used for both tagging and WSD; the reason these are considered
two different problems is that one is mainly concerned with syntactic ambiguity, the other with
semantic ambiguity. In the following sections, we example anumber of algorithms. In these
we use homograph disambiguation for all the examples; but this is purely for reasons of exposi-
tion. In general, all these techniques can be used for semiotic classification, and other types of
classification described in Chapter 6.

5.2.3 Ad-hoc approaches

While we like to imagine that beautiful well constructed theories underly our algorithms, we
frequently find that when it comes to text classification manysystems in practice simply use a
hodge-podge of rules to perform the task. This is particularly common in approaches to semiotic
classification in genres where the amount of non-natural language text is very low, and so only a
few special cases (say dealing with numbers) are required.

As these systems are by their very definition ad-hoc we can’t give a comprehensive guide
to how these work, but often these are configured as a series ofregular expressions which try to
find a pattern (e.g. if the number is 4 digits long and has the form 19xx or 20xx is is a year).
These rules are often ordered somewhat arbitrarily, in manycases with the most recently written
rules last. Sometimes the output is directly rewritten overthe input and sometimes systems keeps
running in a repeated fashion until no rules fire.

For text genres dominated by natural language text, and in situations where very little training
data is available, this approach may be adequate for semiotic classification. This is less likely to
work for homographs, but again depending on the language, the level of errors may be acceptable.

5.2.4 Deterministic rule approaches

A more principled approach is to define a general rule format,a rule processor or engine and a
clearly defined set of rules. This at least has the advantage of engine/rule separationmeaning
that the way the rules are processed and the rules themselvesare separate, which helps with system
maintenance, optimisation, modularity and expansion to other languages. One common type of
rule is thecontext-sensitive rewrite rule, which takes the form

A→ B/d/C

meaning tokenA is converted (“rewrites to”)d when preceded by token(s)B and followed by
token(s)C. In general, the contextsB andC can be any length. This rule has the disadvantage that
only the very immediate context can be used, and so a second type of rule, called acollocation
rule is also popular and takes the form:
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A→ d|T

which readsA converts tod if a trigger token T is present in the sentence. The main difference
is thatT does not have to be near toA. Often this approach is called abag of featuresapproach
as it uses evidence based on other tokens without considering their order in the sentence. Token
collocations are the most common type to consider to use as wecan observe the tokens directly,
but it is also possible to use words as triggers also. These are obviously not directly observable
so we have to perform some classification before we can determine the words, and of course even
once found, our algorithm may not have chosen the word correctly.

If we consider some sentences with an ambiguous token , we cansee quite clearly how
collocation information can help (from Yarowsky [507]).

... it monitors the lead levels in drinking... LEAD-METAL

... median blood lead concentration was ... LEAD-METAL

... found layers of lead telluride inside ... LEAD-METAL

... conference on lead poisoning in ... LEAD-METAL

... strontium and lead isotope zonation ... LEAD-METAL

... maintained their lead Thursday over ... LEAD-AHEAD

... to Boston and lead singer for Purple ... LEAD-AHEAD

... Bush a 17-point lead in Texas, only 3 ... LEAD-AHEAD

... his double-digit lead nationwide. LEAD-AHEAD

... the fairly short lead time allowed on ... LEAD-AHEAD

One simple rule based systems works as follows. Firstly, we require a lexicon which gives
the orthography for each word. With this, we can easily determine check whether two words in the
lexicon have the same orthography, and from this compile a list of tokens which have two or more
word forms. Next we write by hand a set of rules whichfire (i.e. the activate) on the presence of
the trigger token, for example:

concentration LEAD-METAL

levels LEAD-METAL

singer LEAD-AHEAD

dog LEAD-AHEAD

At run-time, we then move through the sentence left-to-right examining each token in turn. When
we find one that is ambiguous (that is, it appears in our list),we look for trigger tokens at other
positions in the sentence which will form a collocation withthe current token.

In longer sentences we may however find several collocation matches, and so exiting the list
on finding the first may result in an incorrect decision. One extension then is to search the entire
list and choose the word that gives the most matches. An alternative is to consciously order the list
in some way, with the idea that the choices at the top of the list are more definite indicators than
those else where. For example, if we findbass followed immediately byguitar, we can be
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almost certain that this isBASS 1 (rhyming with “base”) and not the type of fish. Another way of
using the rules is to run the mostspecificrules first, so if we have a rule which has several trigger
tokens, or a very rare trigger token (e.g.strontium) these fire before more general rules. The
idea here is that very specific rules are much more likely to beappropriate for that word only.

There are fundamental difficulties with regard to this and similar hand written rule ap-
proaches. Firstly, it can be extremely laborious to write all these rules by hand. Secondly, we
face situations where we have an ambiguous token but no trigger tokens that are present in our
collocation list. Both these problems amount to the fact that the mapping from the feature space
to the label is only partially defined. Finally, we face situations where say 2 rules match for each
word - which do we then pick? For these reasons, we now consider machine learning and statistical
techniques.

5.2.5 Decision lists

One of the weaknesses of the simple collocation list is that it doesn’t tell given any indication of
how strong a collocation might be. While we can use ordering (as in the case ofbass guitar),
finding the correct ordering can be difficult and can still cause problems when contradictory rules
fire. An alternative is then to use statistics to give us an indication of how strong or how likely a
particular collocation is. One such method is to usedecision lists, introduced by Rivest [373], and
used in TTS by Yarowsky [506], [507], Gale et al [169] [125] and Sproat [411].

The basic idea of decision lists is to determine the strengthof the link between a token and
its trigger, and this is done by measuring the frequency of occurrence. In the following table (taken
from [507]), we see the raw counts which have been found for the tokenbass:

Trigger BASS-FISH BASS-MUSIC

fish 0 142
guitar 136 0
violin 49 0
river 0 48
percussion 41 0
salmon 0 38

from this it is clear that the trigger words are very strong disambiguation indicators, but also
that some triggers occur more frequently that others. From these counts, we can calculate the
conditional probability that of seeing a word given the collocation, e.g.

P(BASS-FISH|guitar,bass)
P(BASS-MUSIC|guitar,bass)

We then compute the log-likelihood ratios for each collocation:

abs
(

log
( P(BASS-FISH|collocationi)

P(BASS-MUSIC|collocationi)

))
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which then give us a sorted decision list:

Log likelihood Collocation tokenword
10.98 fish BASS-FISH

10.92 stripped BASS-FISH

8.87 sea BASS-FISH

9.70 guitar BASS-MUSIC

9.20 player BASS-MUSIC

9.10 piano BASS-MUSIC

At run time, we simply start at the top of the list and progressdownwards until we find the colloca-
tion which matches our input sentence. We then take the word that results from that as the answer.
There are many subtle modifications, which for instance smooth the probability estimates, count
all the evidence (not just the best case) and which consider the conditional probability of a word
being the answer when we have several triggers present. Yarowsky notes however that the simple
approach is often good enough that many of these modifications don’t add any extra accuracy.

5.2.6 Naive Bayes Classifier

The naive Bayes classifieris a simple and popular approach in word sense disambiguation. In
this, we attempt to estimate the probability that we have word wi is the correct one for a token
based on a number of features:

P(W = wi| f1, f2, ... fN) (5.1)

This is difficult to estimate directly so instead we make use of Bayes rulewhich gives us a more
tractable formulation:

P(W = wi| f1, f2, ... fN) = P(W = wi)P( f1, f2, ... fN|wi) (5.2)

In this, the expressionP( f1, f2, ... fN|wi) is easier to calculate than the expression of Equation 5.1
because all we need do now is find a word that gives rise to an ambiguous token and then count
occurrences of the featuresf1, f2, ... fN around this word. As we mentioned in Section 5.2.1, in
general the interactions between a set of featuresf1, f2, ... fN mean that calculatingP( f1, f2, ... fN)
or P( f1, f2, ... fN|w) can be quite complicated because we have to consider every possible combi-
nation of features. This approach is called thenaive Bayes classifier because it makes the huge
simplifying assumption that none of these features interact, such that the are statistically indepen-
dent. This means that the expressionP( f1, f2, ... fN) can be simplified:

P( f1, f2, ... fN) = P( f1)P( f2), ...P( fN) =

=
N

∏
i=1

P( fi)
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which means that all we need find are the probabilities that a word is found with a each feature
individually.

P(W = wi| f1, f2, ... fN) = P(W = wi)
N

∏
i=1

P( fi)

When an ambiguous token is found, the classification is performed by calculating the above ex-
pression for each word and choosing the answer as the one withthe highest probability. This
algorithm has the advantage that the features can be quite heterogeneous; for instance as well as
simply the tokens themselves (as with the decision list case), we can also use POS tags, position
in sentence and any other features we think might help. Whilethe algorithm is obviously crude in
the sense that it ignores feature dependencies, it does at least give a defined mapping from point
in the feature space.

5.2.7 Decision trees

Given the simplicity of the naive Bayes classifier it performs surprisingly well. However, the
assumption that the features are independent is in general too crude and better performance should
be obtainable by a system which models interaction between features. To see the problem of
feature dependence we might see that the tokenMorgan is a strong indicator that we are have
with BANK MONEY and notBANK RIVER. We might also find that the tokenStanley is just as
strong an indicator. But it is clearly false to assume that these tokens operate independently of one
another and that it is just coincidence that they appear in the same sentence.Morgan Stanley
is of course the name of a real bank and those two tokens very frequently co-occur. Once we have
used one feature, seeing the second adds very little extra information that we are dealing with
BANK MONEY.

In general though, we have seen that it is intractable to assume that every combination of
features is unique and needs to be calculated separately: wesimply never have enough training
data to estimate such models accurately. One popular solution to this is to usedecision trees.
These model interactions between features but do so in a particular way so as to concentrate
on learning the influence of the most important features first, such that rare or undiscriminating
feature combinations can be ignored with some safety. We will explore decision trees in full in
Section 15.1.9; for now we will give a quick overview and showhow they can be used for text
classification.

At run time, a decision tree asks a series of questions in order, and based on the outcome
of these delivers a label. In essence then, this is no more than series of nested “if then else”
constructions in a computer program. For our cases, one set of questions might be “if the token
is lead and the following token is contains the stringpoison and if the tokenpollution or
heavy is also found in the sentence then mark this asLEAD METAL ”.

Any series of questions can be formulated as a tree, and in fact decision trees can be written
by hand. We do however have a number of algorithms which automatically build trees and it is
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because of these that the technique is popular. The decisiontree growing works as follows:

1. Create an initial group containing all the instances of one ambiguous token.

2. Design a set of questions based on our features which we think will help in the word identi-
fication

3. For each question

(a) form two new groups based on the value of the feature
(b) measure the combinedimpurity of the new groups

4. Find the question which gives the biggest reduction in impurity

5. Delete this question from the list of features to be examined.

6. Form two new groups based on this question.

7. Repeat steps 3 to 6 on each new group until the stopping criteria have been met.

The impurity of a cluster can be formulated in a number of ways as we shall see in Section
15.1.9. Here even a simple measure will do, for example the ratio of word-1 over word-2. The
stopping criteria usually involves specifying a minimum decrease in impurity. The decision tree
gets round the problem of modelling all the feature combinations by effectively clustering certain
feature combinations together. This is not always ideal, but it certainly does allow for more accu-
rate modelling than naive Bayes, as we can see that the same feature can appear in different parts
of the tree and have a different affect on the outcome.

5.2.8 Part-of-speech Tagging

A somewhat different approach to the problem is to use atagging algorithm. This type of al-
gorithm arose from the problem ofpart-of-speech (POS) taggingwhich was concerned with
finding the sequence of syntactic categories or parts of speech for each token in a sentence. These
algorithms are of interest to us in two ways. Firstly, many homographs arepart-of-speech homo-
graphs. In English, these are often noun/verb pairs where the same token can be used as a noun
or verb from the same semantic root. In fact a huge number of words in English have noun/verb
pairs, so that can haveGO FOR A WALK and I LIKE TO WALK . In most cases these aresyntactic
homonymsmeaning that while they may operate differently with regardto syntax, they are spelt
and pronounced the same way. A few however are spelt the same way but pronounced differ-
ently and these are the cases which concern us. The idea of POS-tagging is that if we find the
part-of-speech from the text we will know which word we are dealing with.

A second interest in POS-tagging is that this technique can be used to assign any type of
labels to the tokens, not just parts-of-speech. Hence we could use a tagging algorithm for general
disambiguation purposes.

POS-tagging has been a problem of concern in NLP for some time. There it is often used as
a first required step before syntactic parsing is performed,but it is also used in other applications
and seen as a problem in its own right. Many approaches have been tried but probably the most
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a token given the state.
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common approach is to use ahidden Markov model. These are dealt with fully in Chapter 15, but
for now we can give a quick overview explaining their use for tagging purposes. An HMM tagger
operates probabilistically to find the most likely sequenceof tags (labels as we have previously
called them)L for an input sequence of tokensT. We write this as

L̂ = argmax
l

{

P(L|T)

}

Rather than compute the probability that a token generates atagP(l |t), an HMM is agenerative
model which computesP(t|l), that is, the probability of seeing a token given the tag. We can
calculate one from the other by concatenating the HMM modelsto form sequences and then apply
Bayes rule:

P(L|T) =
P(L)P(T|L)

P(T)

WhereP(L) is called theprior and is the probability of a particular sequence of tags occurring.
P(T) is called theevidence, that is, what we actually see, andP(T|L) is called thelikelihood.
An HMM can be viewed as a network of states, where each state represents one POS tag. In
a tagger, all the states are connected, and the connection between each pair of states is given a
transition probability . This represents the probability of seeing one POS tag follow another. A
simple example of this is shown in Figure 5.1 and in this example we see that the probability of
a noun following a determiner is high, whereas the probability of a determiner following another
determiner is very low. In addition, each state has a set ofobservation probabilities which give
the probability of that state generating each token. An example of this is seen in Figure 5.2 for the
determiner POS tag. As we would expect, tokens such asthe have high probabilities, whereas
content tokens such aswalk have low probabilities meaning it is highly unlikely that this tag
would generate that token.

We will consider the full issue of how to train an HMM in Section 15.1.8. For now, let us
simply assume that we can calculate the transition probabilities and observation probabilities by
simply counting occurrences in a labelled database. To see how the tagging operates consider
the issue of resolving the classic POS homographrecord. This can be a noun or a verb, and a
trained HMM would tell us for instance:

P(t = record|l = NOUN) = 0.00065

P(t = record|VERB) = 0.0045

Which basically states that in our training data one in every1538 nouns that we encountered was
the tokenrecord, and one in every 220 verbs we encountered wasrecord.

In addition to this we have the prior model which gives us the probability that a sequence of
tags will occur independent of any actual observations. In general this would take the form:
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P(L) = P(l1, l2, ..., lN)

that is, the probability of seeing all the tags in the sentence. We then wish to find the probability
of a particular tag given all its predecessors:

P(l i|l1, l2, ..., l i−1)

We would never have enough data to count all these occurrences, so we make an assumption
based on the chain rule of probability (see Appendix A). Thisstates that a sequence as above can
be approximated by considered only a fixed window of tags before the current one:

P(l i |l i−2, l i−1)

or
P(l i |l i−1)

In this model we might find for instance that the probability of two particular tag sequences
are

P(NOUN|DET) = 0.019

P(VERB|DET) = 0.00001

which indicates that the chance of a verb following a determiner is much much smaller than the
chance of a noun following a determiner. Given an input tokensequence which includes...
the record ... we would be certain that the tokenthe would be classed as a determiner,
and so when we can combine the two models and calculate the probability we see that the token
record is a noun rather than verb.

In a real HMM tagger system, we have to determine these probabilities from data. In general,
this data has to be labelled with a POS tag for each word, but incases where labelled data is scarce,
we can use a pre-existing tagger to label more data, or use a bootstrapping technique where we
use one HMM tagger to help label the data for another iteration of training.

The prior probability is calculated by counting occurrences of sequences of tags. This is
modelled by ann-gram model which gives the probability of finding a tagti given a fixed length
sequence of previous tagsti−1, ti−2.... The longer the tag sequence the more accurate the prior
model, but in general sparse data problems prevent us from having an n-gram of more that 3 or
4 tags in length. We also have to build a likelihood model, andwe do this by defining a separate
model for every tag. Each of these models then defines a probability distribution over the set
of tokens, giving the probability of seeing any one token given the tag. At run-time, a search is
conducted through all possible tag sequences to find the single most likely, and this is given as
the answer. Another advantage of the HMM approach is that it is amenable to computing every
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possible sequence of tags and choosing the one with the highest probability. This is performed
using theViterbi algorithm, explained in Section 15.1.7. We will return to the entire subject of
HMMs in Chapter 15 where we discuss the general nature of the likelihood models, the prior
n-gram models, the search algorithms, the training algorithms and other practical matters.

5.3 NON-NATURAL LANGUAGE TEXT

We now turn to the problem of dealing with text which does not directly encode natural language.
In our model of communication we have a number of semiotic systems which are used to com-
municate information. Natural language is the richest and often the most common of these, but
we also have numbers, dates, times, computer information, money, addresses and so on. These
systems are separate from natural language, but in TTS we arerequired to speak them, and this
can only be done if we convert data in this form into natural language. This is a two stage problem
where first we must analyse the text to determine its units andstructure; this is done by a process
of semiotic decoding. Then we have to convert this into natural language, and thisprocess is
calledverbalisation. But we have an additional problem in that as these systems share the same
characters as natural language and hence each other, the text forms of these systems often overlap,
leading to considerable ambiguity. Hence before we attemptdecoding and translation, we first
have to performsemiotic classificationto resolve this ambiguity and determine which system
each token of the input belongs to.

5.3.1 Semiotic Classification

Semiotic classification can be performed by any of the techniques described in Section 5.2.1 above.
First, we define which classes we believe our system will encounter. We can immediately identify
some which crop up regardless of text type and genre, and these include:

cardinal numbers 25, 1000
ordinal numbers 1st, Henry VIII
telephone numbers0131 525 6800, 334-8895
years 1997, 2006, 1066
dates 10 July, 4th April 10/12/67
money $56.87, 45p, Y3000, $34.9M
percentages 100%, 45%
measures 10cm, 12 inches

In addition, we have a number of classes which are more genre specific; for example we may have
street addresses in a telephone directory application, computer programs in a screen reader for the
blind and any number of systems in specialist areas such as medicine, engineering or construction:
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emails pat40@cam.com
urls http://mi.eng.cam.ac.uk/ pat40
computer programsfor (i = 0; i < n; ++i)
addresses 4318 East 43rd Street
real estate CGH, sng whit fem

So it is important to have a good knowledge of the applicationarea in order to ensure a good and
accurate coverage of the type of semiotic systems that will be encountered.

It should be clear that a simple classifier based on token observations will only be sufficient
in the simplest of cases. If we take the case of cardinal numbers, we see that it would be absurd
to list the possible tokens that a cardinal class can give rise to; the list would literally be infinite.
To handle this, we make use of specialistsub-classifierswhich use regular expression generators
to identify likely tokens from a given class. One way of doingthis is to run regular expression
matches on tokens and use the result of this as a feature in theclassifier itself. So we might have

(34) Match[0-9]+ ?

as a rule, which will return true if the token is composed entirely of an arbitrary number of digits.
More specific regular expressions can also be used which handle numbers of a fixed length (e.g.
years in the modern era being 4 digits long,) or for real numbers which contain a decimal point.
In addition to theseopen classrules, we also see that semiotic classes form a hierarchy. Sothe
moneyclass is composed of thenumber class and usually a currency symbol (e.g. $). A further
issue is that often several tokens form a coherent semiotic group, such that if we have

(35) 8341 Belville Dr

we have three tokens that together form a single address. Hence we need an ability to group the
tokens after or during classification.

The process of semiotic classification can therefore be summarised as:

1. Define the setS= {s1, ...sN} of semiotic classes
2. For each decide if this is a closed or open class.
3. Closed classes can be enumerated, open classes require regular expression matches.
4. For each token:

(a) run the open class expressions and record the answer for each as a feature
(b) Using the open class features and the normal features, run a classifier (e.g. the naive

Bayes classifier), record the most probable classsi for each token.

5. Group consecutive tokens of the same class together
6. Perform class-specific decoding and verbalisation

To take a simple example, suppose we have the sentence:

(36) You should meet him at 3:30pm at 1994 Melville Drive

and we have the set of semiotic classes as just defined. For each open class we would have a
regular expression as follows:
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natural language [A-Za-z]+
cardinal numbers [0-9]+
telephone numbers0131 525 6800, 334-8895
years 1[0-9][0-9][0-9] | 2[0-9][0-9][0-9]
time hours : minutes part-of-day
hours [0-9] | 1[0-9] | 2[0-4]
minutes [0-6][0-9]
part-of-day am | pm
addresses cardinal number proper-name street-type
proper-name [A-Z][a-z]+
street-type Dr| St| Rd| | Drive| Street | Road

For each token we run each regular expression and record its answer as a feature:

text natural languagecardinal year hours minutes part-of-day proper-name
You 1 0 0 0 0 0 1
should 1 0 0 0 0 0 0
meet 1 0 0 0 0 0 0
him 1 0 0 0 0 0 0
at 1 0 0 0 0 0 0
3 0 1 0 1 0 0 0
: 0 0 0 0 0 0 0
30 0 1 0 0 1 0 0
pm 1 0 0 0 0 1 0
at 1 0 0 0 0 0 0
1994 0 1 1 0 0 0 0
Melville 1 0 0 0 0 0 1
Dr 1 0 0 0 0 0 1

The results of these matches can now be used as features, along with general features such as “is
this the first word in the sentence” (which is useful for telling a normal natural language word
from a proper name). All the features are then given to the classifier which makes a final decision
on semiotic class.

With regard to the issue of grouping, we can use a combinationof the classifier and regular
expression matches to ensure that a sequence of tokens such as3, :, 30, pm are seen as a single
time. A more sophisticated approach is available if we make use of the HMM tagging algorithm
as one of the features of an HMM is its ability to include multiple tokens in a single class, and
also, via the Viterbi search algorithm, ensure that the mostprobably global sequence of classes is
found, which helps resolves problems where two classes claim overlapping tokens.
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5.3.2 Semiotic Decoding

Once identified, each token or sequence of tokens must be decoded to determine its underlying
form. Luckily for nearly all classes except natural language, this is fairly straightforward issue.
In fact many classes (e.g. email addresses or computer programs) have been specifically designed
to ensure that the underlying form can be found quickly and deterministically. We have call this
processdecodingas it is seen as the process of reversing an encoding of the original form into text.
This is often also be calledparsing in computer science, but we reserve this term for the specific
problem of uncovering syntactic structure in natural language. We require a separate decoder for
each semiotic class, but due to the simplicity of each, this in is general is not too difficult to design
by hand. Let us take the example of dates to see how a decoder would work.

Let us take theGregorian calendersystem (i.e. the date system we nearly always use) as
an example. This is particularly illustrative as a non-natural language semiotic class in that

1. It has a number of text forms, e.g. 10/12/67 or 10th December ’67

2. It is used nearly universally, regardless of which natural language is being used.

3. There are a number of ways to verbalise a date

Gregorian dates have a day a month and optionally a year and the task of the decoder is to deter-
mine the values of each of these from the text. The same date can give rise to a number of different
text encodings, for example:

(37) a. 10 December 1967

b. December 10 1967

c. 10th of December 1967

d. 10th of December ’67

e. 10/12/1967

f. 10/12/67

g. 12/10/67

In each of these cases, the date is exactly the same, and so here we see how a single date can give
rises to multiple text encodings. Despite these possible differences, finding the day month and
year is normally possible with a little care (the only reallydifficult case being the handling of the
convention often found in the United States, where the pattern is month/day/year rather than the
more common day/month/year). A typical way of actually performing the decoding a date is to
use a list of rules, each of which decodes one particular dateformat. The rules are run in order,
until a match is found.

5.3.3 Verbalisation

The final step in handling non-natural language text is to convert it into words and this process is
often calledverbalisation. If we take our decoded date example, we see that we have values for
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the three fields of day month and year, and with these we cangeneratea sequence of words. For
dates we have a number of conventions, such that the date day=10, month=12, year=December
can be spoken in English as:

(38) a. TEN TWELVE SIXTY SEVEN

b. THE TENTH OFDECEMBER SIXTY SEVEN

c. THE TENTH OF DECEMBER NINETEEN SIXTY SEVEN

d. DECEMBER THE TENTH NINETEEN SIXTY SEVEN

e. DECEMBER TENTH NINETEEN SIXTY SEVEN

f. DECEMBER TENTH SIXTY SEVEN

g. DECEMBER THE TENTH IN THE YEAR OF OUR LORD NINETEEN SIXTY SEVEN

and so on. In this case the issue of verbalisation is not difficult per-se - a simpletemplateapproach
can be used to create the word sequence. First we define two functionsordinal() andcardinal()
which convert a number into a word string representing the type of number. For example, for
cardinal() we have:

1 → ONE

2 → TWO

3 → THREE

13 → THIRTEEN

32 → THIRTY TWO

101 → ONE HUNDRED AND ONE

1997 → ONE THOUSAND NINE HUNDRED AND NINETY SEVEN

and forordinal() :

1 → FIRST

2 → SECOND

3 → THIRD

13 → THIRTEENTH

32 → THIRTY SECOND

101 → ONE HUNDRED AND FIRST

1997 → ONE THOUSAND NINE HUNDRED AND NINETY SEVENTH

next we define a functionyear(). A simple version of this which covers all years between 1010
and 1999 is:

(39) cardinal(y1y2) cardinal(y3y4)

which when give 1387 for instance will produce the stringTHIRTEEN EIGHTY SEVEN. For the
years immediately after the millennium the situation is more tricky, where we require a function
of the type:

(40) cardinal(y1000)AND cardinal(y4)
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which when given 2006 would generate

(41) TWO THOUSAND AND SIX

Here we start to see the first case of why verbalisation can be tricky as some people prefer this rule
not to have theAND so that the function should produce

(42) TWO THOUSAND SIX

and there is some debate over whether 2013 will be pronouncedTWENTY THIRTEEN or TWO

THOUSAND AND THIRTEEN. With theyear() function we can now define a template for verbalis-
ing the full date. One template would then be:

(43) THE ordinal (day) ofmonth-name(month)year(year)

giving

(44) THE TENTH OF DECEMBER NINETEEN SIXTY SEVEN

In general, verbalisation functions for cases like these are not too difficult to construct, all
that is required is a careful and thorough evaluation of the possibilities. The main difficulty in
these cases is that there is no one correct expansion; from 38we see at least 7 ways of saying
the date, so which should we pick? While sometimes the original text can be a guide (such that
10/12/67would be verbalised asTEN TWELVE SIXTY SEVEN) we find that human readers often
do not do this, but rather pick a verbalisation that they believe is appropriate. The problem for us
as TTS system builders is that sometimes the verbalisation we use is not the one that the reader
expects or prefers, and this can be considered an error.

For some each semiotic classes, we can specify a degree ofconventionality with regard
to verbalisation. We can state that ordinals and cardinals verbalisations are very conventional in
that nearly all readers verbalise a number the same way (although there may be slight differences
between American and other types of English.) With dates, wesee that these are again quite
conventional, but that there is quite a range of acceptable forms. We find that there is a significant
problem with some other semiotic forms in that the degree of convention can be quite low. If we
consider the email addresses

(45) pat40@cam.ac.uk

we might find that any of the following are acceptable verbalisations:

(46) LETTER-P LETTER-A LETTER-T FORTY AT CAM DOT LETTER-A LETTER-C DOT LETTER-
U LETTER-K

LETTER-P LETTER-A LETTER-T FOUR ZERO AT CAM DOT LETTER-A LETTER-C DOT

LETTER-U LETTER-K

PAT FORTY AT CAM DOT LETTER-A LETTER-C DOT LETTER-U LETTER-K

PAT FORTY AT CAM DOT AC DOT UK

The problem being, that the particular owner of this addressmay only consider one of these as
“correct” and will be dissatisfied if an alternative versionis used.
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5.4 NATURAL LANGUAGE TEXT

Having dealt with non-natural language text, we now turn ourattention to the issue of how to find
the words from the text when that textdoesin fact encode natural language. For many words,
this process is relatively straightforward; if we take a word such asWALK , we will have its textual
form walk listed in the lexicon, and upon finding the a tokenwalk in the text we can be fairly
sure that this is in fact a written representation ofWALK . At worst we might be presented with a
capitalised versionWalk or an upper case versionWALK but these are not too difficult to deal with
either. If all words and all text behaved in this manner the problem would be solved, but of course
not all cases are so simple, and we can identify the main reasons for this:

Alternative spellings A number of words have more than one spelling. Often in English this is
related to American vs non-American conventions so that we havetyre andtire and
honour andhonor. In many cases these differences are systematic, for instance with the
suffix -ISE which can be encoded asorganise or organize. Often it is possible to list
alternative spellings in the lexicon.

Abbreviations Many words occur in abbreviated form, so for instance we havedr for DOCTOR

andst for STREET. In many cases these are heavily conventionalised such thatthey can be
listed as alternative spellings, but sometimes the writer has used a new abbreviation or one
that we may not have listed in the lexicon.

Unknown words There will always be words that are not in the lexicon and whenwe find these
we have to deal with them somehow.

Homographs are cases where two words share the same text form. In cases where the words
differ in pronunciation, we must find the correct word. In natural language homographs
arise for three reasons:

1. Accidental homographsarise because completely words such asBASS-FISH andBASS-
MUSIC just happen to share the same text formbass.

2. Part-of-speech homographsarise from words which have a similar sematic root, but
where their use as a noun or verb gives them a different pronunciation. For instance
PROJECT-NOUN andPROJECT-VERB both share the same text formproject but are
pronounced differently.

3. Abbreviation homographs arise because as we use fewer characters in abbreviations,
we are more likely to use the same text encoding as for anotherabbreviated word.
Hence we find that whileDOOR, DOCTOR andDRIVE all have the quite separate full
text forms ofdoor, doctor, DRIVE, but all share an abbreviated text formdr.

Mis-spellings Often if a text form of a word is misspelled a human reader is quite capable of
guessing what word was intended, e.gdiscovery and ideally a TTS system should be
able to cope with such instances.
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This shows why we need a more sophisticated model than a simple isomorphic correspondence
between words and their text encodings.

5.4.1 Acronyms and letter sequences

At this stage it is worth mentioning two other types of word/token relationships that are often
cited as problems for TTS.Acronyms are words formed from sequences of other words, usually
(but not always) by taking the first letter of each. Examples includeNATO, UNICEF SCUBA and
AIDS. In our approach, these are treated as normal words so that wehave a wordNATO in our
lexicon and this has a pronunciation /n ey t ow/; the fact thatthis was historically formed from
other words or is normally found written in upper case is of noreal concern. (In fact, with use
many acronyms really do become indistinguishable from normal words such thatRADAR is nearly
always spelled in lower case and few people realise that it isan acronym, and fewer still what the
original words were).

In lay speak, the term acronym is also used for a different type of formation which we shall
call a letter sequence; examples of these includeIBM, HTML, HIV. The difference between these
and acronyms is that letter sequences don’t form new pronunciations; they are simply spoken as
a sequence of letters, hence we haveIBM asLETTER-I LETTER-B LETTER-M giving a combined
pronunciation /ay b iy eh m/. It doesn’t really matter if we regardIBM as being a single word
with pronunciation /ay b iy eh m/ or a token which represents three words (LETTER-I LETTER-B

LETTER-M). Potentially however, the productivity of letter sequences is very high, so regardless
of whether we keep them in the lexicon or not, we still need a means of identifying new ones
and pronouncing them as letter sequences rather than as normal words (i.e. we don’t want to
encounter a tokenRAF and think that this is just an upper case version of an unknownword, and
then pronounced it as /r ae f/).

A solid solution to the problem of upper case tokens is to assume that in a well developed
system all genuine acronyms will appear in the lexicon. Uponencountering a capitalised token,
we first check if it is in the lexicon and if so just treat it as a normal word. If not, we then split
the token into a series of single character tokens and designate each as a letter. There is a possible
alternative, where we examine upper case tokens and attemptto classify them either as acronyms
or letter sequences. Such a classification would be based on some notion of “pronouncability”
such that if the token contains vowel characters in the certain places then this might lead us to
think that it is an acronym instead of a letter sequence. Experience has shown that this approach
seldom works (at least in English) as there are plenty of potentially pronounceable tokens (e.g.
USA or IRA that sound absurd if treat then as acronyms (e.g. /y uw s ax/ or/ay r ax/). If a mistake
is to be made, it is generally better to pronounce an acronym as a letter sequence rather than the
way round.
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5.4.2 Homograph disambiguation

The main problem in natural language text decoding is dealing with homographs, whether they be
accidental, part-of-speech or abbreviation homographs. Many systems choose to handle each of
these separately, and in particular abbreviation homographs are often with at the same time or in
the same module as semiotic classification. Typically this is done in systems which don’t have an
explicit semiotic classification stage. An alternative approach is to handle these in a single module.
Regardless, the general approach is to use one of the token disambiguation techniques described
in Section 5.2.1. Here we discuss some of the specifics of homograph disambiguation.

Turning to POS homographs first, we see that the classic way toresolve these is to use a POS-
tagger of the type described in Section 5.2.2. One problem with this approach is that unfortunately
POS-taggers only have a certain accuracy (96%-98% are commonly quoted figures [299]), and
often it is in the hard cases of resolving noun/verb pairs where the errors are made. Recall that the
POS tagger has two components, one which models sequences oftags and one which generates
tokens given a tag. The tag sequence n-gram is a very powerfulconstraint and nearly always gives
the correct answer in cases such as:

(47) The/det project/noun was/aux behind/prep schedule/noun

(48) The/det problem/noun is/aux how/wrb to/inf project/verb the/noun missile/noun
accurately/adv

but in sentences such as

(49) The new images project well on to the wall

POS-taggers often struggle as the n-gram sequence of tags alone is not sufficient to disambiguate in
this case. Part of the problem with POS taggers is that they are often formulated as general purpose
NLP tools, and as such are not focused on the goals of how they might be used in a particular
application. One simple improvement then is to adapt the tagset so that the discriminative power
in the algorithm is geared towards the distinctions we really care about.

An alternative approach is to use one of the word sense disambiguation algorithms as these
can be more easily focused for each homograph case. A furtheradvantage in using the WSD
approach is that we can use this single approach for all type of homograph, not just the POS
homographs that the tagger deals with. To give an example, consider the abbreviation homograph
Dr which can encodeDOCTORor DRIVE. Both of these are often collocated with a proper noun,
but differ in their position relative to that proper noun. A simple feature that distinguishes many
examples is then whether theDr occurs before or after the proper noun:

(50) Dr + proper-noun→ DOCTOR

(51) proper-noun +Dr→ DOCTOR

for example

(52) Dr Williams→ DOCTOR WILLIAMS
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(53) Williams Dr→ WILLIAMS DRIVE

In deterministic rule system this can be used as is, but as therule is not 100% accurate an alternative
is to use is as a feature in a WSD classifier.

We can summarise the procedure for building a homograph disambiguation system as fol-
lows:

1. Build a lexicon which records all the text forms of each word

2. Compare text forms and construct a list of homograph tokens

3. For each form

(a) search for cases of these in a large text corpus
(b) by hand mark the correct word
(c) find collocation trigger tokens by finding the tokens which most frequently co-occur

with the word
(d) write feature rules which may describe any more elaborate relationship between word

and trigger tokens

4. Train WSD classifier

5. Run over test corpus, examine errors and repeat training process based on findings.

5.4.3 Non-homographs

Most tokens are not in fact homographs, and we will now outline how these non-homograph tokens
are processed.

1. Check whether the token is present in the lexicon as the text form of a known word.

2. If it is found, take that word as the correct answer and no further processing is conducted.

3. If in the lexicon and upper case, label it as a letter sequence.

Regarding this last rule, It is nearly impossible to sure whether an upper case token is an
acronym or letter sequence, but analysis of data shows that unknown letter sequences are much
more common than unknown acronyms and hence the most accurate strategy is to assign it as a
letter sequence. Furthermore an acronym spoken as a letter sequence is deemed a lesser error than
a letter sequence spoken as a single word.

If the token is not upper case and not in the lexicon we have thechoice, it could potentially
be a normal unknown word, an abbreviation for a known word, a different spelling for a known
word or a misspelling of a known word. The probability of eachof these cases mainly depends on
the quality of our lexicon. If we have a very accurate comprehensive lexicon then it is less likely
that we have a missed a normal word or alternate spelling. This therefore increases the chance
of the token being a mis-spelling. If the system has a spell correction system, it should be run
at this point. Assuming the spell corrector has a confidence score we can then decide whether
the token is a mis-selling of a known word or an unknown word. The final case occurs when we
believe we have a token for a genuinely unknown word. This is assigned a new unique label (e.g.
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UNKNOWN-43), and the token and label are added to the run-time lexicon. The pronunciation is
determined by the grapheme-to-phoneme convertor, which wewill describe in Section 8.4. These
set of operations can be found in the right half of Figure 5.3.

5.5 NATURAL LANGUAGE PARSING

Our concern so far has been the task of identifying the word sequence from the token sequence,
and to a large extent this is all the text decoding that we are required to do. Once we have un-
ambiguously identified the word sequence, we can use the lexicon and grapheme-to-phoneme
conversion to generate a sound representation which can then be input to the synthesiser itself.
It can be argued however that the word sequence alone is not enough, and that in addition it is
advantageous to conduct further processing to determine the underlying structure of the sentence.
Semantic analysis is generally thought too difficult and/orunnecessary, but a number of systems
perform asyntactic analysiswhich finds the correct or bestsyntactic tree for the input sentence.
There are several justifications for wishing to perform thisadditional level of analysis.

1. Proper parsing can resolve part-of-speech ambiguity problems that finite state (ie HMM
parsers) fail on, such as Example 49 above.

2. The syntax can help determine sentential prominence patterns (explained in Section 6.8).
3. The syntax gives a basic grouping of words, and these groupings strongly influence the

prosodic phrase structure of the utterance (explained in Section 6.7).

5.5.1 Context Free Grammars

In Chomsky’s early work [88], he proposed that the syntax of natural languages like English could
be described at a basic level by acontext free grammar (CFG). A CFG defines a number of rules
of the form

(54)
S→ NP VP
NP→ DET NP
VP→ V NP
VP→ PP
PP→ P NP

The rules operategenerativelymeaning that they are applied by starting with a basic top node (S
standing for “sentence”) and then applying rules in turn until a string of terminal nodes (ie words)
are generated. Chomsky’s idea was that this finite set of these rules could generate the near infinite
set of sentences in natural language. In addition, the operation of the rules defined thestructure
structure of a sentence. The operation of context-free rules is easilyrepresented by a syntactic
tree:
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V
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PP

PREP

down

NP
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Formally, a grammar is a 4-tuple

1. σ a set of ofterminal symbols

2. n a set ofnon-terminal symbols

3. P a set of re-write rules

4. San initial (non-terminal) symbol

Chomsky soon made many additions to this basic system and thefield of modern linguistics
has dispensed with the idea that simple context free rules alone describe natural language. In lan-
guage engineering however, CFGs are still widely used as they are (reasonably) tractable models
of syntax. The problem of finding the syntactic structure of asentence is calledparsing and a
parser is an algorithm which assigns this structure to arbitrary text. All parsers work with respect
to a grammar and effectively try to assign the best or correctstructure to a sentence. Our problem
is of course that we are starting from the other perspective in that we have the words already, and
wish to find which rules generated them. The job of the parser is to therefore find which rules
can have generated the input, and from these rules we can find the tree and hence the syntactic
structure of the sentence.

The first problem that we encounter in parsing is that any simplistic or exhaustive search for
the correct set of rules is prohibitively expensive. Parsers can therefore be thought of as search
algorithms which find a tree or trees for a sentence in reasonable time. The second problem in
parsing is that any non-trivial set of rules will generate more than one parse that fits the input,
and in many cases an considerable number of perfectly legal parses will fit the input. A simple
example is:

(55) POLICE HELP DOG BITE VICTIM

which could have the parse
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meaning the police were helping the dig to bite the victim, or S

NP

N

Police

VP

V

help

AP

AP
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dog

Adj

bite

N

victim

meaning the police were helping a victim of a dog bite.
TheCocke-Younger-Kasami (CYK) algorithm is one of the most widely used parsing al-

gorithms. It can (in general) efficiently parse text and is easily adaptable to probabilistic formula-
tions. Its basic operation can be thought of as dynamic programming for context free grammars.

This algorithm considers every possible group of words and sets entries in a table to be true
if the sequence of words starting from i of length j can be generated from the grammar. Once it
has considered sequences of length 1, it goes on to ones of length 2, and so on. For the sequences
greater than length length 1, it breaks the sequence into allpossible subdivisions, and again checks
to see if a rule in the grammar can generate one of these subdivisions (this is why the grammar has
to be in Chomsky normal form). If a match is found, this is stored in the table also. This process is
continued until the full set of rules (ie. parses) is found. Deterministic parsers have no real means
of choosing which parse is best, soprobabilistic parsers (explained below) are usually preferred
as these at least show that one parse is more probable than another.

5.5.2 Statistical Parsing

The CYK algorithm as just explained will find the set of legal parses for a sentence, but the problem
is in general that we wish to find justoneparse, not several. We of course want the “true” parse
and by this we mean we want what the author originally intended when the sentence was written.
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The major weakness with this type of parsing is that it only considers syntactic factors, semantics
is completely ignored. That is why a parser often returns parses that are “correct” but seem silly.
Some more advanced models of syntax do incorporate semanticinformation [78], [177], [312],
but in general most syntax models, especially in engineering, only make use of syntactic rules.

A sensible alternative then is instead of trying to find the parse which the author intended, or
which makes most sense, we can try and find themost likelyparse. That is, we build a probabilistic
model of the grammar and use the parser to find the most likely parse. There are a number of ways
this can be done, but the most common is to assign probabilities to the rules themselves so that
we say a non-terminal expands to each of its productions witha certain probability. When the
parsing is complete, each set of rules has an associated probability and the highest can be chosen
as the right answer. A number of specialist databases calledtree-banksare available for training
PCFGs. These have trees and nodes labelled by hand, and from these a grammar can be trained and
probabilities assigned to each rule. For unlabelled data (that is sentences which we have no trees
for) the inside-outside algorithm can be used. This is the PCFG equivalent of the Baum-Welch
algorithm used to train hidden Markov models, and is explained in Section 15.1.8.

We can therefore identity three common approaches to parsing:

1. Define a CFG by hand and use a deterministic search algorithm (i.e. the parser) to find the
parse or parses which best fit the input

2. Define a CFG by hand and use a probabilistic search algorithm to find the parse or parses
which is most likely given the input

3. Learn the CFG from data and use this with a probabilistic search algorithm to find the parse
or parses which is most likely given the input.

5.6 DISCUSSION

Figure 5.3 shows the flowchart for the text decoding system described in this chapter.
At this stage, we will discuss a number of alternate formulations to the one presented here.

In the (distant) past, text forms such asDr were often see as abberations as far as text and lan-
guage processing was concerned to the extent that these wereoften calledtext anomalies[276] .
The “real job” of text/language processing was to perform syntactic and morphological process-
ing. For instance in the MITalk book 6 pages are devoted to text anomalies and 48 to syntactic,
morphological and phonological processing. As can be seen from this chapter, in modern systems,
the opposite balance is seen. Another view is that this problem is one oftext normalisation in
which the a form likeDr should beconvertedinto its truetext form doctor. In such systems
there is often no formal distinction between the concept of words and tokens. A more recent ap-
proach is to define such text forms asnon-standard words (NSWs)[413]. This approach takes
the notion of these text forms much more seriously, and for example notes that the text forms for
a word are quite productive and can’t simple be listed. The NSW approach uses decision tress
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Figure 5.3 Flow of entire text analysis system (only four semiotic decoders/translators are shown
for succinctness.

to perform disambiguation and is in many ways similar to the approach taken here. Two notable
differences are that it again doesn’t make an explicit distinction between the nature of words and
tokens, and secondly, the processes of non-natural language and natural language disambiguation
are performed in a single step.

We argue that there are a number of advantages to the text decoding model used here. Tak-
ing the issue of natural language decoding first, we see that this follows the information theoretic
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source/channel paradigm where we have a clean, discrete underlying form that has generated the
noisy surface form that we observe. This is a very general andpowerful model and has been shown
successful in many speech and language applications. It facilitates the ability to have abbrevia-
tions, misspellings and ambiguity all handled in a single unified powerful statistical framework.
Probabilistic models can be built for the general process oftext encoding that will facilitate suc-
cessful decoding. In addition, once the words are found in this model, all problems of ambiguity
are resolved, which greatly simplifies the work of say the pronunciation module.

The model of semiotic systems described here makes explicitthe notion that text encodes
other information that natural language information. Thisis well understood in the field of semi-
otics but is nearly universally ignored or brushed over in speech and language processing. There
are two main advantages we see in adopting this model. First,it makes explicit the difference
between analysis and verbalisation. In analysing text tokens (for example the time 3:30pm) there
is one, and only one, correct answer which is hour=3, minutes=30, part-of-day=afternoon. When
it comes to verbalisation however, there are many ways in which we can render this as words, e.g.
THREE THIRTY, HALF PAST THREE, HALF THREE etc and different users will have different pref-
erences depending on their dialectal preferences and system application. The upshot is that it is
significantly easier to build a system where we know that onlyone part suffers from this subjective
problem - the analysis/decoding part can be attempted with complete assuredness.

The second advantage comes when we consider language dependence. It may not be im-
mediately apparent, but the text3:30 is nearly universally recognisable no matter which natural
language surrounds it so we can have

(56) THREE THIRTY

in English and

(57) TROIS HEURES TRENTE

in French. If we consider3:30 as simple a strange encoding of natural language, we would have
to build a separate analysis system for every language. Withthe semiotic model, one classifier
and decoder suffices for all languages; all that is required is a language specific verbalisation
component1

We need to comment on the shift in emphasis in text analysis between older systems which
concentrated on syntactic, morphological and phonological analysis and paid little attention to
text decoding issues, and modern systems which perform little linguistic analysis but devote con-
siderable attention to ambiguous text forms. The are three separate factors influencing this shift.
Firstly, with the commercialisation of TTS, we have found that in real use, non-canonical word
encodings and non-natural language text is rife and any TTS system must deal with this compre-
hensively and robustly if it is to be judged usable. Secondly, the simple length of time we have
had to collect data and particularly lexicons over the yearsmeans that we have very comprehensive

1 It is perhaps worth mentioning at this stage that books on teaching languages to non-native speakers are often
particularly good at explaining the rules as to how numbers,times and dates are verbalised in particular languages.
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lists of words, their pronunciations and their text forms. This means that morphological analysis
for instance, is much less necessary than before and that data driven methods are quite practical
in terms of training (we have the data) and run time (we can perform searches or run algorithms
with large numbers of parameters/rules). Thirdly, and perhaps most profoundly, pure linguistic
analysis such as syntactic parsing has fallen out of favour for the simple reason that it has failed
“to deliver”. Few doubt that a full, accurate and true description of a sentences linguistic structure
would be very useful, but what form exactly should this take?Modern linguistics has more theo-
ries of syntax than even specialists can keep up with, and disagreements run to the very nature of
what syntax is and what it represents (and there are now plenty who see it as an epiphenomenon).
From a more practical perspective, despite the use of tree-banks, there simply is no such thing
as a theory-independent model of syntax which we can use for engineering purposes. All use a
grammar and all such grammars make strong claims about the nature of language (such as whether
it is context free). Next, and maybe because of these problems, we find that even the best parsers
are really quite inaccurate and relying on their output can cause quite noticeable errors in other
parts of the system. Finally, we find that even if we had a good model of syntax and an accurate
parser, we still may not find syntactic analysis helpful. As we shall see in the next chapter, the
main uses for syntactic structure are in determining prominence, intonation and phrasing; but even
if we knew the syntax it is far from certain how to derive theseother sorts of information. The
relationship between syntactic and prosodic structure is agreat void in linguistics.

Many regard these problems with syntax and other types of “deep” linguistic analysis as ones
of expediency; with a more work in these fields we will gradually improve the theories, grammars
and parsers to the extent that accurate syntactic structures can be assigned to arbitrary text. An
alternative viewpoint is that these difficulties are genuinely profound, and given the enormous
work that has been put into the area of theoretical and applied syntax with so little solid progress,
that perhaps the nature of the problem itself is incorrectlyformulated and that a new approach to
the organisational properties of language is required.

5.6.1 Further reading

In commercial TTS, text analysis is seen as vitally important as any error can cause an enour-
mous negative impression with a listener. Despite this, theproblem has only received sporadic
attention amongst academic researchers. Notable exceptions include various works by Richard
Sproat [410], [411], [412], [413], who tackles nearly all the problems in text analysis (and many
in prosody, explained in the next chapter). The Bell Labs system that Sproat worked on is partic-
ularly well known for its very high accuracy with regard to text processing. In a separate line of
work Sproat et al investigated a number of machine learning approaches to semiotic classification
and verbalisation. David Yarowsky [506], [507], introduced an approach which showed the use of
the WSD approach to homograph resolution. A more traditional view is given in the MITalk book
[10].

Outside the field of TTS we find that a lot of the work in the field of natural language
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processing (NLP) is directly applicable to these problems.While researchers in those fields are
often attempting somewhat different tasks (e.g. homonym disambiguation rather than homograph
disambiguation), the approaches are often essentially thesame. A particularly good book in this
area is by Manning by Schutze, who give a thorough overview ofall aspects of statistical language
processing, including WSD, POS-tagging and parsing.

5.6.2 Summary

Classifiers

• Many tasks in text processing involved assigning a label to aunit; this is calledclassification.
• Usually this is done by making use of a set offeatures that are found elsewhere in the

utterance.

• A classifier can be therefore be defined as a function which maps from afeature spaceto a
label space.
• Treating evidence from features independently is often toocrude and inaccurate. Examining

every possible combination of features is nearly always impossible due to lack of data.

• All sophisticated classifiers therefore adopt an in betweensolution which gives an answer
for every feature combination, but does not necessarily have to have seen all of these during
training. The mapping for unobserved feature combinationsis inferred from observed ones.

• A basic distinction can be made betweentaggerswhich assign a label to every token drawn
from a single set, andword sense disambiguators (WSD)which assign labels only to am-
biguous tokens and do so from multiple label sets.

• Popular classifiers include context-sensitive rewrite rules, decision lists, decision trees, naive
Bayes classifiers and HMM taggers.

Non-natural language text

• Text is often full of tokens which encode non-natural language systems such as dates, times,
email addresses and so on.

• The first stage in text analysis is therefore to performsemiotic classificationwhich assigns
a class to each token. This is performed by one of the above mentioned classification algo-
rithms

• Once a token’s class is found, it is decoded into its underlying form and then translated into
natural language by a process ofverbalisation

Natural language text

• The main problem here is to resolvehomographswhich occur when two words share the
same text form. These occur because of accident, part-of-speech changes or abbreviations.

• POS-taggers can be used to resolve POS ambiguity
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• In general WSD approaches are more focused and produce better results.

• In addition some systems use syntactic parsers which generate a syntactic tree for the utter-
ance.



6
PROSODY PREDICTION
FROM TEXT

Informally we can describe prosody as the part of human communication which expresses emo-
tion, emphasises words, shows speaker attitude, breaks a sentence into phrases, governs sentence
rhythm and controls the intonation, pitch or tune of the utterance. This chapter describes how to
predict prosodic form from the text while Chapter 9 goes on todescribe how to synthesize the
acoustics of prosodic from these form representations. In this chapter we first we introduce the
various manifestations of prosody in terms of phrasing, prominence and intonation. Next we go
on to describe how prosody is used in communication, and in particular explain why this has a
much more direct affect on the final speech patterns than withverbal communication. Finally we
describe techniques for predicting what prosody should be generated from a text input.

6.1 PROSODICFORM

In our discussion of the verbal component of language, we sawthat while there were many dif-
ficulties in pining down the exact nature of words and phonemes, broadly speaking words and
phonemes were fairly easy to find, identify and demarcate. Furthermore, people can do this read-
ily without much specialist linguistic training - given a simple sentence, most people can say which
words were spoken, and with some guidance people have littledifficulty in identifying the basic
sounds in that sentence.

The situation is nowhere near as clear for prosody, and it mayamaze newcomers to this
topic to discover that there are no widely agreed description or representation systems forany
aspect of prosody, be it to do with emotion, intonation, phrasing or rhythm. This is not to say
that description systems do not exist; the literature is full of them, but rather that none match
the simplicity and robustness of the simple systems we use todescribe the verbal component of
language. There are many schools of prosodic theories, and within one school, everything may
have the illusion of simplicity, but the very fact that thereare so many different theories often with
completely conflicting accounts, leads us to the position ofextreme uncertainty with regard to how
to describe, model, analyse and synthesise prosody. We mention this here, because firstly these
difficulties prevent us from giving a single clean and simpleexplanation of prosodic phenomena,

112
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and secondly we wish to alert the reader to the very tenuous nature of the literature regarding
prosody.

To some extent prosody can be seen as a parallel communication mechanism to verbal lan-
guage. There we had meaning, form and signal, and broadly speaking we can use these terms
when talking about prosody. Hence we can have a meaning (say anger), which is manifested in a
form (say raised pitch levels), which is common to all speakers of a group, which is then encoded
acoustically in a joint process with verbal encoding.

At the semantic (meaning) level, prosody is no more difficultto describe than the semantics
of the verbal component (i.e. with great difficulty). It is when we get to prosodic form that we start
to see more significant differences between prosody and verbal language. With verbal language,
our basic units are words and phonemes, and while these unitshave some difficulties, they are
certainly coherent enough for the engineering purposes of text-to-speech. With prosody though,
the situation is much more complex as it is very difficult to determine the basics of what prosodic
form should be. We believe on the one hand that abstract prosodic form does exist (we all seem to
use similar patterns when asking questions in particular ways), but on the other find it difficult to
describe how this should operate in practice. In the next sections then we attempt to give a theory
neutral1 account of some prosodic phenomena before describing some of the more well known
models.

6.2 PHRASING

We use the termprosodic phrasingor justphrasing to describe the phenomenon of where speak-
ers groups certain words within the utterances they speak. As will all aspects of prosody, there is
acknowledgment that this phenomenon exists, but no agreement as to how best to describe it.

6.2.1 Phrasing Phenomena

Many cases are clear cut, so that when we say

(58) IN TERMS OF THE NECESSARY POLITICAL EXPEDIENCY| THE RESULT WAS CLEARLY A

GOOD ONE FOR SHAW

there is a clear break in grouping between the words up to and including EXPEDIENCY and the
words that follow (here phrasing is marked with a| symbol). The above case may be unproblematic
but there are theories which state that many finer groupings exist, so that we would have:

(59) IN TERMS | OF THE NECESSARY| POLITICAL EXPEDIENCY | | THE RESULT|WAS CLEARLY

| A GOOD ONE | FOR SHAW

(where|| indicates a strong phrase break) and furthermore, some theories express this as a brack-
eting to show that some groupings are stronger than others:

1 In reality, there is no such thing as theory neutral, we always make some assumptions when we describe anything.
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(60) ((IN TERMS) ((OF THE NECESSARY) (POLITICAL EXPEDIENCY))) (( THE RESULT) (( WAS

CLEARLY) (A GOOD ONE)) (FOR SHAW))

A question that has interested linguists for some time concerns the relationship between syn-
tactic phrases (ie. the syntax tree) and prosodic phrasing.While there is clearly some relationship
(easily seen in the above examples), finding the general nature of this is extremely difficult. Factors
which complicate the relationship include:

1. Prosodic phrasing seems “flatter” in that while syntacticphrasing is inherently recursive and
can exhibit a large degree of nesting, if levels in prosodic phrasing exist there are only a few,
and there is no sense in which the phrases within an utteranceseem to embed so strongly.

2. Prosodic phrasing is to some extent governed by purely phonological, phonetic or acoustic
factors which can override the syntax. In the classic example, Chomsky [89] commented on
the fact that in

(61) THIS IS THE DOG THAT WORRIED THE CAT THAT KILLED THE RAT THAT ATE THE

MALT THAT LAY IN THE HOUSE THAT JACK BUILT

nearly every speaker says this with a flat prosodic phrasing like:

(62) THIS IS THE DOG | THAT WORRIED THE CAT | THAT KILLED THE RAT | THAT ATE

THE MALT | THAT LAY IN THE HOUSE | THAT JACK BUILT

whereas the syntactic phrasing is deeply recursive and embedded

(63) (THIS IS (THE DOG ( THAT WORRIED THE CAT (THAT KILLED THE RAT (THAT ATE

THE MALT (THAT LAY IN THE HOUSE (THAT JACK BUILT )))))))

The speech patterns of the utterance seem to override the syntactic patterns.

3. Phrasing is particularly prone to speaker choice, and while “rules” exist for where phrase
breaks may or may not occur, quite often it appears optional whether a phrase break will be
found in a particular utterance. Hence all of the following are possible:

(64) JOHN AND SARAH WERE RUNNING VERY QUICKLY

(65) JOHN AND SARAH | WERE RUNNING VERY QUICKLY

(66) JOHN AND SARAH WERE RUNNING | VERY QUICKLY

So as we can see the relationship between syntactic and prosodic structure is complicated and
a general theory which links syntax and prosody is yet to be developed. Some have even argued
that the difficulty really lies with our models of syntax, andthat if we developed syntactic models
which took more account of the ways sentences were spoken some of these problems might be
resolved [1].

6.2.2 Models of Phrasing

While there is no single accepted theoretical model of phrasing, all models can be encompassed
within the idea that a sentence has aprosodic phrase structure. The main point of disagreement
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revolves around the details of this phrase structure, and inparticular how nested or deep it should
be.

Some have proposed that phrasing should be represented by a tree and that this should act
as a parallel tree to the syntax tree. As such the prosodic tree can be generated by a CFG, and so
can have recursion and arbitrary depth. Perhaps the most elegant model of this type is the model
of metrical phonology from Liberman [284], [286]. The central idea is that any sentence, or
part of sentence has a metrical tree which specifies its phrase and stress patterns. The lowest unit
in the tree is the syllable, and so metrical phonology provides a unified theory of syllable, word
and phrasal patterns. Ignoring the syllable level for the moment we can see the general form of a
metrical trees example below:

W

W

was

S

clearly

S

W

W

a

S

S

good

W

one

S

W

for

S

shaw

The S and W labels will be explained later, but for now simply note that the metrical tree
groups words together. This model seems particularly good at explaining the patterns within com-
pound noun phrases, which we will re-examine in Section 6.3.1. A major criticism though is that
the theory implies unlimited depth in trees, which implies that a) there are many graded subtleties
in the actual production or perception of phrase breaks, or b) that this representation maps to
another surface representation that is flatter and has fewerlevels. Many solutions have been pro-
posed, both as amendments to the original theory2 and as alternatives. The theory ofcompound
prosodic domainsproposed by Ladd [268] allows a more limited recursion with arbitrary depth
but not full recursion. Another variant, called thestrict layer hypothesis [398] is much more
constrained and states that every word has a fixed number of prosodic constituents above it. This
and many other theories can be seen as forming a model called theprosodic hierarchy. In this,
we have a tree as before, but with a fixed number of levels, eachof which is its own type. A rich
version of this might include the levels utterance, intonational phrase, phonological phrase, word,
foot, syllable and segment. In thisintonational phrase means a large phrase with a clear intona-
tional tune (see below), aphonological phraseis a smaller phrase that spans only a few words,

2 The field of metrical phonology still survives today, but unfortunately bears little resemblance to the elegance and
power of the original theory.
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and afoot is a unit which starts with a stressed syllable and covers allthe unstressed syllables until
the next stressed syllable.

It is reasonable to say that nearly all other models are of this general type, and differ only
in that they use differing numbers of levels or names for those levels. One of the most popular,
especially for engineering purposes has 2 levels of sentence internal phrase, giving 4 levels over
all:

1. Utterance

2. Intonational phrase/ Major phrase

3. Phonological phrase/ Minor phrase

4. Word

in this scheme, an utterance might look like

Major

Minor

the result

Minor

was clearly

Minor

a good one

Minor

for shaw

A slightly different view is to not concentrate on the constituent phrases, but rather the
breaks between the phrases. This view has been around for some time,but was formalised most
clearly in theToBI model in the concept ofbreak index [406]. The break index is a number which
exists between every pair of words, for example:

(67) IN 1 TERMS 3 OF 1 THE 1 NECESSARY 3 POLITICAL1 EXPEDIENCY 4 THE 1 RESULT 3
WAS 1 CLEARLY 3 A 1 GOOD 2 ONE 3 FOR 1 SHAW 6

The numbers give the strength of the break such that between two normal words in running
speech we have a1, and for words which are deemed more separate we have2 and so on, extending
up to6. A simplified version of this is frequently used, where3 is given to a minor phrase break
and4 to a major phrase break. Break index systems and strict depthtress are isomorphic, and so
the distinction as to which is used is often more of expediency rather than deep rooted theory.

A major problem in resolving issues with prosodic phrasing is that there always seems to
be a tension between what we can describe as a top down approach, where we use the linguistic
structure of the sentence to dictate the phrasing, and a bottom up approach, where we listen to real
speech and use clues from pausing, timing patterns and pitchto show where the phrases should
be. No model yet proposed has come up with a satisfactory method of doing both of these and
reconciling the results.
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6.3 PROMINENCE

Emphasis, prominence, accentandstressare all terms used to indicate the relative strength of
a unit in speech. These terms are used with a variety of definitions in the literature, so to avoid
confusion we will use these these terms as follows.Stressindicateslexical stress, which is an
inherent property of words, and indicates for instance thatthe first syllable inTABLE is stronger
than the second, while the second syllable inMACHINE is stronger than the first. We discuss this
type of stress more fully in the section on phonology in Chapter 7.Prominenceis used to indicate
the strength of a word, syllable or phrase when it is used in a sentence. We will use the term
accentsolely to indicate intonational phenomena associated withpitch, andemphasisto indicate
a specific use of prominence in discourse.

There are many different ways to formally describe prominence and stress, but for exposition
purposes we will use the termprominent to indicate a unit has more prominence than normal, and
reduced to indicate that it has less prominence than normal.

6.3.1 Syntactic prominence patterns

Prominence is really a property of words, such that one word is given extra strength compared to
its neighbours. This however is manifested in the lexicallystressed syllable of that word receiving
the extra strength, rather than all the syllables of the word. It is widely accepted that some, but not
all, of the prominence pattern in a sentence is governed by the syntax within that sentence.

A first type of effect is that ofnuclear prominence3, which describes the particular promi-
nence that often falls on the last content word in sentence. In the following examples, we have
marked this word in bold:

(68) THE MAN WALKED DOWN THE STREET.

(69) TELL ME WHERE YOU ARE GOING TO.

These examples are what are often termeddiscourse neutralrenderings, indicating the “normal”
or canonical way these sentences are phrases are spoken, in contrast to some of the ways in which
they may be spoken in particular discourse contexts.

Prominence patterns are particularly noticeable in sequences of adjectives and nouns which
are collectively calledcompound noun phrases. For example

(70) PARKING LOT

(71) CITY HALL

(72) THE UNION STRIKE COMMITTEE

The final main type of syntactic prominence concerns function words. A very simple rule is
that content words (nouns, verbs etc) can have normal or extra levels of prominence but function
words are reduced. This certainly covers many simple cases so that in

3 This is often termed a nuclear accent in the literature.
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(73) THE MAN MADE THE OFFER ON THE BACK AN ENVELOPE.

we feel that the two instances ofTHE, ON and AN, carry the least prominence and are reduced.
Function words are not always reduced however, and in cases like

(74) A BOOK LIKE THAT IS ALWAYS WORTH HOLDING ON TO

we see thatTHAT andTO are not reduced, and in some situations theTHAT would even be the most
prominent word in the sentence. It can be argued that linguistic items such asTHAT are really
several distinct words that happen to carry the same form. This item can be used as a pronoun, an
adjective a conjunction, or an adverb as in the following examples

(75) THAT IS MY HOUSE (pronoun)

(76) I WANTED THAT BOOK (adjective)

(77) HE SAID THAT HE WAS AFRAID (conjunction)

(78) HE DIDN’ T TAKE IT THAT SERIOUSLY (adverb)

where we see different degrees of prominence depending on use. Getting the prominence right in
these situations may therefore not be so much an issue of prominence prediction per se, but rather
of making the correct word definitions and finding these from the text.

A second type of prominence effect occurs when function words occur in sequences. When
we have sentences such as

(79) I WAS WALKING THE DOG

it seems quite natural to have more prominence onWALKING than onWAS, which follows our sim-
ple content word prominent/function word unstressed rule.But when we have longer sequences
such as

(80) WHAT WOULD YOU HAVE DONE IF IT HADN ’ T BEEN FOR ME?

we see a sentence made entirely of function words. If these are all spoken in reduced form the
speech sounds terrible, and so stresses must be placed on some words. A reasonable rendition of
this with prominence might then be:

(81) WHAT WOULD YOU HAVE DONE IF IT HADN ’ T BEEN FORME ?

though many other patterns are possible. In fact the overalldegree of prominence in sentences like
this is no less than in “normal” sentences where there is a mixture of content and function words.
This situation can be likened to the situation in phrasing where speakers feel the need to place
phrase breaks at regular intervals somewhat independentlyof the top down linguistic structure.

Each type of prominence can be “overridden” by the next type,so while the normal promi-
nence pattern forTHIRTEEN is

(82) THIRTEEN

in many compound noun phrases, the word undergoesprominence shiftand to give:

(83) THIR TEEN BOYS
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This is often explained by the notion that the main stress onBOYS “repels” the stress on -TEEN so
that stressed syllables do not directly occur as neighbours.

6.3.2 Discourse prominence patterns

When sentences are spoken in discourses or dialogues, additional patterns can occur. One com-
monly cited affect is the difference in prominence levels betweengivenandnew information. This
idea says that when a word is first used in a discourse, it will often be quite strong, but on second
and subsequent mentions it is actually weaker, so we might have:

(84) FIRST MAKE SURE THAT PAUL ANSWERS THE PHONE.

(85) THEN TELL PAUL TO BRING THE BOOK OVER TONIGHT.

in which the first mention ofPAUL is prominent and the second is not. While this given/new
distinction has traditionally received considerable attention in the literature, many recent empirical
studies on real speech have shown that this affect is not so common as traditionally though [328],
[329], [23], [330]. First, it is far more common that the second sentence would have a pronoun
instead of the original name

(86) THEN TELL HIM TO BRING THE BOOK OVER TONIGHT.

and secondly, as Aylett [24] points out, even when words are repeated in full form in dialogues,
there is very little evidence of prominence patterns being governed by the given/new distinction.
What does occur, is that the degree of prominence is heavily influenced by the redundancy in the
dialogue, such that if the speaker feels the listener has a high probability of understanding then he
or she may well give a word less prominence. Crucially, the word receiving less prominence does
not have to be the same as the original word, hence

(87) THEN TELL THE IRISH GIT TO BRING THE BOOK OVER TONIGHT.

here as IRISH GIT is obviously related toPAUL it may receive less prominence. Prominence
patterns of these sort are clearly augmentative and will be explained further in Section 6.5.3.

We can identify a second type of discourse prominence effectwhich we shall termemphasis.
This occurs when a speaker wants to draw attention to a particular word:

(88) IT WAS REALLY HUGE

(89) I DIDN ’ T BELIEVE A WORD HE SAID

(90) I’VE HEARD IT ALL BEFORE

(91) THATS JUST TOO BAD

(92) ITS IMPORTANT TO DO THAT BEFORE YOU ENTER THE ROOM

(93) NOT THAT ONE

and so on. In general, emphatic prominence is used for augmentation purposes (see below in
Section 6.5.3) where the speaker wants to make particularlysure that the listener understands
what is being said. A particularly salient example is contrastive prominence of the type:
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(94) THE PROFIT WAS$10M BEFORE TAX , NOT AFTER TAX

This however also extends into affective purposes, where for example the speaker knows that
the listener will understand, but still uses extra emphasis. This could occur for example when the
speaker wishes to express frustration or imply that the listener is stupid and therefore has to have
everything spoken slowly or clearly.

6.3.3 Prominence systems, data and labelling

As with phrasing, we have a number of models and theories which attempt to explain prominence.
Again as with phrasing, the theories range from simple models to ones which posit a rich and
embedded prominence structure. Broadly speaking, the phenomenon of lexical stress is fairly
uncontentious with good agreement between labellers as to where stress values lie. Prominence
and emphasis is more difficult to mark, as labellers often findit hard to distinguish between what
is “normal”, discourse neutral prominence and marked emphasis. The distinction here is related
to the issue of augmentative prosody, discussed in Section 6.5.3.

As with phrasing, the basic distinction is between systems which have a fixed number of
prominence values or levels, and ones in which nesting and recursion can occur. And again,
we see that the issue is the tradeoff between a system which seems to match linguistic structure,
and one that is more bottom up and perceptually verifiable. Wehave already examined Liberman’s
model of metrical phonology for phrasing, but actually thiswas primarily developed for explaining
prominence patterns. In this, we have binary trees in which each node is marked eitherstrong (S)
or weak (W). Using this, we can then describe prominence patterns as follows:

W

city

S

Hall

S

James

W

street

S

parking

W

lot

The “clever bit” is that this model allows us to elegantly combine smaller groups of words into
bigger groups by further use of the metrical trees:

W

S

James

W

street

S

S

parking

W

lot

in which case there is one and only one node that is dominated only by S, and this is how we
specify the most prominent or nuclear prominence of the sentence or phrase. Metrical phonology
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also neatly deals with the issue of prominence shift, which occurs in the following example for
many speakers:

W

S

city

W

hall

S

S

parking

W

lot

(the prominence has shifted fromHALL to CITY). Just as with phrasing however, it seems difficult
to believe that when it comes to a whole sentence such as:

W

W

W

I

S

left

S

W

my

S

car

S

W

in

S

W

the

S

W

S

city

W

hall

S

S

parking

W

lot

]

that speakers can make and listeners discern all these different degrees of phrasing. This has lead to
researchers proposing a fixed number of types or levels of prominence, but as with phrasing, there
is virtually no agreement as to how many there should be. Probably the most common models for
practical engineering purposes are:

1. a metrical tree in which the values on the high level nodes are ignored

2. a system with three levels of prominence

(a) prominent/stressed

(b) un-prominent/unstressed

(c) reduced

3. as above, but with an extra level for emphatic prominence.
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Figure 6.1 Example of F0 contour with pitch accents and boundary tones marked.

6.4 INTONATION AND TUNE

Intonation is sometimes used as a synonym for prosody, and as such includes prominence and
phrasing as just described. Here we use a more narrow definition in which intonation is the sys-
tematic use of pitch for communication. Often we describe intonation with reference to thepitch
contour or theF0 contour, which is the pattern of pitch/F0 variation over an utterance4

Most traditional accounts of intonation speak of intonational tuneswhich span the length of
the sentence. In these accounts, we might have a question tune, an exclamation tune and so on.
More modern accounts advocate a more compositional approach, where the global intonation tune
is composed of a number of discrete elements. Most importantof these is thepitch accent, which
can be defined as a significant excursion (either positive or negative) in the F0 contour that lends
emphasis to a syllable. Pitch accents only occur on prominent syllables, and hence prominence can
be seen as defining the possible places where pitch accents can occur. Figure 6.1 shows a sentence
with two clearly visible pitch accents. In addition to this,it is common to haveboundary accents
or boundary toneswhich are pitch movements associated with the ends of phrases rather than
syllables. A classic example of a boundary tone is where we having rising pitch at the end of a
sentence to indicate a question, shown in Figure 6.1.

Beyond this, we again find that there is little agreement about how to describe pitch accents
and boundary tones. Some theories state there are a fixed inventory of these, while some describe
them with continuous parameters. The nature of pitch accents and boundary tones is disputed, with
some theories describing them astones or levels while others say their characteristic property
is pitch movement. One prominent theory states that we have anintonational phonology that
parallels normal phonology, and as such we have inventoriesof contrasting units (sometimes called

4 F0 is shorthand for fundamental frequency. Informally thiscan be thought of as being the same as pitch, the exact
relationship is described in Section 9.1.1.
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tonemes) and grammars which state what can follow what.
As with phrasing, we find there is a considerable degree of speaker choice with regard to

intonation, such that while it may be common to speak a question such as

(95) IS THIS THE WAY TO THE BANK?

quite often speakers speak this with the same intonation as anormal statement. Just why speakers
do this is addressed in Section 6.5.3.

It is difficult to discuss intonation further without reference to the phonetics and acoustics
of this part of language, and for that reason we forgo a more thorough account of intonation until
Chapter 9.

6.5 PROSODICMEANING AND FUNCTION

One of the reasons why good models of prosody have proved so hard to develop is that researchers
have often tried to study prosody without reference to its communicative function. In verbal
linguistics it is quite common to study a particular sentence without reference to why a speaker
said this, and by and large this separation provides a usefulmodularity for research purposes. So
when we consider a sentence such as

(96) THE MAN WALKED DOWN THE STREET

We can say thatTHE MAN is the subject andWALKED is a verb and so on, and then perhaps
go on to study the phonetics of the sentence, without having to know why the speaker actually
said this sentence. It is common to follow a similar approachin prosody, but we believe this is
mistaken, and that in fact, it is more or less impossible to study the nature of prosody without
taking into account the dialogue, speaker situation and other functional factors. Hence we now
give an account ofprosodic function which states the reasonswhy we use prosody, and as we
shall see, this significantly simplifies the practical issues concerning how to generate prosody in a
text-to-speech system.

6.5.1 Affective Prosody

Affective prosody is the most basic type of prosody and in a sense can be regardedas pure
prosody. Affective prosody includes the expression of meaning related to emotion, mental state
and speaker attitude. Significantly, prosody is theprimarychannel for the communication of these
meanings: if one is angry and wishes to express this, it is best done with a loud, shouting, growling
voice, rather than a simple, natural statementI AM ANGRY . In fact simply saying that one is in an
emotional state with words without any matching prosody is usually taken as a sign of insincerity
(e.g.YES YOU LOOK NICE IN THAT DRESS), and if the words and prosody seem to contradict, the
listener usually takes prosody to be the true expression of the speaker’s meaning. (For example,
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if you ask a child whether they ate all the cookies, they find iteasy to sayNO but less hard to say
this convincingly).

Affective prosody has a certain degree of language universality. In all languages, raising
one’s voice and shouting are seen as expressions of angry or hostile states, while speaking in a
softer voice is seen as conciliatory or calming. In fact the relationship is so direct that often we
say “she spoke in a calm voice” etc. Affective prosody is not completely universal however, and in
terms of primary emotion, there are significant differencesacross languages. Even within English
it is common to find that one group of speakers are regarded as brash and another meek, when
in fact all that is different are the “settings” and “thresholds” with which the basic emotions are
expressed.

In general, affective prosody has a fairly direct meaning-to-form relationship and hence the
more extreme the form the more extreme the emotion. This implies that, unlike verbal language,
the affective prosody system is not arbitrary with regard tomeaning/form. A number of emotion
categorisation systems have been proposed. One common theory holds that there are six basic
emotions (anger, happiness, sadness, disgust, fear and surprise) from which follow a number of
secondary emotions such as puzzlement or intrigue [110], [113], [153]. Some however argue
that there is no fixed set of emotions and rather emotion is best expressed in a multi-dimensional
system. One such proposal advocates three independent axesof emotion calledactivation, evalu-
ation andpower [393], [126].

In addition to emotion, affective prosody includes speakerattitude. The difference between
emotion and attitude is that only emotion can exist independent of communication. As an illustra-
tion; you can be happy on your own, but you need someone else tobe sarcastic with. Apart from
this distinction, attitude functions similarly to emotionin that it is fairly direct, has a significant
degree of universality and does not have a arbitrary or dual nature.

One point of debate in the literature on both emotion and affective prosody concerns whether
there is such a state as “no emotion” or “no affective prosody”. The argument is that if we are able
to increase the level of intensity of anger, then we should beable to decrease this to the point
where there is no anger. Similarly with the other emotions. This issue is important as it seems
that the total affective content of an utterance can vary greatly and can be contrasted with the total
propositional content of the verbal part of the utterance. These two effects seem to trade-off such
that we can have sentences that are nearly purely affective “thats amazing” and others which are
purely propositional “the sum of the square of the opposite and adjacent sides...”. This later type
of sentence is what we have previously termed discourse neutral.

6.5.2 Suprasegmental

If a sentence is spoke with little or no affective content, ie. in a discourse neutral manner, we still
see characteristic patterns in the phrasing, rhythm, pitch, voice quality and timing. Typical effects
include phones at the ends of sentences or phrases being lengthened, syntactically salient words
(e.g. heads) having more emphasis, F0 levels being higher atthe starts of sentences and so on.
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These effects are often called “prosodic” but according to the model we use here, these are
not real prosodic phenomena but just another aspect of the verbal component. We can see this
because speakers do not impart extra information by using these effects and they are as highly
formulaic as the use of say nasalization, voicing and tongueposition. These effects are often
called prosodic as they use much the same acoustic means as expression - anger is expressed
through pitch and voice quality, which is also used to distinguish the middle and ends of a phrase.
In the model used here, we do not include these effects under the umbrella of prosody, but instead
term these thesuprasegmentalpart of verbal phonetics. The term suprasegmental here is used
to show that while these effects may be verbal in nature, theyare operate over the span of several
phones (segments). It is best to think of these as a by productin the production of the phonetic
content.

While suprasegmental effects are rightly seen as the natural effect of phonetic production on
F0, timing and voice quality, it is important to realise thatthe speaker still has conscious control
over these. That is, while it is normal for a particular voicequality to be used at the end of a
sentence, the speaker can override this if desired. However, while overriding default behaviour
is possible, it is highly noticeable if this is done, and so a speaker who deviates from default
behaviour will be perceived as wanting to draw attention to the aspect of the utterance which has
changed. Another way of looking at suprasegmental is in terms of defaults, and deviation from
defaults. The key to this is to realise that the default for a sentence is not connected to mathematical
simplicity where we might have a constant duration for each phone, a flat F0 contour and a constant
state of vocal effort. Rather, the default behaviour exhibits considerable variation from these fixed
values in ways dictated by verbal production. Deviations from the suprasegmental default are
indications of real prosody, whether they be for affective or augmentative purposes (explained
below).

In tone languageslike Mandarin, pitch can be used to identify words. For example, liu
spoken with one tone pattern means “flow”, but when spoken with a different tone pattern means
“six”. In our model, this is a purely suprasegmental effect and treated in just the same way as
nasalization is used to distinguish words in English. Mandarin of course has intonation also, which
is used for all the same affects as English. The fact that intonation and parts of word identity
are expressed in the same acoustic variable, does of course complicate analysis and synthesis
somewhat, but with modern synthesis techniques we can modelboth without difficulty.

6.5.3 Augmentative Prosody

Augmentative prosodyis used as an aid to ensure successful communication of the verbal com-
ponent of a message. Unlike affective prosody, augmentative prosody does not contain or convey
any extra information, it is merely a means for the speaker toensure that a message is decoded
and understood more clearly. Augmentative prosody can onlybe understood with reference to a
dialogue model of the type presented in Section 2.3. There wesaw that participants in a dialogue
have a mental image of each other and are constantly balancing the desire to beefficient in com-
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munication (whereby they would use the least effort in generating their utterances) with a desire
to beeffective, whereby they wish to ensure the message is correctly decoded and understood.

In an ideal communicative setting, where the participants know each other, can see each
other and are able to converse without background noise or other distractions, it is nearly always
the case that the verbal message can be communicated withoutneed for any augmentative prosody.
Whether any prosody is used therefore is purely a matter of the affective nature of the utterance.
Successful communication is possible because the verbal channel is highly redundant, to the extent
that the speaker should always be able to decode and understand the message. In other conditions
we face a different situation, so for example in noisy conditions we might see that the speaker
speaks with greater vocal effort and more slowly. Likewise we may see the same effect if the
speakers don’t know each other so well, or in more polite situations in which the speaker wants to
be seen to be making a clear effort to communicate effectively.

While it may be fairly obvious that increased articulation effort will lead to a higher prob-
ability of a phoneme string being correctly recognised, it is with other aspects of augmentative
prosody that the situation becomes particularly interesting. For example, it is frequently asserted
thatyes/no questionssuch as

(97) IS THIS THE WAY TO THE BANK?

having rising intonation in English. In fact empirical studies of data show that the most common
intonation for such sentences is exactly the same pattern used for statements. While speakers
canuse rising intonation, they often don’t. This behaviour is best explained with reference to the
communicative model. In examples such as 97, it is usuallyobviousthat a yes/no question is being
asked, there really is little need for a speaker to use the additional cues that a rising intonation
pattern would provide. However if the speaker believes she may be misunderstood, or if she is
trying to sound polite, the rising intonation pattern may appear. By comparison, it is common to
ask “yes/no questions” that are have the same syntax as statements, but in which the speaker does
now in fact use a rising intonation pattern to make sure theseare interpreted correctly:

(98) THIS IS THE WAY TO THE BANK?

We see this effect in all aspects of prosody. The given/new distinction, where it is often claimed
that subsequent mentions of an entity are less prominent than first mentions, is rarely observed in
real speech, partly because it is quite clear from the verbalcontent which in fact is intended [328],
[24].

In classic example sentences such as

(99) BILL DOESN’ T DRINK BECAUSE HE’ S UNHAPPY

which are spoken without phrase breaks may potentially be ambiguous but in general the listener
will know enough of the dialogue context to correctly decodethis. If however the speaker is less
sure of a correct decoding, phrase breaks may be inserted to aid communication, and likewise with
every other aspect of prosody.
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In summary, augmentative prosody works by changing the default suprasegmental content
of an utterance in particular ways. It is used by the speaker solely to increase the chances of the
verbal message being correctly decoded and understood. Significantly, unlike affective prosody, it
imparts no extra information into the message.

6.5.4 Symbolic communication and prosodic style

It is useful at this stage to compare and contrast the verbal and prosodic components of language.
Verbal language was defined in Section 2.2.1, and there we sawits defining properties as being
discrete anddual, in the sense that every message is composed of a sequence of discrete word
entities which in turn are composed of a sequence of phonemes. Verbal language isarbitrary in
the sense that one cannot infer the form of a word from its meaning or vice-versa. Verbal language
is productive in that completely new sentences can be created all the time.What if any of these
properties does prosody have?

First of all, let us realise that in verbal language, to construct a message we must always
select a unit (e.g. word) and place these in sequence. A word is either present or absent in an
utterance and every utterance is composed of a sequence of words. With prosody the situation
is different. Firstly, we need not always have a prosodic unit - it is completely acceptable and
common to have an entire sentence with no particular emphasis, intonation or phrasing effects
(recall, suprasegmental effects are considered part of verbal language, not prosody). Furthermore,
if a prosodic effect is present, it can be there to a greater orlesser extent. So we can have a word
that is somewhat emphasised to one which is heavily emphasised - this is unlike verbal language
where something is either present or not.

In verbal language, speakers really have very little choicein how they speak a particular
word. So while speakers when saying the wordCAT may vary somewhat in their tongue positions
or degree of aspiration, only so much variation is allowed, otherwise a different word may be per-
ceived. Hence verbal language is inherently restricted andformulaic. With prosody, the fact that
an utterance is not required to be “full” of prosody gives thespeaker much more choice. Augmen-
tative prosody may be used to aid communication but often it doesn’t have to be; conversely in
certain polite or formal situations a speaker may choose to use considerably more augmentative
prosody than is strictly required for successful communication. The degree of affective prosody is
again very variable - some conversations or messages (e.g. speech from a news reader) are nearly
completely lacking in affective content while some are full(e.g. a chat between two friends).

An important consequence of the degree of choice in prosody is that it allows the speaker to
deviate from the default patterns in certain ways without running the risk of changing the meaning
of the sentence entirely. This then allows for the phenomenon termedprosodic style. This is
most marked in situations where particular speakers, oftenactors or comedians, use prosodic style
in a quite unconventional way. This use of prosody is not related to the communication of the
message or even emotion, but is intended to draw attention tothe speaker himself. Informally, we
can talk about the speaker “sounding cool” by the way they candeviate from the normal patterns
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of prosody and be creative in their usage. Stylistic use of prosodic is one significant factor in
explaining why some speakers seem more interesting to listen too than others.

6.6 DETERMINING PROSODY FROM THETEXT

6.6.1 Prosody and human reading

In text-to-speech, our interest is of course to generate prosody from text. This is problematic in that
text mostly encodes the verbal component of language; prosody is by and large ignored. Given that
prosody is such a vital part of spoken language, how then is itpossible that written communication
can even work? We examined this in some detail in Section 3.2,and can summarise the situation
as follows:

• Quite often text encodes sentences which are rich in propositional content rather than af-
fective content. Text genres like newspapers, non-fiction books, histories, company reports,
scientific articles and so on simply do not have much affective content in the first place.

• The writer knows that prosody is absent from the text that is being written, and therefore
compensatesfor this by using words in different ways that would be the case when speaking.
For example in literature, we see phrases such as:

(100) ‘thats right’, he said angrily

where thehe said angrily is obviously written to help the reader understand how the
‘thats right’ section should have sounded.

• The awareness that prosody is lacking often leads to the writer writing in a style that is
inherently less ambiguous; in such cases we say the writer iswriting “clearly” and so on.

• Quite often, people who are reading aloud add their own prosody into the speech. By this we
mean that when they read the words, they keep accurately to the word, but as the prosody is
not encoded in the text the reader “makes up” what they think is appropriate for this situation.
It is if the reader is saying “if I were saying this myself, what prosody would I use?” and
then adding this into the speech.

• This requires considerable skill and is often based on an understanding of the text, rather
than just a decoding as is the case for words. The reader is in effect adding in affective and
augmentative prosody in places she believes are appropriate.

From this we can conclude that in situations where the text genre is quite factual, it is usually
sufficient to generate speech from the verbal message only, and so all that is required is the gen-
eration of the suprasegmental part of the signal; the affective part of prosody is ignored. In other
text genres the situation is significantly more difficult, and if say a dialogue from a play is read
in this fashion (or more likely) responses from a computer dialogue system, the generated speech
can sound somewhat dull and removed. Finally, we see that mimicking a genuinely good human
reader is very difficult indeed, as they will be performing anactual comprehension of the text, and
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then generating their own prosody. In no way are they simply decoding the prosody from the text
and then speaking it aloud, as they can do with the words. To date, no satisfactory solution has
been found to this problem, and so current text-to-speech systems are, unfortunately, lacking in
this regard.

6.6.2 Controlling the degree of augmentative prosody

We face a different situation with regard to augmentative prosody. When a person speaks, she uses
a mental image of the likelihood of a listener decoding and understanding the message to decide
how much augmentative prosody to use and where to use it. We therefore face two problems
in TTS: guessing the state of the listener and knowing which parts of the utterance may need
disambiguating with prosody. Doing this properly is very difficult - even if we have a good idea
about the likelihood of a message being misunderstood, knowing exactly where to place phrase
breaks and additional emphasis is extremely hard as often this can require a full and accurate
syntactic and sometimes semantic analysis of the sentence.But luckily, as with affective prosody,
we have a “get-out” which enables us in many cases to bypass this problem.

Firstly, writers often use punctuation and fonts when they feel that the words in some way
need disambiguation. So when we see a comma or semi-colon, itis often a safe bet to place a
phrase boundary here as we know the author felt that the wordsbefore and after the break should
be separated. If a word is in italics or bold, it is again probably a safe bet to give this word ex-
tra emphasis. A second strategy arises from the fact that augmentative prosody is indeed only
there tohelp in the decoding and understanding of an utterance. If we simply don’t include any
augmentative prosody, there is a good chance the utterance will still be decoded and understood,
but perhaps just not with so much certainty. We can compensate for this specific lack of disam-
biguation information by ensuring that other parts of the signal do aid decoding; for instance if we
synthesise the speech more clearly and slowly than normal the listener will have a better chance
of understanding.

6.6.3 Prosody and synthesis techniques

In the remainder of this chapter we shall concentrate onprosody prediction, the term given to the
task of generating the prosodic form from the text. In Chapter 9 we complete the task by consider-
ing the issue ofprosody synthesis, the job of generating phonetic or acoustic information from the
prosodic form. As we shall see, the degree to which prosody needs to be specified depends very
much on the synthesis technique employed in waveform synthesis. Roughly speaking, in modern
systems suprasegmental prosody can be generated at the sametime as the verbal content, whereas
in first and second generation synthesis systems, the suprasegmental content has to be generated
explicitly. Most of the following sections can be read without too much emphasis being placed on
this distinction, it will however become more of an issue in Chapter 9.
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6.7 PHRASING PREDICTION

First we will examine the issue ofphrasing prediction which is how to generate a prosodic
phrase structure for a sentence from the text. For purposes of illustration we will adopt the model
described in Section 6.2.2 where we have a major phrase and a minor phrase and this is probably
the most commonly used in TTS.

6.7.1 Experimental formulation

To help in our exposition, we will formalise the problem in the manner suggested by Taylor and
Black [443]. In this, our input is a list of tokens:

T =< t1, t2, t3, ..., tn,>

and between every token is ajuncture , so that a full sentence is:

T =< t1, j1, t2, j2, t3, j3, ..., jn−1,wn,>

The job of the phrasing algorithm is to assign values to everyj i drawn from an inventory of
juncture types, which we will define to be{ non-break, minor-break, major-break, sentence}.
About 1 in 5 junctures are of typenon-break (that is the gap between normal words) and so we
have to be careful in assessing the accuracy of any algorithm- if we use one which always assigns
non-break we will have achieved 80% accuracy on a simple junctures correct measure. Because
of this, Taylor and Black proposed a number of measures, later extended by Busser et al [77].
These are calculated from the following basic quantities:

Breaks B number of breaks in the corpus
Insertions I a non-break has been incorrectly marked as a break
Deletion D a break has been incorrectly marked as a non-break
Substitution S a break of one type has been incorrectly marked as a break of another type
Number of junctures N total tokens in the corpus -1

These are then used to calculate the following scores:



Section 6.7. Phrasing prediction 131

Breaks correct= BC =
B−D−S

B
×100% (6.1)

Non-breaks correct= NC =
N− I −S

N
×100% (6.2)

Junctures correct= JC =
N−D− I−S

N
×100% (6.3)

Juncture insertions= JI =
I
N
×100% (6.4)

Juncture deletions= BI =
I
B
×100% (6.5)

(6.6)

An alternative scheme, more in line with that used in naturallanguage processing is based on
precision andrecall, which are specifically designed to give accuracy figures forproblems where
the number of occurrences is much less than the number of non-occurrences.

Precision= P =
number of breaks correct

number of breaks predicted
=

BC− I
BC

(6.7)

Recall= P =
number of breaks correct

number of breaks in the test set
=

BC− I
B

(6.8)

These are often combined in afigure of merit , F:

Fβ =
(β2 +1)PR

β2P+R
(6.9)

whereβ is used to govern the relative importance of whether it is a worse error to falsely insert a
break or falsely miss one. If these are considered equal, then β = 1 and

F =
2PR
P+R

(6.10)

This is a commonly used measure of overall quality, but as we shall see, it is almost certainly not
true that human perception believes an insertion and deletion cause the same gravity of error.

6.7.2 Deterministic approaches

There are two popular and very simple phrasing algorithms:

1. deterministic punctuation (DP): Place a phrase break at every punctuation mark



132 Chapter 6. Prosody Prediction from Text

2. deterministic content, function (DCF): Place a phrase break every time a function word
follows a content word.

The first algorithm, DP, works very well in sentences of the type:

(101) The message is clear: if you want to go, you have to go now

For DP algorithm to work, we must have an accurate means of determining underlying punctua-
tion. This is so that sentences like

(102) But really!? You can go -- but it won’t do you any good.

have the punctuation sequence!? and--mapped to a single underlying form because we don’t
want to have an additional phrase break between the! and the?. The DCF algorithm works well
in sentences such as

(103) It was taking a long time to gather all the information

where we place a phrase break after every function word that follows a content word:

(104) it was taking | a long time | to gather |all the information

These can be combined into a single algorithm,deterministic content function punctuation
(DCFP), which places a break after every content word that precedesa function word and also at
punctuation. The algorithms were tested on a large corpus ofread speech which had phrase breaks
labelled by hand. The results for these algorithms given in Taylor and Black [443] are:

Algorithm breaks correctjunctures correctjuncture insertions
Deterministic Punctuation 54.274 90.758 0.052
Deterministic Content Function Punctuation84.40 70.288 31.728

These figures basically show that that the DP algorithm massively under predicts and the DCFP
algorithm massively over predicts. The DP algorithm resultis worth examining further because
it shows that placing a phrase break at a punctuation mark is in fact a very safe thing to do; this
nearly always coincides with a real break. The only problem is that many other breaks are missed.
The DPCF algorithm over predicts far too much, which lead to the idea that if finer distinctions
could be made than just content word and function word, a moreaccurate algorithm would be
possible.

A number of more sophisticated deterministic systems have been proposed [26], [186], [10]
which make of rules for specific cases. For example, theverb balancing rule of Bachenko and
Fitzpatrick [26] works through a sentence left to right and compares the number of words in a
potential phrase formed with the verb and the syntactic constituents to the left, and the number of
words in the constituent to the right. The potential phrase with the shortest number of words is
chosen as the correct one.
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6.7.3 Classifier approaches

The general historical trend in phrase break prediction is the same as with most problems we ex-
amine: as more data has become available, researchers have moved away from rule based systems
towards trainable systems. This is partly because the new data showed how errorful rule based
systems were, and partly because it allowed algorithms to have their parameters and rules auto-
matically inferred from the data. We now turn to data-driventechniques, where interestingly we
see a similar pattern of algorithm type to that used in text classification. In this section we examine
local classifieralgorithms, which share many features in common with WSD algorithms. In the
next section we examine HMM approaches, which are very similar to POS taggers.

Wang and Hirschberg [363] introduced the idea of using decision trees for phrase break
prediction. Decision trees allow a wide variety of heterogeneous features, examples of which are
given below:

• total seconds in the utterance

• total words in the utterance

• speaking rate

• time from start of sentence to current word

• time to end of sentence from current word

• is the word before the juncture accented?

• is the word after the juncture accented?

• Part-of-speech

• syntactic category of constituent immediately dominatingthe word before the juncture

• syntactic category of constituent immediately dominatingthe word after the juncture

These features (and others) were used as question in the tree, which was grown in the normal way.
Wang and Hirschberg trained and tested their system on 298 utterances from the ATIS corpus,
giving the following results (the results aren’t availablein the formats we described above):

Boundaries correct 88.5%
Non-Boundaries correct93.5%

It should be pointed out that this approach can’t strictly beused for TTS purposes as acoustic
features (e.g. time in seconds) measured from the corpus waveforms were used in addition to
features that would be available at run time. Following thisinitial work, a number of studies have
used decision trees [264] [418], and a wide variety of other machine learning algorithms have
been applied to the problem including memory based learning[77] [402], Bayesian classifiers
[516], support vector machines [87] and neural networks [157]. Similar results are reported in
most cases, and it seems that the most important factors in the success of a system are the features
used and the quality and quantity of data rather than the particular machine learning algorithm
used.
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Figure 6.2 Histogram of phrase lengths.

6.7.4 HMM approaches

The HMM approach to phrase-break prediction was introducedby Taylor and Black [443] and has
been extended by others [37], [369]. In their basic system, Taylor and Black proposed that the
decision on whether a phrase break should or should not be placed was dependent on two main
factors:

1. The parts-of-speech surrounding the juncture

2. The distance between this proposed break and other breaks

The first of these factors is simply a restatement of what we have already examined; i.e. that
syntactic patterns have a strong influence on phrase break position. The second factor is used in the
classification approaches, but is given particular importance in the HMM model. The hypothesis
is that in addition to any high level syntactic, semantic or dialogue factors, phrasing operates in a
semi-autonomous fashion in that speakers simply like to place phrase breaks at regular intervals.
This can be explained to some extent by the fact that speakersneed to pause to get breath, but it
seems that the phrase breaks occur much more frequently thanis needed for breathing purposes
and so this alone can not explain the patterns. Regardless ofwhy however, it is clearly the case that
speakers do exhibit strong tendencies to place phrase breaks at regular intervals, a fact noted by
many researchers in this area [26], [156]. Figure 6.2, whichshows a histogram of phrase lengths
in words, clearly demonstrates this pattern.
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Figure 6.3 Finite state machine depictions of n-gram phrasing models.

The phrase break length histogram shows a preference for phrase lengths of about 3 - 6
words, and shows that very long or very short phrases are highly unlikely. Alternatively, we can
view this distribution cumulatively, meaning that the longer we have been since the previous phrase
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break the more likely it is that the next juncture will have a phrase break. While it is easy to add
this sort of information into a classifier, it is difficult to do so in an globally optimal way. The
basic problem is, that say we are at a juncture that is six words away from the previous juncture.
Our distribution may say that it is now quite likely that we will observe a break at this point. If the
evidence from the POS sequence seems reasonable, then a break will be placed here. The problem
is that the next juncture, seven words away from the last break may be an even better place to
put a break, but we can’t do this now as the break at word six hasalready been assigned. What
is required is a way to searchall possiblesequences of phrase breaks, and this, via the Viterbi
algorithm, is exactly what the HMM approach can deliver.

In the HMM approach, we have a state for each type of juncture,so ignoring sentence breaks,
we either have three states if we distinguish major and minorbreaks or two states if we don’t.
Taking the second case first, we now have a state which gives:

P(C| j i)
that is, the probability of a juncture after tokeni omitting a POS sequenceL. Ideally the POS
sequenceL would be the tag sequence for the entire sentence, but as these distributions are non-
parametric models which have to be learned by counting, the size of the window is quite limited in
terms of what can be estimated robustly. Hence we approximate the POS sequence of the whole
sentence as a window of POS tags around the juncture. This canbe seen as a generalisation to the
DCFP algorithm where we used one tag before and after the juncture. Taylor and Black however
reported that a window of two tags before and one tag after thejuncture gave the best results given
limited training data. Informally, we can see that we would expect the following to give relatively
high probabilities

P(ADJ NOUN AUX|break)

P(DET NOUN NOUN|non-break)

The juncture sequence model is given by an n-gram, which is calculated in the way explained in
Section 5.2.2, that is by counting occurrences of sequences. An important difference to the n-gram
in a POS tagger is that we now only have two or three types in then-gram rather than 40 or so.
This means that the number of unique sequences is much less, which means that for the same
amount of data we can robustly compute longer n-grams. In these models we would see that

P(N,N,N,B,N)

would give a high probability and that

P(B,B,N,B)

would give a low probability. Taylor and Black report that the best results are found from which
uses a 6-gram language model, where there are two tags beforethe juncture and one after. This
gave figures of 79.24% breaks correct, 91.597% junctures correct and 5.569% juncture insertions.
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6.7.5 Hybrid approaches

More recently a number of approaches have been proposed which combine the advantages of
decision tree approaches (use of heterogeneous features, robustness to curse of dimensionality)
and the HMM approach (statistical, global optimal search ofsequences). In addition, there has
been somewhat of a re-awakening of use of syntactic featuresdue to the provision of more robust
parsers. Rather than attempt an explicit model of prosodic phrasing based on trying to map from
the syntax tree, most of these approaches use the syntax information as additional features in a
classifier [508], [209], [257].

While the pure HMM approach uses a discrete probability distribution over observations
(in our case POS tags), in practice, all we need is a means of finding the likelihood of seeing
the observation given the juncture typeP(C|J). Many have therefore tried alternative ways of
generating this. One of the most popular is actually to use decision trees, as these can be used to
given probabilities as wall as simple decisions on classification. As it stands, a decision tree gives a
posterior probability, not a likelihood, but a likelihood value can be obtained by either ensuring that
the tree is trained on an equal amount of break and non-break data, or by normalizing the posterior
by the basic frequency of breaks and non-breaks. The advantage in this combined approach is that
we can use any features that require, but also perform the global Viterbi search using n-grams to
find the best overall sequence of breaks [403], [369], [423].

6.8 PROMINENCE PREDICTION

Prominence prediction algorithms follow the same basic approaches as phrase break prediction
where we have simple deterministic algorithms, sophisticated deterministic algorithms and data
driven algorithms.

6.8.1 Compound noun phrases

The simplest prominence prediction algorithm simply uses the concatenation of the lexical promi-
nence patterns of the words. So for:

(105) IN TERMS OF THE NECESSARY POLITICAL EXPEDIENCY TO ENSURE SURVIVAL — THE

RESULT WAS A CLEARLY A GOOD ONE FORSHAW

we might generate a prominence pattern of:

(106) IN TERMS OF THE NECESSARY POLI TICAL EX PEDIENCY TO ENSURE SURVI VAL THE

RESULT WAS A CLEAR LY A GOOD ONE FOR SHAW

The main ways in which this rule fails (again ignoring affective and augmentative effects) are
in compound noun phrases and certain function words uses. The prominence patterns in com-
pound noun phrases in English are complex and can seem quite baffling. When we consider the
prominence patterns in street names such as
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(107) WINDSOR AVENUE

(108) BEAUFORT DRIVE

(109) PARK LANE

it seems quite obvious what the pattern is, until we considerexamples with the wordSTREET

(110) W INDSOR STREET

(111) BEAUFORT STREET

(112) PARK STREET

in which the prominence pattern is reversed. Sproat [410] conducted a very thorough study into
compound noun phrasing patterns, and concluded that in general, there is no simple syntactic
pattern which governs prominence. Instead he proposed an extensive set of rules based partly on
synactic and partly on semantic patterns. The most basic rule says that compound noun phrases
with two words assign their prominence according to whetherthe two words are taken as a single
compound “word” or a phrase. In general in English, phrases receive their main prominence on
the last word in the phrase. English words, and particularlynouns, by contrast tend to have their
prominence on the first syllable. This can be seen in the difference between

(113) BLACK BIRD meaning the type of bird

(114) BLACK BIRD a bird which just happens to be black

This principle can then be generalised to cope with all two word cases, with the idea being
that only conventionalised cases are treated as compound words which receive their prominence
on the first word. In addition to this, there are a number of semantically driven rules , which range
from the general to the more specific:

(115) Furniture + Room→ RIGHT, e.g. kitchentable

(116) Proper-name + street→ LEFT, e.g. Park street

For more compound noun phrases involving three or more words, a CYK parser (see Section
5.5) is used to assign the internal structure to the noun phrase, after which prominence values can
be assigned. To resolve ambiguity, a set of heuristics is used to find the best parse. These are:

1. Prefer parses determined by semantic rather than syntactic means. (This partly works be-
cause semantic parses are much more specific)

2. Choose phrase based parses over compound word bases parses
3. Choose parses with right branching structure.

Additional rules are used to shift prominence in cases wherethe parses would produce two
prominent syllables side by side.We also find that many typesof non-natural language entities
have characteristic patterns. For example, it is common place to find telephone numbers read
with a particular stress pattern (and indeed phrasing). Producing the correct stress patterns for
these is often fairly straight forward and the creation of these patterns can be integrated into the
verbalisation process.
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6.8.2 Function word prominence

Less work as been carried out on the second main problem of determining the prominence patterns
in function word sequences. The most we can say about this is that not all function words are equal
when it comes to propensity for reduction. At one extreme, wehave determiners (THE and A)
which in their default form are always reduced, and at the other extreme closed class words such
asHOWEVER, WELL andSO can receive the most prominence in a sentence. Given a sequence of
content words, a reasonable approach is then to give each a score according to where it comes in
the strength list, and starting with the strongest, add prominence at regular intervals. A possible
hierarchy, from weakest to strongest, might be:

articles THE, A , AN

auxiliary verbs WAS, HAS, IS

prepositions TO, FROM, BY

particles IF, THEN, WELL

conjunctions THAT, AND , BUT

pronouns HE, HIM , SHE, ME, THEM

modals WOULD, COULD, SHOULD

Note that auxiliary verbs (e.g.HAVE) can function as main verbs also. We find a fairly clear
pattern that when used as an auxiliary the word is often reduced, when used as a main verb it is
often unreduced or prominent. With this table, we can then use a rule which states that prominent
syllables should not occur side by side, and so in a sequence of function words we first assign
prominence to the strongest word given in the table, ensure its neighbours and reduced and then
look for the next strongest word. This then can give the stress pattern for the sentence we saw in
Section 6.3.1:

(117) WHAT WOULD YOU HAVE DONE IF IT HADN ’ T BEEN FORME ?

6.8.3 Data driven approaches

Prominence prediction by deterministic means is actually one of the most successful uses of non-
statistical methods in speech synthesis. This can be attributed to a number of factors, for example
the fact that the rules often don’t interact or the fact that many of the rules are base on semantic
features (such that even if we did use a data driven techniquewe would still have to come up
with the semantic taxonomy by hand). Sproat notes [410] thatstatistical approaches have had
only limited success as the issue (especially in compound noun phrases) is really one of breadth
and not modelling; regardless of how the prominence algorithm actually works, what it requires
is a broad and exhaustive list of examples of compound nouns.Few complex generalisations are
present (what machine learning algorithms are good at) and once presented with an example, the
rules are not difficult to write by hand.

That said, with the provision of larger, labelled corpora, the natural progression has still
been towards using machine learning techniques to predict prominence. We should probably not
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be surprised to find that these techniques follow the basic paradigm used for phrase break predic-
tion, where we obtain a corpus of speech, label the prosodic content of this by hand (in this case
prominence levels) and train an algorithm to predict these values from features available to the
system at run time. Approaches tried have included decisiontress [207], [378], [147], memory
based learning [303], transformation based learning [200]and neural networks [72], [323], [389].

6.9 INTONATIONAL TUNE PREDICTION

Here we have explicitly separated prominence from the tune part of intonation, and so for our pur-
poses intonation prediction is specifically the predictionof intonational tune from text, rather than
the broader definition of this problem that encompass predicting tune, accentuation and sometimes
phrasing.

Of all the prosodic phenomena we have examined intonationaltune is the most heavily re-
lated to augmentative and particularly affective content.In situations where these effects are ab-
sent, we can say to a first approximation that all utterances have in fact the same intonational tune;
the only differences occur as to where the pitch accents and boundary tones which make up this
tune are positioned. Hence we can almost argue that for discourse neutral synthesis, there simply
isn’t any intonational tune prediction to be done. In other words, the real task is to predict a suitable
F0 contour that expresses the prominence and phrasing patterns and encodes the suprasegmental,
rather than true prosodic patterns of the utterance.

While we can describe prominence and phrasing in quite abstract high level terms, this is
significantly harder with intonation as all theories to a greater or lesser extent make explicit refer-
ences to F0 patterns, levels and dynamics. Given this, and the fact that for the most part we are
generating discourse neutral suprasegmental intonation,we will leave the entire topic of intonation
until Chapter 9.

6.10 DISCUSSION

At first glance it may seem that predicting prosodic form fromtext is an impossible task. Two
significant barriers stand in our way; first, the text is greatly under specified for the type of in-
formation we require as textual encoding of prosody is more or less non-existent. Secondly, the
uncertainty surrounding what prosodic form should be makesit hard to label data, train algorithms
and basically even know if we are headed in the right direction.

6.10.1 Labelling schemes and labelling accuracy

Taking the second issue first we see that in every area of prosody there is considerable disagree-
ment as to how to represent prosodic form. The problem isn’t so much that researchers disagree
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completely; there is wide spread agreement about how to label many utterances; in many cases it
is quite clear that a particular utterance has a strongly prominent syllable, has a clear phrase break
and has a distinctive intonational tune. There are many “black and white” cases where all theories
and all labellers agree. The problem is rather that there is asignificant grey area, where we can’t
tell if this really sounds prominent, where we aren’t sure that there is a phrase break between two
words and where we can’t really decide on the intonational tune for an utterance.

There are of course grey areas in other aspects of linguistics. As we saw in Section 4.2, pin-
ning down the exact definition of a word can be tricky, and we will come across similar difficulties
in Section 7.3.2 when we consider the definition of the phoneme. But in general the agreement
among researchers ismuch muchhigher with regard to these phenomena. Furthermore, so longas
we are aware of the difficulties, the definitions of word and phoneme which we use in this book
aregood enough, meaning that, as engineers, using these models does not seem to result in signif-
icant loss of quality in synthesis. Studies that have examined inter-labeller reliability of prosodic
schemes have shown the true extent of the problem; for instance in the original publication of the
ToBI system, Silverman et al reported that the agreement on phrase breaks was only 69% for four
labellers, and 86% for whether a syllable is prominent (bears a pitch accent in their paper). These
figures might not seem too bad, but are about anorder of magnitudeworse than the equivalent
results for verbal, phonetic transcription, and up totwo or threeorders of magnitude worse for the
transcription used for text analysis in Chapter 5. Furthermore, when we consider that the number
of choices to be made in prosodic labelling is often small (say choose one break index value from
5) we see just how difficult labellers find this task. These results for ToBI are not particularly un-
usual, consistently similar figures have been reported for many other schemes [426], [488], [487].
Furthermore it is misleading to blame poor labelling agreement on the labellers not being “expert”
enough - non-experts can readily label many of the types of data we require in TTS, and so in
comparing the figures for other types of labelling we are in fact comparing like with like.

Why does these problems arise?. Essentially we face two related issues;: which labelling
scheme, model or theory to use; and how to assign the labels arising from this to a corpus of
speech. Most researchers involved in both the scientific investigation and engineering implemen-
tation are aware that there are a huge number of differing andoften incompatible theories and mod-
els of prosody. The temptation then is therefore to seek a “theory-neutral”, “common-standard” or
“engineering” system which we can use to label the data and soavoid having to nail our colours
to any one particular theoretical mast. We have to emphasiseat this point that such an approach is
folly; there is simply no such thing as a theory neutral scheme. If we take the break index scheme
for instance, this explicitly states that there are a fixed number of types of breaks, that no recursion
or limited recursion exists, that phrasing is not explicitly linked to prominence patterns and so on.

Furthermore, there is no sense in which we can just “label what we hear” in the data; all
labelling schemes are based on a model, the fundamentals of that model are implied when we
label speech, and if our scheme is wrong, inaccurate or at fault in some other way, we run a high
risk of enforcing inappropriate labels on our data. If we then use these labels as ground truth, we
are running a severe risk of enforcing our training and run-time algorithms to make choices that
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are often meaningless.

6.10.2 Linguistic theories and prosody

Given these difficulties with labelling schemes and models,it is worth asking whether we need a
model of prosodic form at all; perhaps it would be possible tosimply define a mapping from the
text or semantics to the acoustics. This viewpoint certainly has some merit, but we should be wary
of dismissing the idea of prosodic form entirely. A brief digression into the theoretical history of
prosody may help explain why.

It is probably fair to say that the field of linguistics has always had a troubled relationship
with prosody. In fact many accounts of language completely ignore prosody (e.g. prosody is
hardly ever mentioned in any work by Chomsky): whether this is because it is deemed to be quite
separate from verbal language or simply too tricky to handleis hard to say. Ifwehowever want a
full account of language and communication we have to include prosody.

Older linguistic accounts of prosody tended to treat it as quite a different system, and this to
a degree was unproblematic. But with the rise of more formal theories of language, new theories
of prosody were put forward that used the new techniques of formal language theory, feature
structures and so on. The problem facing these researchers was how closely should a formal
theory of prosody follow the formal theories of verbal language. Unfortunately (in my opinion)
too much emphasis was placed on an insistence that prosodic phenomena could be explained with
the same mechanisms for verbal language, and hence we saw grammars of intonation, intonational
phonology and schemes for pitch accent description which were meant to be the direct equivalent
of normal phonology. To be fair, external pressures pushed research in this direction; there was
a strong desire to move from the very impressionistic and informal models of the past towards a
more rigorous model and in addition there was the idea that ifprosody could be explained with
the same mechanisms as verbal language this would somehow bemore parsimonious and would
also ensure prosody was taken seriously as a linguistic areaof study (instead of just being ignored
as mentioned above).

Ladd [269] points out that a major justification for the development of a phonology for
prosody was to counter attempts in linguistics to correlatesay F0 values with syntax patterns.
While correlations may exist, building such a model ignoresthe fact that different speakers have
different “parameters” in their F0 encoding model, for example that high pitched voices will pro-
duce different patterns to low pitched ones. A better model is to posit a system of abstract prosodic
form, where all speakers of an language/accent would share the same representations for similar
semantic and functional purposes. The actual acoustic encodings of these might vary with speaker
physiology, but the prosodic form would be the same for all speakers. In formal terms, all we
are saying is that there are a number of levels, or interacting systems of prosody. In summary the
phonological school of prosody is nearly certainly right inadvocating abstract description systems
for prosodic form, but is perhaps less right in advocating that these should be formulated with
the same mechanisms as verbal language. Prosody has an abstract structure, but it operates in a
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fundamentally different way to verbal language.

6.10.3 Synthesising suprasegmental and true prosody

Turning to the problem of predicting prosody from under-specified text, we find the situation is
less bleak that it might appear. Let us consider the issue of prosody not being encoded in the
text. In many applications, we are not synthesising text with any particular emotive or attitudinal
content, and so are therefore going for a discourse neutral reading. This simple fact saves us, and
in such cases allows us to ignore the affective side of prosody. Many non-TTS synthesis systems
are of course required to synthesize this type of text, and ifemotive or attitude information is
provided in the input there is no reason that these effects can not be successfully synthesized.

When we consider augmentative prosody, we can again find waysaround the problem.
Firstly, as we discussed in Section 3.1.4, authors do often use punctuation and sometimes use
italics and so on, and these are very good indicators that augmentative disambiguation is appro-
priate at this point. As we saw from Table 104, placing a phrase break at a punctuation mark
is rarely wrong; human readers nearly always do this. However, recall that the whole point of
augmentative prosody is that it acts as anaid to decoding and understanding and in many cases
isn’t strictly necessary. Hence if weunder predictphrase breaks, the only risk is that we may
increase the chance of mis-comprehension by the listener. Significantly, speech generated with
less augmentative prosody may sound completely natural - its just the case that the listener may
have to pay more attention. It is also important to realise that the most crucial phrase breaks are
often just those marked by commas in the text as it is here thatthe authors wants to be most cure
of correct comprehension. While not ideal, under prediction is a safe strategy. Conversely how-
ever, inserting a phrase break in a completely inappropriate position can sound terrible and often
completely throws the listener, resulting in loss of naturalness and intelligibility. Hence when de-
veloping algorithms for phrase break prediction it is probably not sensible to balance insertions
and deletions as equally bad errors; insertions are in general far worse than deletions. In practical
terms, this means that the figure of merit scores which combine precision and recall should be
weighted strongly in favour of precision rather than recall.

One area where augmentative prosody does however hurt us is in the data. While we can
bypass the augmentative prosody problem at run time by underpredicting, when we come to
consider real data we effectively a priori have no idea what augmentative prosody the speaker will
choose to use. While we can measure the acoustic encoding of this (pause lengths and positions
and so on), this does not help us in determining the high levelfeatures required to predict these.
We can imagine the speaker “inventing” these features and using them when speaking; they are
not available to us. This to a large extent explains the widely reported phenomenon of “speaker
choice” or “speaker variability” in prosody. Basically, when speaking or reading, because of
the redundancy in the verbal component, the speaker has considerable choice where to place the
phrase breaks; it all depends on their mental image of the listener. For practical purposes this has
the effect of addingnoise into the data; the features we have access to (the ones we can derive
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from the text) explain the presence of phrasing to a certain degree. The other features explain the
rest of the behaviour, but as we don’t have access to these, they effectively appear as noise in our
data and variance in our models.

The consequence of this, taken in conjunction wit the issue of very low level of transcribed
agreement, may well mean that many prediction algorithms are as accurate as theoretically possi-
ble; no amount of extra refinement in the techniques or extraction of alternative features will make
much difference. The reason why the algorithms can not improve is due to noise in the data, from
either or both or these sources.

6.10.4 Prosody in real dialogues

In Sections 6.8 and 6.7 we have seen how to predict prominenceand phrasing patterns from text.
The techniques described though in general only operate on single sentences, which are usually
declarative in nature. Much of interest in prosody takes part at a different level, where many of
the main phenomena occur in conversational, discourse, emotive or spontaneous communication.
Hence most TTS systems only model a small range of the possible prosodic phenomena. We can
however imagine systems which go beyond current capabilities. If speech synthesis were used in
more conversational applications, the discourse effects of prosody it would become important to
model the discourse effects of prosody. In many current dialogue systems, the interaction feels
very artificial because the system is only capable of simple questions and declarative sentences.
The study of prosody in discourse in a rich topic of research in linguistics, but little has be done
in terms of well adopted practices in TTS systems. Hirschberg [208] gives a review of many
discourse and functional aspects of intonation and describes much of the work that has been done
in discourse prosody in TTS.

We need to reiterate some points about the augmentative function of prosody and how this
affects studies into prosodic phenomena. While it is widelyaccepted that prosody does undergo
more variation, or undergoes more speaker choice than otherparts of language, it is our belief that
thedegreeto which this occurs is vastly underestimated in most studies. If we compare prosodic
form to verbal form, we see that while speakers can indeed vary the articulation of a word such as
HAT, they are very constrained in doing, and too much deviation from the canonical pronunciation
runs the risk of the word being decoded incorrectly.

A key reason for the difference in degree of variation between verbal and prosodic language
is to do with their functional use in communication. To a large extent, we can study the verbal part
of language without reference as towhya particular utterance is used in a discourse but the same
situation simply does not hold for prosody. The way in which prosody is used is primarily driven
by the discourse, and taking sentences out of their discourse and studying them without reference
to this, leads to problematic analyses. In verbal phoneticsa common practice is to carefully elicit
sentences spoken under laboratory conditions. These conditions are artificial and can lead to dis-
crepancies between the phonetic/acoustic patterns observed between “canonical” speech and real,
spontaneous speech. In general though, a considerable amount can be learned from controlled
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experiments in this way. The situation is radically different in prosody however, and eliciting indi-
vidual sentences in laboratory conditions is extremely risky in that these bear virtually no relation
to how prosody is used in real, spontaneous speech. Many studies unfortunately impose a strong
discourse bias, so that when we examine utterances elicitedfor the purposes of studying say the
given/new distinction, what we are doing is asking speakersto produce sentences in a very artifi-
cial discourse context. The effect of this is to grossly exaggerate the way the prosody is generated,
such that effects such as given/new or contrastive prominence can seem quite clear, distinct and or-
derly. In real, spontaneous speech by contrast, the discourse situation and the speaker and listeners
mental models of each other dictate how prosody is used. In these situations, the discourse context
and information content is often so obvious and redundant that prosody is simply not required for
further disambiguation. This helps explain while earlier laboratory based studies of prosody claim
clear patterns and effects, but when studies of real data areperformed [328], [24], these effects are
often far less clear.

6.10.5 Conclusion

The take home message from this discussion is that the theoretical difficulties with prosodic mod-
els and the under specification of prosody in text mean that this is an inherently difficult problem
and should be approached with a degree of caution. While it ispossible to continually drive down
the error rate with regard to semiotic classification, homograph disambiguation and so on, it is
unrealistic to assume the same can be done with prosody.

6.10.6 Summary

Prosodic form

• It is usual to consider three basic components of prosodic form: phrasing, prominenceand
intonation.

• Phrasing is used to group words together in the utterance, and is influenced by top down
factors such as syntax, and bottom up factors which place phrase breaks at roughly equal
intervals.

• Prominence is used to give extra strength to certain words. It is partly determined by syntax,
where in particular it governs stress patterns in compound noun phrases and function word
sequences.

• Intonation is the use of pitch to convey prosodic information.

• Very little agreement exists on how to represent prosodic form, which makes the design of
practical algorithms more difficult than in other areas of TTS.

Prosodic function

• Affective prosody conveys emotion and attitude in communication.
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• Augmentative prosodyis used to help disambiguate the verbal component of communica-
tion.

• Suprasegmental prosodyarises from the natural patterns of how words are joined together
in utterances.

Prosody prediction from text

• This is inherently difficult as prosody is largely absent from text.

• In practice though, the genres that we often use in TTS are nothigh in affective content.

• Phrasing and prominence prediction can be performed by a variety of algorithms, including
simple rules, sophisticated rules, data driven techniquesand statistical techniques.

• Most popular machine learning algorithms have been appliedto prosodic prediction. The
results are often similar, and difficult to improve upon because of the inherent difficulties in
representing prosodic form and under specification in the text.

Prosodic labels and data

• In general prosodic labelling by hand has low levels of inter-labeller agreement compared to
other labelling tasks in TTS.

• This may stem from the fact that we have yet to develop a robustsystem for describing
prosody.

• Speakers change their prosody depending on the discourse context and so it is difficult to
associate one prosody with a particular sentence.

• As speakers naturally vary their prosody, and labels are often unreliable, the labelling of
prosodic databases is often very noisy.



7
PHONETICS AND
PHONOLOGY

This chapter gives an outline of the related fields of phonetics and phonology. A good knowledge
of these subjects is essential in speech synthesis as they help bridge the gap between the discrete,
linguistic, word-based message and the continuous speech signal. More traditional synthesis tech-
niques relied heavily on phonetic and phonological knowledge, and often implemented theories
and modules directly from these fields. Even in the more modern heavily data driven synthesis
systems, we still find that phonetics and phonology have a vital role to play in determining how
best to implement representations and algorithms.

7.1 ARTICULATORY PHONETICS AND SPEECH PRODUCTION

The topic ofspeech productionexamines the processes by which humans convert linguistic mes-
sages into speech. The converse process, whereby humans determine the message from the speech
is calledspeech perception. Together these form the backbone of the field know asphonetics. In
general,

Regarding speech production, we have what we can describe asacompletebut approximate
model of this process. That is, in general we know how people use their articulators to produce
the various sounds of speech. We emphasise however that our knowledge is very approximate; no
model as yet can predict with any degree of accuracy how a speech waveform from a particular
speaker would look like given some pronunciation input. Thereason for this lack of precision
is that the specifics of the production process are in fact incredibly complex; while we can make
solid generalisations about how a [s] sound is pronounced for instance, it is another matter en-
tirely to explain how this varies from speaker to speaker, how [s] is affected by speech rate, how
surrounding sounds influence it and how this is affected by prosodic interaction. The fact that this
knowledge is incomplete should of course not be a surprise toreaders of this book; if we fully
understood this process we could simply implement it in a computer and thereby solve the speech
synthesis problem. In fact, as we shall see, in the field of text-to-speech, our lack of knowledge has
led us to abandon (for the time being at least) the path of trying to mimic the human production
process directly. However, what knowledge we have can be putto good use, and hence a solid
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grounding in what speech production and perception knowledge we do have is an essential part of
constructing a high quality synthesiser.

Probably the main difficulty in discovering the mechanisms of human speech production
is that of measurement and data collection. Of course this isa problem common to all science;
before telescopes only the simplest models of astronomy were possible; afterwards detailed and
accurate observations could be made which allowed the rapiddevelopment of theories. We see the
same in the scientific study of phonetics; in the early days there were no instruments available for
examining speech (phonetics even predates the invention ofsound recording). With the invention
first of sound recording, then spectrographic analysis, x-ray films and other techniques, speech
scientists were able to examine the processes in more detail. Such instruments and more elemen-
tary techniques (such as looking directly into a speaker’s mouth or simply trying to determine the
position of one’s own tongue) have led to the level of understanding we have today and which we
shall briefly describe next.

Progress in speech perception has been significantly slower. The lack of progress can be
explained simply by the difficulty in extracting information about the process. While some tech-
niques exist for examining the cochlea and analysing brain patterns when listening, in general it
is very difficult to collect concrete data on the problem, andas a result scientists have little to go
on when developing theories. What ever progress has been made is typically conducted within
within the framework of experimental psychology (e.g. [58]]. This significant imbalance between
our knowledge of production and perception helps explain why phonetics is in general approached
from a speech production point of view; that is simply the area of the speech process that we best
understand.

7.1.1 The vocal organs

We generate speech by the coordinated use of various anatomical articulators known col-
lectively as thevocal organs. Figure 7.1 shows a mid-sagittal section of the head showingthe
vocal organs. If we consider just the tongue in isolation fora moment, it should be clear that it
can move in all three dimensions, and can create a complex variety of movements and trajecto-
ries. The movement and position of the tongue directly affects the speech produced and even a
movement of a few millimeters can dramatically alter the speech sound produced. While the other
organs are somewhat simpler, it should be clear that a substantial number of vocal organconfigu-
rations are possible, and each gives rise to a different sound. This alone gives some insight into
the complexities of speech.

7.1.2 Sound sources

Nearly all sounds in English are created by by air moving fromthe lungs through the vocal organs
to the lips and then outwards. This flow is called anegressive pulmonic air stream; egressive,
because the air is flowing outwards, and pulmonic because thesource is the lungs. During the
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Figure 7.1 Diagram of the vocal organs or articulators

passage of the air flow, one or moreconstrictions is applied, the effect of which is to generate a
sound. We call constriction that causes the sound thesourceand the sound produced thesource
sound. We shall consider the types of source in turn.

The vocal folds are two folds of tissue which stretch across thelarynx . A speaker can
control the tension in his or her vocal folds (Figure 7.2) so that they can by fully closed, narrow
or open. The gap between the vocal folds is called theglottis, and we usually refer to this type of
sound production as aglottal source. When the vocal folds form a narrow opening, the air stream
moving through them causes them to vibrate, giving rise to aperiodic sound. We term the rate
of vibration of the vocal folds thefundamental frequency, denotedF0. The termpitch is used
for the rate of vibration that is perceived by the listener, and in general the pitch and fundamental
frequency can be taken as the same thing. By varying the tension in the vocal folds, a speaker can
change the fundamental frequency of the sound being produced. When the vocal folds operate in
this way, they are said to be generating avoiced sound. A typical male speaker can vibrate his
vocal folds between 80 and 250 times a second, so using the standard terminology we say that his
fundamental frequency varies from 80 Hertz (Hz) to 250 Hertz. By comparison a female speaker
might have a fundamental frequency range of 120Hz to 400 Hz. All vowels are voiced sounds -
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(a) The vocal folds (b) Vocal fold vibration. If the vocal folds
are tensed in a certain way they will close.
If air is pushed from the lungs, it will build
un pressure under the closed folds until it
forces an opening. The released air will
cause the pressure to drop, and the tension
in the vocal folds will cause them to close
again. This process repeats itself, leading
to a periodic noise being emitted from the
folds. The amount of tension controls the
rate at which this opening and closing cy-
cle will happen.

Figure 7.2 Vocal fold operation

you can experience the effect of the vocal folds by placing your finger on your larynx and speaking
a constant “aaah”. You should be able to feel the vocal folds vibrating. If you then whisper “aaah”
the vibration will stop.

In addition to the fundamental frequency, a periodic signalusually has energy at other fre-
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quencies known asharmonics. These are found at multiples of the fundamental, so if we have
a glottal sound with a fundamental of 100Hz, we will find harmonics at 200Hz, 300Hz, 400Hz
and so on. In general the harmonics are weaker than the fundamental, but nonetheless are heard
and can be thought of as giving the sound its basictimbre . A musical analogy might help here.
One can create a sound of the same fundamental frequency by either bowing or plucking a violin
string. In both cases the fundamental frequency is the same,however the different in action cre-
ates a different pattern of harmonics and this is why the timbre of bowing and plucking sounds
different.

If the glottis is opened slightly further, periodic vibration will cease. Instead a non-periodic
turbulent air flow will be created, which generates a different type of sound, termednoise. Here the
term “noise” is used in the technical sense (as opposed to a general definition which is a synonym
for “sound”) to mean the random sound created, somewhat likean untuned analogue radio. This
is the natural way to generate the [h] sound inHEDGE, but is also the way in which whispering
works. If the vocal folds are brought together completely, the air stream stops and no sound is
produced. By carefully controlling the timing of this opening and closing, it is possible to produce
aglottal stop, which is the normal way to realise the [t] in words such asBUTTER in some accents
of English (e.g. Glaswegian or Cockney).

Sound can be created from sources other than the glottis. If the glottis is open, it will not
generate any sound, but will allow the air stream to flow through. It is then possible to use com-
binations of the tongue, lips and teeth to form a constriction, and thereby generate a non-glottal
sound source. The [s] sound inSIT is generated this way - by speaking this, and extending the
length of time the [s] is spoken for, you can feel that the glottis is not vibrating and that the tongue
is very close to the roof of the mouth. Noisy sounds can also becreated by holding the teeth close
to the lips (as in the [f] sound inFALL ) or by placing the tongue near the teeth as in the [th] sound
in THANK . Because there is no glottal periodic vibration in these sounds, they are calledunvoiced.
It is possible to have sounds which are both voiced and noisy,such as the [z] sound inZOO. In
these cases, the glottis operates as with vowels, but a further narrow constriction is created in the
mouth to generate a secondary, noisy, sound source.

Sounds such as [s], [f] and all vowels can be spoken as a continuous sound, and are therefore
calledcontinuants. By contraststopsare sounds which have a relatively short duration which
can only be spoken as “events” and can not be spoke continuously. The [p] sound inPEN or [t]
sound inTIN are stops. Stops are produced by creating aclosuresomewhere in the vocal tract so
that all air flow is blocked. This causes a build up of pressure, followed by areleasewhere the
air suddenly escapes. Because the sound is produced in this way, the sound must have a finite,
relatively short duration and hence these sounds cannot be produced continuously.

7.1.3 Sound output

For most speech sounds, the acoustic signal leaves via the mouth - such sounds are termedoral.
For a few however, the sound leaves via the nose; such sounds are callednasal. In English the first
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(a) oral output

(b) nasal output (c) nasal and oral output

Figure 7.3 Oral sounds are when the velum blocks the nasal cavity, and the sound escapes from the
open mouth. Nasal sounds are caused, first by blocking sound escape from the mouth and secondly
by lowering the velum so that sound can escape from the nose. Nasalised sounds have sound escape
from both the mouth and nose.

sounds inNO andME are nasal, as are the last sounds inTHEM, THIN andTHING. As evidence that
these sounds leave via the nose and not the mouth, say “mmmmm”and then pinch your nose so
as to close it - the sound will stop. Sometimes sound exists through the both the nose and mouth.
There are no canonical sounds in English which do this, but inFrench for instance for the last
sound inONT exits through both the nose and mouth. Such sounds are callednasalised.

Thevelum is a piece of skin at the back of the mouth. When it is raised, the nasal cavity is
blocked off and the speech is completely oral. When the velumis lowered, the sound will be nasal
or nasalised, depending on if the mouth is closed or open. It is important to note that in an oral
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sound, the velum blocks the entrance to the nasal cavity, andso this plays no part in determining
the sound. In nasal sounds however, while the oral cavity is blocked, it is not blocked at the
entrance, rather it is blocked at some other point (at the lips in an [m] sound and near the alveolar
ridge in an [n] sound). During the production of a nasal, air enters the oral cavity, is reflected and
eventual escapes from the nose. The shape of the oral cavity plays an important part in determining
the sound of the nasal, even though no air escapes from it directly. Figure 7.3 shows vocal tract
configurations for these output types.

7.1.4 The vocal tract filter

The diversity of sound from the source and output are furtherenriched by the operation of the
vocal tract. The vocal tract is collective term given to the pharynx, theoral cavity and the nasal
cavity. These articulators can be used to modify the basic sound source and in doing so create a
wider variety of sounds than would be possible by the source alone. Recall that all voiced sounds
from the glottis comprise a fundamental frequency and its harmonics. The vocal tract functions
by modifying these harmonics which has the effect of changing the timbre of the sound. That is, it
does not alter the fundamental frequency, or even the frequency of the harmonics, but it does alter
the relative strengths of the harmonics.

In general it is the oral cavity which is responsible for the variation in sound. The pharynx
and nasal cavity are relatively fixed, but the tongue, lips and jaw can all be used to change the
shape of the oral cavity and hence modify the sound. The vocaltract can modify sounds from
other sources as well by the same principle.

This model, whereby we see speech as being generated by a basic sound source, and then
further modified by the vocal tract is known as thesource/filter model of speech. The separation
into source and filter not only adequately represents the mechanics of production, it also repre-
sents a reasonable model of perception in that it is known that listeners separate their perception
of the source in terms of its fundamental frequency from the modified pattern of its harmonics.
Furthermore, we know that the main acoustic dimension of prosody is fundamental frequency,
whereas the main dimensions of verbal distinction are made from a combination of the type of
sound source (but not its frequency), and the modification bythe vocal tract. The mathematics of
both the source and the filter will be fully described in Chapter 10.

7.1.5 Vowels

All vowel sounds are voiced and hence have the same sound source (the glottis). What distin-
guishes one vowel sound from another is the shape of the oral cavity and to a lesser extent the
shape of the lips and duration with which the sound is spoken.The oral cavity and lips operate
to create different shaped cavities through which the source sound must pass. By moving the jaw,
lips and tongue, different filter effects can be created, which serve to modify the harmonics of the
glottal sound source and produce the wide variety of vowel sounds. It is important to note that
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(a) HEAT vowel

(b) HOOT vowel (c) HOT vowel

Figure 7.4 Vocal tract configurations for three vowels

the pitch of the speech is controlled entirely by the glottis, whereas the type of vowel is controlled
entirely by the tongue, jaw and lips. As evidence of this, generate any vowel and keep the pitch
constant. Now vary the shape of your mouth in any way you wish -it is clear that the pitch remains
the same, but the mouth alone is determining the quality of the vowel. Conversely, say an “aaah”
sound and convince yourself that you can change the pitch without changing the vowel itself.

It helps to describe vowels if we define a number of dimensionsof oral cavity and lip config-
uration. First, the height of the tongue combined with the position of the jaw defines a dimension
called height (sometimes calledopen/close). If one compares the position of the mouth when
speakingHEAT andHOT one should be able to tell that the jaw is raised and the tongueis high in
HEAT, whereas forHOT the jaw and tongue are lower. Secondly, the position of the raised part of
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the tongue with in relation to the front of the mouth defines another dimension, which we can call
front/back . Consider the difference in tongue position in the vowel inHEAT andHOOT - while
this is slightly more difficult to feel or measure than in the case of height, it should at least be clear
that the tongue is in a different position and that the jaw remains relatively fixed. Figure 7.4 shows
the articulator positions forHEAT, HOOT andHOT. A third dimension is calledlip rounding or
simply rounding. This effect is caused when the lips are protruded from theirnormal position.
Some vowels (e.g.HOOT) have noticeably rounded vowels, while others are noticeably unrounded
(e.g.HEAT). A final basic dimension of vowel classification islength. This feature is very accent
specific, but in many accents the vowel inHEAT is considerably longer than the one inHIT.

In languages such as English, there is a particular vowel sound known asschwa. This is
often called theneutral vowel in that its position is neither front nor back, high nor low, rounded
nor unrounded. It is first vowel inABOUT, SEVILLE, COLLECT, and the second vowel inSARAH,
CURRENCY, andDATA . Most other sounds are simply called by how they sound; schwais given
its special name because it is difficult to pronounce in isolation: if one attempts this, the sound that
comes out is normally too strong sounding. Schwa is spoken with a tongue position which is close
to that when the tongue is in its rest position, and as such thetongue doesn’t create any particular
cavities or shapes in the vocal tract; rather the vocal tractis in the shape of a fairly uniform tube.

Some vowels are characterised by a movement from one vocal tract position to another. In
HEIGHT for instance, the vowel starts with a low front mouth shape and moves to a high position.
Such vowels are termeddiphthongs. All other vowels are calledmonophthongs. As with length,
whether or not a vowel can properly be considered a diphthongis heavily accent dependent. In
particular the vowels in words such asHATE andSHOW vary considerably in their vowel quality
from accent to accent.

7.1.6 Consonants

Consonant sounds are more heterogeneous than vowels in thatthey are produced by a wider variety
of sound sources. While consonants share some inherent characteristics, it is not inappropriate to
define consonants as the set of speech sounds that are not vowels.

Consonants can be classified in terms ofvoicing, manner andplace of articulation. As
we have mentioned, voicing describes whether the sound source is produced by the vibration of
the glottis or by another means. Consonants such as [f] and [s] are unvoiced while [v] and [z] are
voiced. This can be seen by speaking a [v] continuously and turning it into an [f] - it should be
possible to do this without altering the shape of the vocal tract and simply changing the vibration
mode of the glottis.

The first important category of sounds are known asoral stops. In English, stops occur in
voiced/unvoiced pairs, so that [b] and [p] use the same manner and place and of articulation, and
differ only as to whether the glottis is vibrating or not. Thethree nasals (the last sounds inTHEM,
THIN andTHING) are often also described asnasal stops. While it is possible to continuously utter
these three phones, they usually follow the pattern of the stop in normal speech, with a closure and
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(a) Alveolar constriction (b) Labio-dental constric-
tion

Figure 7.5 Place of articulation for alveolar and labio-dental fricatives

release. During the production of nasals, the mouth is closed, so the sound only escapes from the
nose. The position of the tongue in the mouth is important however - the nasal tract is fixed and
so does not distinguish the three nasals. The production of nasals can be thought of as the glottis
sending a periodic sound into the mouth which is modified (filtered) by the oral cavity and then
passed out through the nose, which performs further modification.

Fricatives are generated by creating a narrow constriction in the vocaltract, by placing (say)
the tongue near to the roof of the oral cavity, thus creating aturbulent, noisy sound. Fricatives can
be voiced (e.g. [v]) or unvoiced (e.g. [f]). In voiced fricatives, there aretwo sound sources, the
glottis, which produces a periodic sound source, and the constriction which adds turbulence to
this. To demonstrate that this is indeed the case, try saying[v] and [f] with different pitches. This
is possible with [v] but not with [f]. The final class of true consonants is theaffricates, such as
the first and last sound inCHURCH. These are spoken as a stop followed by further frication.

What then distinguishes the unvoiced fricatives such as [f]and [s]? The answer lies inwhere
the constriction occurs. For [f] the teeth combines with thelips to form the constriction - this is
termedlabiodental. In [s] the sound in generated by the tongue coming into closeproximity with
the roof of the mouth near the alveolar ridge and hence this sound is calledalveolar. There are
many other possible positions, and each will produce a slightly different sound. While in reality
a continuum of constriction positions can occur, for convenience it is useful to identify and name
a few key positions for constrictions. These includebilabial in which both lips combine to form
the restriction, anddental in which the tongue combines with the teeth. The alveolar position is
where the tongue approaches the roof of the mouth in a forwardposition. The tongue can create a
constriction at positions further back, which are termedpost-alveolar, palatal, velar anduvular .
The place of articulation can be described on a scale starting at the lips and moving to the near the
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back of the vocal tract. The important point is not so much which articulators (teeth, lips, tongue)
are involved, but rather where the constriction occurs, as this governs the shape of the oral cavity.

One important point worth noting about fricative sounds is that the constrictionas a sound
sourcedoes not define the difference between an [f] sound and a [s] sound. In fact the sound
source produced by all fricatives is the more or less the same. Rather, it is the fact that the con-
striction gives rise to a vocal tract configuration, and it isthis acting as afilter which modifies the
sound source and thereby produces the difference in sound. As we shall see in Chapter 11, it is not
the case that sound always moves forward in sound production. In dental fricatives, while some
portion of the sound source is immediately propagated from the mouth, the remainder is propa-
gated back into the vocal tract, where it is modified by the filter, after which it is then reflected and
propagated forward. It is by this mechanism that the vocal tract generates different sounds even if
the sound source is near the mouth opening. The termobstruent is used as a collective term for
fricatives, affricates and oral stops to indicate their noisy character.

Theapproximants are a class of sounds which are interesting in that they sharemany of the
properties of both vowels and consonants. All approximantsare voiced and all are produced in
roughly the same manner as vowels, that is by varying tongue,lips and jaw position. [j] and [w]
are know asglidesand have similar sounds and means of articulation to the vowels in HEAT and
HOOT. In some analyses, diphthongs are described not as compoundvowels but as a combination
of a vowel and a glide, as the glide comes after the vowel it is termed anoff-glide. It is also
possible to haveon-glides, soCURE is described as a [y] sound followed by a vowel. Glides also
function as proper consonants, for example as the first consonant in YELL , WIN and so on. If
these functioned as vowels rather than consonants, the perception would be that these words have
two syllables rather than one. The approximants [r] and [l] are known asliquids and act more like
normal consonants, but still have many unusual properties (see Section 8.2.4).

7.1.7 Examining speech production

In traditional phonetics, the tools available to the phonetician were extremely limited and much
of what we have so far described was developed with virtuallyno equipment. Progress was made
by simply “feeling” the position of the articulators when speaking, or by looking down someone’s
throat as they spoke (which is not very helpful for examiningnasal stops). The ability of these
phoneticians to construct a model of speech production withsuch limited means is quite astonish-
ing, and by and large, they got the basics of the model correct(or correct in terms of our current
understanding). One aspect which was not however realised at this time was the complexities of
the syntagmatic dimension, meaning the influence that sounds had with one another when spoken
as a sequence. Furthermore the role that “top-down” knowledge was playing in the phoneticians’
examination was also largely unrecognised.

As recording and examination apparatus improved it became clear that what had seemed
like clearly identifiable distinct sounds of speech where infact quite hard to classify based on the
articulatory evidence alone. We will address this questionfully in Section 7.3.2, but for now let
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us simply note that it was found that what were thought of as single sounds (e.g. [p]) in fact had a
huge range of possible articulatory realisations.

Over the years a number of analysis tools have been developedto examine the production
process. The first was the use of x-ray still photography, andthen x-ray motion pictures. These
techniques, especially the x-rays movies clearly showed the various articulators in motion. Unfor-
tunately, the availability of x-ray movies is extremely limited due to the now understood harmful
effects of x-ray exposure and hence this technique can not beused much. More recently a number
of techniques have been developed. These include:

electropalatography This takes the form of a plate fitted to the roof of the mouth which measures
contact between the tongue and palate.

electoglottograph or laryngograph This is a device which fits around the neck and measures the
impedance across the glottis. From this, a signal measuringglottal activity can be found.

airflow measurement A mask and measuring apparatus can be used for measuring air flow from
the mouth and separately from the nose. This is particularlyuseful in that we can measure
the output from the nose and mouth separately, and we can do this in terms of air flow signals
rather that the pressure signals which microphones record.

magnetic resonance imaging (MRI)This technique, originally developed for medical use, can
generate 3-D images of the head and so measure the position ofthe articulators.

electromagnetic articulograhpy (EMA) This is a device which works by attaching small elec-
tronic coils to the tongue and other articulators. During speech, the movement of the coils
causes fluctuations in a surrounding magnetic field, which allows articulator movement to
be tracked.

A description of the operation of many of these devices can befound in Ladefoged [272].
Examples of studies using EMA and MRI can be found in [498], [380], [332], [13], [331].

7.2 ACOUSTICS PHONETICS AND SPEECH PERCEPTION

We term output of the speech production process thespeech signal. This acoustic signal travels
through air to the listener, who can then decode this to uncover the message that the speaker
uttered. Speech signals can be recorded by means of a microphone and other equipment, such that
with a little care, we can store a perfect representation of what the speaker said and the listener
will hear. The field ofacoustic phoneticsstudies speech by analysis of acoustic signals. The idea
here is that since this is what the speaker receives when listening, all the required information for
perception should be present, and so by suitable analysis wecan discern the processes of human
speech perception itself. That said, it must be emphasised that to date we have only a very limited
understanding of speech perception. We know some of the initial processes (which for instance
separate pitch from other aspects of the signal), but virtually nothing about how people actually
distinguish one sound from another. Hence speech analysis should be thought of as an independent
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Figure 7.6 The log magnitude spectrum shows the pattern of harmonics asa series of evenly spaced
spikes. The pattern of the amplitudes of the harmonics is called the spectral envelope, and an approx-
imation of this is drawn on top of the spectrum.

study of the signal, in which we are trying to find the dimensions of variability, contrast and
distinctiveness from the signal itself, rather than as an actual study of perception.

The main tool for use in phonetics is thespectrogram, shown in Figure 7.7. The vertical
axis of the spectrogram represents frequency, the horizontal axis time and the level of darkness
amplitude, such that a dark portion states that there is significant energy at that frequency at that
time. For illustration, the phones for this example utterance are written along the bottom. Some
patterns can be seen immediately. Firstly the fricatives and vowels contrast strongly - the vowels
have characteristic vertical streaks, and dark bands whichmove with time. To a certain extent the
fricatives also have bands, but the important difference isthat the vertical streaks are completely
absent. The vertical streaks in the spectrogram are caused by the vibration of the glottis - each
streak represents one pitch period and by measuring the distance between streaks one can estimate
the pitch: if for example the glottis is vibrating at 100 Hz (100 vibrations per second) streaks will
occur once every 0.01seconds. With the fricative sounds, there is no voicing, hence no periodicity
and no streaks.

7.2.1 Acoustic representations

The acoustic waveform itself is rarely studied directly. This is becausephasedifferences,
which significantly affect the shape of the waveform, are in fact not relevant for speech perception.
We will deal with phase properly in Chapter 10, but for now letus take for granted that unless we
“normalise” the speech with respect to phase we will find it very difficult to discern the necessary
patterns. Luckily we have a well established technique for removing phase, known asspectral
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Figure 7.7 Wide band spectrogram

analysisor frequency domain analysis. We can use analysis software to transform the signal to
the frequency domain and when this is done, it is a simple matter to remove the phase. Figure 7.6
shows what is known as alog magnitude spectrumof a short section (about 20ms) of speech.

In this figure we can see the harmonics quite clearly; they areshown as the vertical spikes
which occur at even intervals. In addition to this, we can discern aspectral envelope, which is
the pattern of amplitude of the harmonics. From our previoussections, we know that the position
of the harmonics is dependent on the fundamental frequency and the glottis, whereas the spectral
envelope is controlled by the vocal tract and hence containsthe information required for vowel
and consonant identity. By various other techniques, it is possible to further separate the harmon-
ics from the envelope, so that we can determine the fundamental frequency (useful for prosodic
analysis) and envelope shape.

While useful, these spectral representations only show thespeech characteristics at one point
in time; a further representation called thespectrogram is commonly used to show how the
(phase-free) speech representation evolves over time. Figure 7.7 shows an example, in which
the vertical axis of the spectrogram represents frequency,the horizontal axis time and the level
of darkness amplitude, such that a dark portion states that there is significant energy at that fre-
quency at that time. For illustration, the identities of thesounds for this example utterance are
written along the bottom. Some patterns can be seen immediately. Firstly the fricatives and vow-
els contrast strongly - the vowels have characteristic vertical streaks of the harmonics, and dark
bands which move with time. To a certain extent the fricatives also have bands, but the important
difference is that the vertical streaks are completely absent.

It is important to realise that the spectrogram is an artificial representation of the speech sig-
nal that has been produced by software so as to highlight the salient features that a phonetician is
interested in. The software for generating spectrograms can be configured in different ways, for ex-
ample to vary the contrast between the levels of darkness. A second way to vary the spectrogram is
to emphasise either the time or frequency resolution of the speech (it is generally not possible to do
both at the same time). A spectrogram with high frequency resolution is known as anarrow-band
spectrogram (shown later in Figure 12.9), one with high timeresolution awide-bandspectrogram.
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Wide-band spectrograms are actually more useful for examining the frequency patterns in speech
because the lack of frequency resolution somewhat blurs thefrequency information and makes the
patterns within more visible. Finally, it is often useful to“zoom” with respect to the time domain,
so that sometimes a full sentence is displayed, while at others only a few phones. These points
illustrate some of the artifacts of spectrogram display so as to inform that two spectrograms of
the same utterance can look quite different because of the particular settings being used. In most
modern spectrogram software, these settings can easily be varied. With these and other acoustic
representations it is possible to study speech from an acoustic (and pseudo-perceptual) point of
view.

7.2.2 Acoustic characteristics

At integer multiples of the fundamental frequency we have the harmonics. Speech with a low
fundamental frequency (say 100Hz) will have closely spacedharmonics (occurring at 200Hz,
300Hz, 400Hz ...) while speech with a higher fundamental frequency (e.g. 200Hz) will have
widely spaced harmonics (400Hz, 600Hz, 800Hz etc). The tongue, jaw and lip positions create
different shaped cavities, the effect of which is to amplifycertain harmonics, while attenuating
others. This gives some clue as to why we call this a vocal tract filter; here the vocal tractfilters
the harmonics by changing the amplitudes of each.

An amplification caused by a filter is called aresonance, and in speech these resonances
are known asformants. The frequencies at which resonances occur are determined solely by the
position of the vocal tract: they are independent of the glottis. So no matter how the harmonics are
spaced, for a certain vocal tract position the resonances will always occur at the same frequencies.
Different mouth shapes give rise to different patterns of formants, and in this way, the production
mechanisms of height and loudness give rise to different characteristic acoustic patterns. As each
vowel has a different vocal tract shape, it will have different formant pattern, and it is these that
the listener uses as the main cue to vowel identity. The relationship between mouth shapes and
formant patterns is complicated, and is fully examined in Chapter 11.

By convention, formants are namedF1, F2, F3 and so on. Somewhat confusingly, funda-
mental frequency is often calledF0. Note that fundamental frequency/F0 isnota formant, and has
nothing to do with formants - it is determined by the glottis alone. Studies have shown that not all
formants are of equal perceptual importance; in fact, the identity of a vowel is nearly completely
governed by the frequency of the first two formants (F1 and F2). Figure 7.8 shows aformant
chart in which the axes represent F1 and F2 values. Typical positions of each vowel (determined
experimentally) are shown on the graph. and from this we can see that each vowel occupies a
different position on the graph, giving evidence to the ideathat it is in fact the first two formants
that distinguish vowels.

Other speech sounds have characteristic spectrogram patterns also. Nasals are generally
weak and have a wide formant at around about 300Hz, caused by resonance in the nasal cavity.
As the nasal cavity is fixed, the resonance will always occur at the same position. Each nasal has
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Figure 7.8 Chart of measured mean positions of vowels plotted in terms of first and second formant
positions. The chart shows that to a large extent, the two formant positions separate most vowels. This
has led to the general assumption that F1 and F2 positions areused to discriminate vowels. This chart
is shown in the form standard in phonetics; note that the axeshave been specifically set up to make
this plot easier to interpret.

its own oral cavity shape however, and the resonances in thisare the main distinguishing feature
between [m] and [n]. In stops, it is often possible to see the distinct phases of closure and the
subsequent burst. While subtle, it is possible to tell one stop from another from the resonant
patterns in the burst and in the immediately neighbouring vowel. Approximants look like weak
vowels, which is what we would expect.

7.3 THE COMMUNICATIVE USE OF SPEECH

We have shown in the previous sections how the vocal organs can organise into a rich variety
of configurations which in turn can produce a rich variety of speech sounds. We have also seen
that the differences in vocal organ configurations can produce patterns which are discernible in
the acoustic signal and representations derived from it. Wenow turn to the question of how this
capability can be used to communicate.

7.3.1 Communicating discrete information with a continuous channel

Recall that natural language is a discrete symbolic semiotic system. In this system we combine
words in different ways to produce a near limitless number ofsentences, each with a separate
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meaning. One might imagine a system of speech communicationwhereby each word was rep-
resented by a single unique speech sound, so thatDOG would have a high central vowel,CAT a
alveolar fricative and so on. The problem with such a system would be one of distinctiveness: if
we had 10,000 separate words we would need 10,000 different speech sounds. It is unlikely that
such a system would work simply because it would not be possible for listeners to accurately dis-
tinguish all the separate sounds, nor would it be likely thatspeakers would have enough precision
to utter each sound exactly. To get round this problem, we canmake use of a much smaller set
of sounds, but use multiple sounds in sequence for each word.As the set of fundamental sounds
is small it should be easier to distinguish one from the other; and so long as we can “segment” a
word into a sequence of separate sounds, we should be able to create a large number of distinct
words with a relatively short sequence for each.

This is of course how speech communication actually works; we have a small number of
units which we can distinguish from one another and we use these in different sequences to create
the form of a large number of words. We call these unitsphonemes. The number of phonemes
varies from language to language, but all languages use a roughly similar set of units ranging in
size from about 15 to about 50. There is clearly a tradeoff between the number of phonemes we
use and the length of words; languages with small numbers of phonemes will need on average to
use longer sequences of these phonemes to produce distinct forms.

The question now is, out of all the possible vocal organ configurations, which do we use
for this process? First, let us say that the evidence shows that we do no simply pick a arbitrary
set of 40 particular sounds from the entire set and make use ofthese alone. We know from our
principle of semiotic contractiveness that it makes sense to pick a set of sounds that are readily
distinguishable from one another; hence we don’t find languages which only have fricatives or only
have front vowels. Secondly we want sounds, or more precisely a system of sound sequencing,
that produces sequences that are relatively easy to speak and relatively easy to “segment” when
listening. (For example, we would not expect a language to have sequences of velar stops followed
by bilabial nasals followed by oral stops, as these sequences are difficult to say). The choice of
phonemes in a language is therefore a tradeoff between picking a large number of sounds (short
words) and a short number (easier to identify each), sounds which are distinctive from one another,
sounds which are easy to speak in sequence and sounds which are easy to segment when heard in
sequence.

Even given a set of sounds that obey these criteria, it is not the case that each phoneme has
a unique articulatory position or acoustic pattern. To takean example, when speaking the word
SHOE, most speakers utter the first sound (represented by the symbol [M]) sound with a mouth
position in which the lips are pursed orrounded. Compare this with the lip position inSHINE

and we see that the lips are in another position, which is morespread and in a position somewhat
similar to a smile. However, despite the fact that the acoustic and articulatory differences between
the initial sounds in these two words is quite big, they are perceived cognitively as a single sound.
The reason why this variation occurs is quite obvious;SHOE has a rounded vowel, and so all the
speaker is doing is anticipating speaking the rounded vowelby already having the mouth in this
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position before hand. This is therefore a consequence of wanting to produce a sequence which
requires less effort to speak. This does not produce confusion because while the rounded [M] is
different from the normal [M], the rounded [M] is not confusable with any other phoneme, and
hence the listener should not have difficulty in identifyingthe correct phoneme. Note that it is
quite possible that the rounded and unrounded versions of [M] could be different phonemes in
another language; it is just a property of English that they are grouped together.

Hence the language system makes use of a set of contrasting sounds as its basic units, but
within each unit a considerable degree of variability is allowed. These properties are entirely
to be expected from the semiotic principles of contrast and sequencing, and the communicative
principles of ease of production and ease of perception.

7.3.2 Phonemes, phones and allophones

We will now define four terms commonly used in phonetics. The term phonemeis used for the
members of the relatively small (between 15-50) set of unitswhich can be combined to produce
distinct word forms. Phonemes can have a range of articulatory configurations, but in general the
range for a single phoneme is relatively limited and occupies a contiguous region in the articulatory
or acoustic space. The termphoneis used to describe a single speech sound, spoken with a single
articulatory configuration. The termallophone is used to link the phoneme and phone: different
ways of realising a single phoneme are called allophones. Inour example, we identified a single
phoneme at the beginning of the two wordsSHOE and SHINE. As each of these has a different
articulatory position, each is a separate phone, but as theyboth “belong” to the same phoneme
they are termed allophones of this phoneme. Finally, we willuse the termsegmentas a general
term to refer to phonemes, phones and allophones.

Phones can be thought of as units of basic speech production and perception whereas phonemes
are specific to a particular language. The way phonemes and phones are connected varies from
language to language and is not necessarily a simple relationship. The easiest way to demonstrate
this for speakers of English involves demonstrating a case where two sounds are phonemes in
English but allophones in a different language. The classiccase of this is the [r] vs [l] distinction
in South East Asian languages; all English speakers readilytell these apart and usually have no
idea they are even related phonetically. In Japanese, thereis no such distinction, and they are allo-
phones of a single phoneme (by convention usually represented [r]), such that Japanese speakers
speaking English often seem to get [l] and [r] “wrong”. To many speakers of English, this seems
incredible that such a “basic” distinction can be missed, and this unfortunately becomes the sub-
ject of many a lame comedy parody. In fact mastering the allophonic and phonemic distinctions is
one of the most difficult tasks when learning a new language asour whole perceptual mechanism
seems geared to treating all allophones in our native language as the same.

The above in fact shows the most accepted way of determining the phoneme inventory for
a language. This is based on the principle of theminimal pair , and in effect says that if one can
find two distinct words (such asRUSH andLUSH) that differ only in one sound, then those sounds
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are cognitively distinct in the language, and are classed asphonemes. If on the other we take a
word and change the manner of articulation of one of the sounds, but in doing do don’t change
its meaning, or the cognitive impression of that word, then the original and modified sound do
not form a minimal pair and are not distinct phonemes. Theoretically (and only theoretically) one
could randomly combine all the phones in various ways, perform tests on every change, and in so
doing cluster all phones into sets of allophones and sets of sounds which form phoneme contrasts
for the language in question.

In traditional phonetics, phones were seen as a set of distinct, discrete, separable units. This
notion is no longer defensible as we now know that in reality the phonetic space is a multi-
dimensional continuum (describable either with articulatory or acoustic dimensions), and there
are no “bottom up” divisions within it. The concept of using phones should now be seen as an
idealised division of phonetic space and this can be justifiable as a handy notational device; it is
cumbersome to describe every sound in terms of continuous dimensions (of say tongue height). It
is important to realise however, that phones really are a discrete abstraction of a continuous space;
no procedure or process can be given for objectively definingthese units.

One of the advantages of using phones is that we can easily compare sounds from different
speakers, accents and languages with some degree of standardisation. In doing this, it is common
to make use of the standard International Phonetic Association symbol set (often call the IPA
alphabet) to name each phone; having done so we can then transcribe a word to the extent that
another person trained in this system can make a reasonable guess at determining the phonetics of
the speech from this transcription alone. There are over 100basic IPA phone symbols and this set
is further enhanced by a system of diacritics which adds detail, such as nasalisation, rounding and
so on. The standard IPA vowel chart and consonant chart are shown in figures 7.9 and 7.10. In
the IPA vowel chart, the vowels are arranged in a pattern thatreflects the position of each vowel
in terms of height and front/back.

For comparison, we also show in Figure 7.11 a revised versionof the formant chart of Figure
7.8. We see that the two charts bears a striking resemblance.We have of course arranged the axes
help show this (e.g.Ḟ1 has its values going downwards), but even so the diagrams do show a
clear similarity. The usefulness of this correspondence isarguable - while on the one hand it
demonstrates the distinctness of the vowels, it is important to realise that a vowel being high does
not in itself cause a high F2. The relationship between mouthshape and formant patterns is very
complicated - and is not a one to one relationship. In fact, aswe show in Chapter 10 and 11, many
different mouth positions can give rise to the same formant shapes.

Although it is rarely described this way, the IPA symbol set can be thought of defining a set
of possible sounds based on the union of phonemic definitions. If we imagine each language as
being a set of phonemes, each described by boundaries in phonetic space, then the set of phones
is the union of the sets of phonemes for all languages. This isof course how the IPA symbol set
evolved historically; phoneticians started with a basic set of symbols, and as new languages were
discovered or analysed, new symbols so as to further divide the phonetic space. Hence the set of
phones should be thought of as a set of named regions in phonetic space, which are defined from
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Figure 7.9 IPA Vowel chart. The position of each vowel indicates the position of the tongue used to
produce that vowel. Front vowels are to the left, back vowelsto the right. Where a unrounded/rounded
pair occurs, the unrounded version is on the left.
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Figure 7.10 IPA Consonant chart. Where there is a unvoiced/voiced contrast, the unvoiced symbol
is shown on the left.

the union of all known phonemic boundaries.
Yet another way of thinking of phones and phonemes is in termsof cognitive and physical

spaces. Cognitively, we represent all the instantiations of a particular phoneme as being the same;
in our SHOE/SHINE example, the first sound is clearly the same in the sense that most people are
completely unaware that there is even any difference until the differences are explicitly pointed
out. By the same measure, although the physical difference between say [p] and [t] may be very
slight, people readily agree that they are different sounds. It is important to realise that we don’t
group allophones together because we can’t tell the difference, but rather because they group via
the cognitive map of the phonetic space. To see this, we can again repeat the experiment where we
use an unroundedMat the start ofSHOEand a roundedMat the start ofSHINE. Most people can tell
the difference here, and while maybe not being able to attribute this difference to the articulation
itself, can none the less hear the difference. So it is not thecase that somehow the ear or low level
perceptual hearing filters these changes, as we can hear themif we try.

It is now timely to comment on the practice of phonemic notation. Unlike the IPA there is
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Figure 7.11 Rearranged version of the formant chart of Figure 7.9. The similarity between the
F1/F2 positions as shown here, and the height/front positions as shown on the IPA vowel chart can
clearly be seen.

no universally agreed method of phonemic notation, but a fewconventions are common. The first
is to simply pick the IPA symbol for one of the allophones of that phoneme. Hence we would
represent the first phoneme inSHONE asM. This has the advantage that we are drawing from an
established symbol set, and also helps a newcomer to that language quickly grasp the basics of the
phonemic system. This method does have its drawbacks however. If a phoneme has two or more
allophones only one symbol can be chosen, and this can be seenas unfairly biasing one allophone
over another. Secondly, when using a phonemic transcription using IPA symbols, it is sometimes
tempting to step outside the defined phoneme set and pick a symbol representing an allophone or
other phone.

An alternative is to define a completely different set of symbols. A common approach in
speech technology is to use one or more ascii characters for each phoneme, so that the consonant
at the start ofSHOE is /sh/, the vowel is /uw/ and so on. Note that the use of ascii characters is
relatively easy when our task is to represent 50 or less phonemes; coming up with a unique ascii
representation for each hundreds phones is much more difficult. For now we will use themodified
timit ascii character set, defined for general American English: afull description and justification
of this will be given in Chapter 8. In addition to any practical, computer benefit, the use of a
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different notation system for phonemes than phones helps emphasise the difference between the
two. This is helpful for our purposes as it makes it clear thatphonemes are a set of contrastive
linguistic units, and not entities which are expected to have well defined or invariant physical
manifestations. Notationally, it is conventional to use square brackets[ ] when describing phones
and segments, and slash “brackets”/ / when describing phonemes. Hence for the wordHELLO we
have a phone sequence [h�l oV] and a phoneme sequence /h ax l ow/.

7.3.3 Allophonic variation and phonetic context

As has already been mentioned, phonemes do not represent a single point in phonetic space; if
they did then each phoneme would have a unique acoustic pattern and the process of synthesis
and recognition would largely be trivial. We have already touched on the subject ofallophonic
variation , which we define as the realisation of a phoneme as a range of possible phones. We have
already discussed anticipatory rounding forM, but other anticipatory affects are quite common. For
example in the [k] of{COT, /k aa t/} and{KIT , /k ih k/ } we see that inCOT the tongue position
for [k] is in a back position, whereas inKIT it is much further forward. This can be explained by
the position that the tongue will be in during the following vowel.

The allophonic possibilities for a phoneme can depend on itsposition in relation to other
phonemes. For example, the [n] in{NIT, /n ih t/} needs to sound different from the [m] in{MIT ,
/m ih t/}, but the [n] in{HAND, /h ae n d/} does not need to contrast with [m] as there is no word
/h ae m d/ that it could be confused with. It does need to be distinct from say [r], [sh] and [v]
otherwise it could be confused withHARD, HASHED andHALVED . This shows that the [n] needs
to still be a nasal in that it still needs to be identified with respect to some other consonants; it
doesn’t need to be identified with respect to other nasals andso its distinctiveness with respect
to [m] and [ng] need not be so precise as in other positions. Asthere are constraints on what
phoneme sequences occur; only distinctions between possible phonemes at a given point need to
be maintained. The variability mainly arises from the fact that it is physically easier for a speaker
to produce a given phoneme one way in one position and a slightly different way in a different
position.

It turns out that a great degree of verbal variability can be explained once we takephonetic
context into account. By this we mean that if we consider the identityof the phonemes surround-
ing the one we are interested in; the identity of those surrounding phonemes helps explain why
we see the variation in the speech. For example, we find in general that nasals before stops often
share the place of articulation with the stop; so we naturally get words such as{HUNT, / h ah n t/}
and{HUMP, / h ah m p/}, where the [n] and [t] are both alveolar, and the [m] and [p] both bilabial;
but we don’t get words /h ah m d/ and / h ah n p/, where the nasal has one place of articulation and
the following stop has another. This phenomenon is calledassimilation, reflecting the idea that
the place of articulation of one phone assimilates to the other.

Another common effect is calledcolouring, where the identity of the phoneme in question
isn’t affected or limited, but where the phoneme takes on some characteristics of the a neighbour-
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ing phoneme. A common type of colouring isnasalisation, in which a vowel followed by a nasal
itself becomes somewhat nasalised (that is the velum is not completely closed during the produc-
tion of the vowel). Colouring in vowels frequently happens when they are followed by nasals and
also to some extent [l] and [r] (in rhotic accents). In English, this is again usually anticipatory.
Other effects includeelisionor deletion in which a sound is “deleted” andepenthesisor insertion
is where an extra sound is inserted. For these phenomena, consider the wordsMINCE andMINTS;
they sound indistinguishable and clearly a process of elision or epenthesis has occurred. Interest-
ingly, it is not clear which has happened; either we could have elision, in which both would have
the phoneme sequence /m ih n s/, or epenthesis in which the sequence for both would be /m ih n t
s/.

Basic phonetic context on its own is not enough to explain allthe variation. Consider the
behaviour of [t] in the wordsTOP, LAST andSTOP. In the first two, the [t] is normallyaspirated,
that is, there is a clear burst of energy after the release, which is heard of as a short section of
noise. InSTOP there is no burst; the vowel starts immediately after the release. This cannot be
explained simply by context alone; after all the [t] is aspirated when preceded by a [s] isLAST and
is also aspirated when followed by a vowel inTOP. These and other examples require reference to
other structural factors such as the position in the syllable and word.

7.3.4 Coarticulation, targets and transients

If contextual allophonic variation was all we had to contendwith, the phonemic to acoustic process
would still be quite simple; all we would need is a model whereby each phoneme had a range
of possible realisations; the process of conversion from one domain to the other would still be
relatively trivial.

In fact, even if we take into account any allophonic variation that may occur, we find that the
articulatory and acoustic patterns for a single phoneme arequite complex. This is because it is not
the case that a single allophone is spoken with a single articulatory position; rather the articulators
are constantly in motion. This is readily discernible from any of the acoustic or articulatory rep-
resentations already encountered. The articulators require time to move from one position to the
next; and while this can be done quite quickly, it is usually the case that by the time the articulators
have reached the position required to speak one phoneme the speaker is already moving them to a
new position to speak the next phoneme. This means that the articulators are constantly moving,
and that the pattern of movement for a particular phoneme is heavily dependent on the phonemes
preceding and following. This phenomenon is known ascoarticulation indicating that to a certain
extent, two neighbouring phonemes have a joint articulation. As the number of possible contexts
a phoneme can occur in is very large, this massively increases the possible variability in phonetic
patterns.

A impressionistic model of the process can be thought of as follows. Each allophone has a
set of canonical articulator positions. When each phoneme is “input” to the production apparatus,
the articulators start to move to those canonical positionsand because of this “aiming” effect,
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these positions are often referred to astargets. At some point, the next phoneme will be input,
and the articulators will start moving to the target for the required allophone of this new phoneme.
Importantly, the target positions of the first phoneme need not have actually been reached, it is
possible to start moving to the second phoneme before this happens. Sometimes this process can
continue with no target positions ever being reached. Againour model of semiotic contrast helps
explain communication is still possible under such circumstances; so long as the positions reached
are sufficiently near the canonical target positions that the phoneme can be distinguished from
other possible phonemes, then the listener should be able todecode the speech. Again, while it
would be possible for the speaker to reach the target position and hold this for some time before
moving on, to do so would substantially lengthen the time taken to say the message, which could
be disadvantageous to both speaker and listener. The degreeof “undershoot” with regard to targets
is significantly affected by the rate of speaking; when speaking slowly the targets are often met;
when speaking rapidly, the speech tends to “blur” and can become less distinct. To some extent,
speakers can control this effect; we notice that some speakers “pronounce” their words distinctly;
we say they “enunciate” clearly or are “articulate”. It should also be clear that the degree of
undershoot does affect the chance of being understood; slow, “careful” speech is in general easier
to recognise.

It is important to realise that coarticulation and allophonic variation are distinct phenomena.
Coarticulation is largely a physiological process outwiththe speaker’s control; while it may be
possible to speak more slowly or with more effort, it is very difficult to explicitly change the
trajectory of the articulators. By contrast, while allophonic variation may have originally arisen
by reasons of minimal effort, it is a property of the particular language and we find speakers in
one language can easily control and differentiate an allophonic effect which seems automatic to
speakers in another language.

7.3.5 The continuous nature of speech

One of the most startling facts about speech is that there areno specific acoustic cues in the signal
to indicate boundaries. That is, the speech waveform is in general a completely continuous evolv-
ing signal, with no gaps or other markers that show us where the boundaries between phonemes,
syllables or words lie. In general sentences and often long phrases are delimited by silence, but
this is about all we get from the signal in terms of specific markers. This is of course in sharp
contrast this with writing systems such as that used for English, where the letters are distinct, and
words usually are delimited by spaces or punctuation. Note that this fact of speech should be less
surprising to speakers of languages which do not have gaps between the written word, or which
use little or no punctuation.

It is important not to confuse the notion of phoneme with the speech that is encoded by these
units. Strictly speaking, when we look at a waveform or spectrogram, we are not looking at a
sequence of phonemes, but rather the output of the speech production process that has encoded
these phonemes. Hence strictly speaking, we can not identify phonemes in acoustic representa-
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tions; rather we identify a section of speech that we believeis the output of the speech production
process when that phoneme was spoken. Making this distinction is not mere pedantry. Of course
informally we often fail to distinguish a representation ofan object from the object itself; if I
show a photograph of a car and ask what it is, and someone answers “a porsche”, it would seem
extremely pedantic if I then said, “no, its a photograph of a porsche”: usually it is clear what is
intended and no-one really mistakes a photograph for a real object. In speech analysis however,
this mistake is sometimes indeed made, which does lead to genuine confusions about the differ-
ence between the cognitive unit of contrast (the phoneme) and a particular example of speech that
encodes that phoneme.

This has practical implications in speech analysis becausethe coarticulation effects can be
so strong that the linearity of the phoneme sequence is lost in the speech. The targets generated
by the phonemes may interact to strongly that they do not encode in sequence and therefore it
is impossible to point to a particular section of speech and say “that is a representation of a /m/
phoneme”. There is a limit to these interaction effects; in broad terms one can locate a section
of speech in an utterance and say what word, syllable or phoneme that this represents, but it
is not always possible to do this with a high degree of precision. Examples of this effect are
shown in Figure XXX. Here we can see that some phonemes have speech representations that are
clearly identifiable; furthermore the “boundary” between the speech encoding one phoneme and
the speech encoding the next can clearly be seen. In other cases however, this is certainly not so;
the spectrogram shows XXX and XXX and XXX.

This phenomenon questions the concept of whether we can in fact describe instances of
speech using a linear sequence of symbols at all. While we candescribe the canonical pronunci-
ation of each word in terms of a sequence of phonemes, it does not follow that we can describe
speech generated from these linear representations in a linear way. As the effects of the phonemes
overlap when uttered, there is no simple or fully legitimateway of dividing the speech into a se-
quence of discrete units. That said, contiguous sequence descriptions are highly attractive from
a practical point of view; people find them easy to use (after all, normal writing is done in this
style) and furthermore, sequence representations are highly amenable to computational analysis
as it allows us to use many of the standard tools in signal processing and finite state processing
methods.

7.3.6 Transcription

We are often confronted with the problem where we have to determine the correct sequence of
words, phonemes or phones from a given a waveform of speech. The general name given to
this process istranscription . Transcription is involved in virtually every aspect of analysing real
speech data, as we nearly always want to relate the data we have to the linguistic message that it
encodes.

In considering this problem, let us first try and determine just whatexactly we should tran-
scribe. This depends on our purpose, and we find many different transcription systems, notations
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and devices that have been employed for various tasks. We canhowever describe most systems as
lying on a scale between ones which attempt an “abstract” or “close to the message” transcription,
and ones which attempt a “literal” or “close to the signal” transcription. Along these lines, in tra-
ditional phonetics it is common to make reference to two maintypes of transcription; calledbroad
andnarrow transcription. For our purposes we find it useful to further divide broad transcriptions
into canonical transcriptions andphonemictranscriptions. Each will now be explained.

Most words have a singlecanonical pronunciation; it is this that we think of as being stored
in the lexicon; it is this which is the “definition” of how thatword sounds. Hence acanonical
transcription aims to transcribe the speech in terms of the canonical pronunciations which are
given for each word in the lexicon. In such a system, the task can be described as one where
we first identify the words, and then transcribe the speech with the phonemes for each word and
finally mark the boundaries between the phonemes. Complications lie in the fact that the speaker
may say a filled pause (i.e. an “um” or “err”), or that they may “mispronounce” a word (i.e. they
might say /n uw k y uw l er/ instead of /n uw k l iy er/ forNUCLEAR). In such cases, one must
decide whether to take account of these effects and label them, or whether to stick to the canonical
pronunciation. A second type of broad transcription, knownasphonemic transcription takes a
slightly more “literal” approach, whereby the transcribermarks the sounds as he or she thinks they
occur, but in doing so only draws from the inventory of definedphonemes. Thus in such a system,
the transcriber would be able to describe the differences between the two renditions ofNUCLEAR.

Narrow transcriptions , also simply known asphonetic transcriptions, take this process
further, and attempt to transcribe the speech in terms of a set of phone symbols (such as the
IPA set) rather than phoneme symbols. This type of transcription is more tricky as of course the
range of labels to choose from is far greater and it is usual innarrow transcriptions to find vowels
marker with nasalisation diacritics, stops with aspiration and so on. Narrow transcriptions have a
somewhat tenuous existence which follow from our description of the problems of segmentation
and classification described above. In traditional phonetics, narrow transcriptions were meant to
be an indication of “phonetic reality”, a sort of high level recording of the speech uttered. The
problem is of course that we now know that such a task is impossible as the speech is simply
too greatly under-specified for a pure bottom up determination of the phones to be found. What
traditional phoneticians were implicitly doing was to listen and understand the speech, so that for
each word the canonical or general phonemic sequence was known. From that, detail could then
be added to describe the specifics of nasalisation, rounding, deletion of consonants and so on.
While some phoneticians did in fact attempt to perform narrow transcriptions for languages they
did not speak or understand, this task was considerably harder and many results fell short of the
accuracy achieved with known languages.

One benefit of narrow transcription is that it is somewhat free from the problems of enforcing
a fixed pronunciation (canonical transcription) or a fixed sound set (phonemic transcription) on
speech which clearly is saying something different. For instance, if a speaker of English says a
word in French with a good French accent, we would find it impossible to express this accurately
with a broad system.
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As a final example, consider the example ofMINTS andMINCE that we mentioned before.
While the canonical pronunciation of these words can be different (/m ih n t s/ and /m ih n s/),
when transcribing speech, we are in the position of having two words which sound the same.
We could use a single canonical pronunciation for both, but this would mean that in a process of
word formation (described below in Section 7.4.2) we would need some process or rule which
would delete the /t/ ofMINT when the plural morpheme was added. Or we could use different
transcriptions for each, meaning that we would have to acknowledge that two transcriptions can
sound the same. Or, two words could have the same narrow transcription but different broad
transcriptions; but again we would have to decide what this was and whether the [t] should be
deleted. The main point is that there is no single sure way to determine the transcription for real
speech. While useful in various ways, all transcriptions are an enforced symbolic descriptions of
what was said and none reflect the “full reality” of the message and signal from every perspective.

7.3.7 The distinctiveness of speech in communication

Given these two problems of segmentation and classification, one can rightly ask, how then is it
possible that humans can perform these tasks and thereby decode the speech when listening? The
answer again lies in our model of semiotic communication. Wefind that people make heavy use
of top down information when listening to speech; such that,using their internal grammar and
knowledge of the conversation and context, they form stronghypotheses of the words that they
expect to hear. This limits the choice of phoneme sequences which could agree with these words,
and by effectively narrowing the search in this way they makethe problem tractable. This is also
how modern speech recognisers work. They are composed of twomain parts; an acoustic model
which models the acoustic patterns for each phoneme, and a language model which dictates the
probability that a word (and hence phoneme) will occur in a given context.

We find that the degree of “clarity” or distinctiveness between phonemes in speech therefore
varies depending on the conversational context. In situations where the listener has a strong idea
of what will be said next, we find that speakers tend to be less distinct as the chance of confusion
is low. Hence we find that speech in conversations between friends and family can exhibit quite
indistinct acoustic patterns. Conversely, we see that in situations where the listeners cannot easily
guess what will be said next, we find the level of distinctiveness increases. Lectures or news
broadcasts are good examples of this type of speech.

7.4 PHONOLOGY: THE LINGUISTIC ORGANISATION OF SPEECH

Now that we have described the production process and the means by which discrete information
can be encoded in a continuous signal, we turn to the issue of how speech sounds are organised
linguistically. So far we have simply said that words are made from sequences of phonemes, but a
closer examination will show however that it is far from the case that any sequence of phonemes
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can make up a word and in fact, we find that there is considerable structure to the relationship
between words and phonemes. This area of linguistics is called phonology. We can describe
phonology as having a dual character because it is related toboth the syntactic part and phonetic
part of the communication process. Firstly, it shares many properties with the field of syntax or
grammar, in that it studies the patterns of sounds that occurwithin a word, just as syntax studies the
patterns of words that occur within a sentence. Phonology isseen as being distinct from phonetics
in that it is part of the discrete symbolic language system, and not part of the encoding process.
That said, it is clearly the case that the primitives in phonology are firmly grounding in the means
of speech production and perception; as we shall see, the rules, grammars and processes described
in phonology make use of the sort of phonetic information anddescriptions we have previously
introduced.

7.4.1 Phonotactics

It is generally accepted that just as sentences have a grammar that defines what words can consti-
tute a legal sentence, so words in turn have a grammar that defines what phonemes can constitute
a legal word. The study of this is known asPhonotactics. As with syntax, it is common to use
the mechanisms of formal language theory to define aphonotactic grammar. In fact, the use of
formal grammars for this purpose is less controversial thantheir use for syntax, as the phenomena
in question are simpler, and many adequate grammars exist asproofs of concept.

Let us first consider some sequences of phonemes which occur at the starts of words. In
English, a word can start with a vowel, or one, two or at most, three consonants. Even a casual
glance at some English words with three initial consonants show consistent patterns:

STRING: / s t r ih ng /
SPLENDOUR: / s p l eh n d er /

SPRING: / s p r ih ng /
SQUASH: /[ s k w aa sh /

In fact, it turns out that if a word has three initial consonants, the first must be an /s/. Also, the
second consonant can only be a /p/, /t/ or /k/, and the third must be an approximant. There are
some restrictions within this; the sequence /s p l/ occurs, but the sequence /s p w/ does not. A
simple finite state grammar that defines sequences with threeconsonants is given in below
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0 → s 1
1 → p 2
1 → t 2
1 → k 2
2 → r 5
1 → p 3
3 → l 5
1 → k 4
4 → w 5

From examination of phone sequences, we can gradually builda grammar which generates
all and only those sequences which occur. Table 7.12 defines one such set of rules for a grammar of
the legal phoneme sequences for most single syllable English words. The set of terminal symbols
of this grammar is the set of phonemes, and the set of non-terminals is defined as a setV =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. A state and transition diagram of this is shown
in Figure 7.14. Legal words can be created by starting at state 0, and following any path until an
end state is encountered. This grammar can be extended to polysyllabic words by the addition of
arcs from the terminal states back to the start states. Some care is needed however to ensure that
phenomena that occur only at the starts and ends of words are excluded from the grammar which
defines consonant sequences in the middles of words.

The grammar in Table 7.12 captures many facts that we have already mentioned, such as the
fact that /ng/ cannot occur word initially and so on. While our finite state grammar may accurately
describe what sequences can occur, its form is very “verbose” in that there are many regularities
which the grammar does not explicitly express. For instanceafter a /s/, only the unvoiced stops
occur, but we have no way of expressing this directly, we haveto list these stops [/p/, /t/ and /k/]
explicitly.

We can look at this problem by taking a different approach as to how we define segments
(which in the following can be either phonemes or phones). Inour account of segments and their
properties, we made use of such terms as “nasal”, “high”, “stop” etc, as these helped us categorise
the different ways in which sounds are generated. One of the central ideas in modern phonology
is that these terms are not simply labels for groups of somewhat similar segments but act as a
set of more basic building blocks. Hence we define a set of phonological primitives known as
distinctive features, and from arrangements of these we form segments. This system is sometimes
view as an additional level in the sentences/words/phonemes hierarchy, and indeed it follows on
from this in that there are fewer distinctive features that phonemes, and arrangements of these few
distinctive features give rise to a greater range of phonemes. One significant difference though is
that distinctive features do not arrange insequencesto form segments; rather their values are all
realised at the same time instant. In this way we can see that the process of phoneme formation
is one of “mixing” as opposed to “sequencing”. One analogy therefore is the way that the full
spectrum of colour can be formed by mixing the primary colours. Another comes from atomic
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0 → p 1
0 → k 1
0 → b 1
0 → g 1
0 → f 1
1 → l 7
1 → r 7
0 → t 2
0 → th 2
0 → d 2
2 → w 7
2 → r 7
0 → p 7
0 → t 7
0 → k 7
0 → b 7
0 → d 7
0 → g 7
0 → ch 7
0 → dz 7
0 → m 7

0 → n 7
0 → f 7
0 → th 7
0 → s 7
0 → sh 7
0 → v 7
0 → dh 7
0 → z 7
0 → zh 7
0 → l 7
0 → r 7
0 → w 7
0 → y 7
0 → h 7
0 → E 7
0 → s 3
3 → p 4
3 → t 4
3 → k 4
4 → r 7
3 → p 5

5 → l 7
0 → s 6
6 → p 7
6 → t 7
6 → k 7
6 → m 7
6 → n 7
6 → l 7
6 → r 7
6 → w 7
7 → a 9
7 → e 9
7 → i 9
7 → o 9
7 → u 9
7 → uh 9
7 → ii 8
7 → ei 8
7 → aa 8
7 → uu 8
7 → ou 8

7 → oo 8
7 → ai 8
7 → au 8
7 → oi 8
7 → i 8@
7 → e 8@
7 → u 8@
7 → 7 @@
8 → 8 @
8 → E 9
9 → t 14
9 → b 14
9 → d 14
9 → g 14
9 → ch 14
9 → dz 14
9 → ng 14
9 → f 14
9 → th 14
9 → sh 14
9 → v 14

9 → dh 14
9 → z 14
9 → zh 14
9 → l 10
9 → s 10

10 → p 15
10 → t 15
10 → k 15
9 → l 11

11 → m 15
9 → n 12
9 → l 12

12 → d 15
9 → f 16
9 → p 16
9 → k 16
9 → m 13

13 → p 15

Figure 7.12 Complete grammar for syllable structure using classical finite state grammar rewrite
rules

physics; once atoms where thought the primary and hence “indivisible” building blocks of nature;
but subsequently electrons, protons and neutrons were discovered. Various arrangements of these
three types of particle gives rise to more than the 100 known elements. Likewise, phonemes were
thought of as the “atoms of speech”, but now we believe that a more parsimonious model can be
built with reference to more basic units.

When using distinctive features, a common approach is to define each segment as afeature
structure, of the type we introduced in Section 4.5. So we can define a segment [t] as








VOICED f alse
PLACE alveolar
MANNER stop








From this, “t” simply becomes a label which we attach to this particular set of values. This
notion has many attractive qualities. Firstly we can argue that it is somewhat more scientifically
economicalto have a basic set of say 12 primitives, and then to form a larger set of 40 segments
from these, rather than have just a flat list of segments. Using our physics analogy we can say that
regarding classification of the elements, instead of just saying that we have hydrogen, helium, etc,
we instead say that these are made from protons, neutrons andelectrons, and that the number of
protons and electrons fully defines the difference between each element.
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0 →







VOICED f alse
MANNER f ricative
PLACE alveolar







1

1 →




VOICED f alse
MANNER stop



 2

1 →







VOICED f alse
MANNER stop
PLACE labial







3

2 7→




MANNER liquid
PLACE alveolar



 7

3 →




MANNER liquid
PLACE lateral



 7

0 →







VOICED f alse
MANNER f ricative
PLACE alveolar







4

4 →




MANNER stop
VOICED f alse



 7

4 →
[

OUTPUT nasal

]

7

4 →
[

MANNER liquid

]

7

4 →




MANNER glide
PLACE labial



 7

0 →




MANNER stop
PLACE non−alveolar



 5

0 →







MANNER f ricative
VOICED f alse
PLACE labio−dental







5

5 →
[

MANNER liquid

]

7

0 →




MANNER stop
PLACE alveolar



 6

0 →







MANNER f ricative
VOICED f alse
PLACE dental







6

6 →




MANNER glide
PLACE labial



 7

6 →




MANNER liquid
PLACE alveolar



 7

0 →




TYPE consonant
OUTPUT oral



 7

0 →







TYPE consonant
OUTPUT nasal
MANNER non−velar







7

7 →




TYPE vowel
LENGTH long



 8

7 →









TYPE vowel
LENGTH short
HEIGHT mid
FRONT mid









8

7 →




TYPE vowel
LENGTH short



 9

Figure 7.13 Partial grammar for syllable structure using feature structures and finite state grammar
rewrite rules.

Using this formalism the generalisation that we can have /s/followed by /p/ /t/ /k/ but not /b/
/d/ /g/ can be written:

1→






VOICED f alse
MANNER stop




 2

the idea being thatregardless of any other feature valuesif a segment has features which match
this definition then it is allowed by the rule. Hence this rulegenerates all unvoiced stops in this
position. This single rule replaces three rules in the symbol grammar. Even more powerfully we
can state:
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Figure 7.14 Diagram of finite state machine for the phonotactics of single syllable words.
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which states that a syllable may start with any consonant except /ng/, using two rules, rather than
the 14 in the symbol grammar. In this way, we can build a finite state grammar based on feature
definitions and in so doing arrive at a much more succinct set of rules. Table 7.13 defines a set of
rules which use feature structures rather than symbols as the terminals. A finite-state automata of
this grammar is shown in Figure 7.15. While the rules may takea little skill to read and interpret,
it should be clear that far fewer rules are needed than before. It is important to note the difference
between the formal devices we use and the sequences they define: the use of features does not
itself gives us a grammar which more accurately describes which phoneme sequences occur and
which do not. Different types of rules, feature systems and operators do allow us to express some
things more succinctly than others, and it can be argued thata system that allows us to succinctly
generate correct sequences with a small number of rules are morenatural.

The grammar defined in Table 7.13 is not without its problems and we shall now turn to
these. Firstly, one sequence which this grammar does not generate is /s f V/ where V is a vowel.
This sequence is found in only a very few words, such asSPHEREandSPHINX. Therefore it seems
that we have to add a rule to account for these few words. Furthermore, this rule would be the
only one to have two fricatives in the same consonant cluster. Another, somewhat more contrived
example isVROOM, which while being an onomatopoeic word, is listed in most dictionaries as
being a valid word of English. Again this requires its own rule, which would be the only rule
which uses a voiced fricative in a consonant cluster. A further sequence this grammar does not
allow is /y/ in a pre-vowel position, as inMULE /m y uw l/. The existing grammar is composed of
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three distinct parts; a set of initial consonant sequences (all the sequences leading from state 0 to
state 7), a set of vowels (states 7 to 9) and a set of final consonant sequences (states 9 to 16). In the
grammar, each is fairly independent, so that any initial consonant sequence can be attached to any
vowel. The inclusion of /y/ in the initial consonant sequence part would destroy this simplicity
because /y/ can only be followed by a /uw/ vowel thereby ending the separation. This phenomena
is even stranger in that it accounts for one of the main accentdifferences between American and
British English, namely that in American, the standard pronunciation ofDUKE is /d uw k/, whereas
in British English it is /d y uw k/. This generalisation covers all words with this pattern (with the
possible exception ofNEWS in which many Americans say the /y/). Hence there is some important
generalisation going on here.

We will return to thorny problems such as these in the discussion, but the real point is that
within a rule and feature system, there will always be a trade-off between accounting for all the
facts, and doing so in a neat and succinct way.

7.4.2 Word formation

One of the central topics in phonology is the study of what is called word formation or lexical
phonology. Simply put, this concerns the processes by which individual morphemes combine
into whole words. To demonstrate some aspects of word formation, let us look at what the case of
plural formation in English. In spelling, the “regular” plural in English is the characters, so that
the plural ofDOG andCAT is represented asdogs andcats. In speech however, the phonemic
form differs for these words, and so we get /d ao g z/ and /k ae t s/; that is, in one case the phoneme
/z/ forms the plural, while in the other it is the phoneme /s/.What explains why one form is chosen
rather than another? If we look at /d ao g z/ and /k ae t s/ we see that the last phoneme before the
plural suffix is voiced in one case and unvoiced in the other; this in fact turns out to be the basis
of the distinction, and we see that all words which end in an unvoiced consonant take a /s/ plural,
while those that end with a voiced consonant take a /z/ plural.

As before, we could express this in purely phonemic terms as:

g + PLURAL → g + z
b + PLURAL → b + z
v + PLURAL → v + z
k + PLURAL → k + z
t + PLURAL → t + z
f + PLURAL → f + s

...

and so on. But as with the case of the phonotactic grammar, this entails a large number of rules
which are somehow missing the generalisation that this is simply a matter of voicing. If we use
distinctive features, we can succinctly write the rule as:
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[

VOICING true

]

+ PLURAL →
[

VOICING true

]

z
[

VOICING f alse

]

+ PLURAL →
[

VOICING f alse

]

s

In fact, we can do better than this, by making use of some further devices common in phonological
theory. One is the principle ofmarkednesswhich is a linguistic term for the concept ofdefault.
The idea is that given a binary or other distinction, one formof behaviour is normal, unremark-
able and thereforeunmarked, whereas the other form is noticeable, stands out and is therefore
marked. In our example, we could say that the unmarked plural morpheme is simple /s/, but some
special behaviour is invoked if this is added to a word that ends in a voiced consonant. Hence we
would not need a rule for joining /s/ to many words; this wouldbe the default rule that happens
when any morphemes are joined (i.e. no changes occur). Hencewe only need a rule for voiced
cases, which would be:

[

VOICING true

]

+ s →
[

VOICING true

]

z

We might well ask why it should be that /s/ is chosen as the default rather than /z/ (note that we
shouldn’t be misguided by the spelling convention here) andthis is in fact a prime concern in
developing phonological theories, namely that we choose “natural” rules rather than simply ones
that describe the date.

At this stage it is worth examining why we have chosen to describe the plural formation
effect as a phonological one rather than a phonetic one. Wouldn’t it be possible to simply say
that this is a matter of allophonic variation or coarticulation? While the rule is clearly based on
articulatory principles, it is included as part of the phonological because it is seen as a rule of
Englishrather than a general process of speech. It is quite possibleto overrule this effect and say
/d ao g s/ and /k ae t z/. More importantly however, we see that there are many non-plural English
words that end in /s/ which don’t undergo this rule, for example {BASIS, /b ey s ax s/} and{SENSE,
/s eh n s/}. It no more difficult or natural to sayPENSas /p eh n z/ thanPENCEas /p eh n s/. This
demonstrates that this plural formation rule is one of grammar and phonological organisation and
not some speech encoding effect.

English is rich with such word formation rules. For example,one common process, known
aspalatalisation, describes the process whereby consonants move from their original place of
articulation to a palatal place of articulation, usually resulting in a [sh] phoneme. So if we take
examples such as:
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PRESS PRESSURE

CREATE CREATION

DIVIDE DIVISION

we see that in the process of formingPRESSUREfrom PRESSthe /s/ has palatalised to a /sh/,
and this process has happened withCREATE andDIVIDE also. We can still observe the historical
effects in the way the words are spelled; inpressure andcreation the original consonant is
preserved (even though the pronunciation has changed) whereas indivision the spelling has
changed to reflect the sound more accurately (but not completely accurately). Another common
process is that of vowel tensing in derived forms that we see in words such as:

DIVINE DIVINITY

PROFANE PROFANITY

SERENE SERENITY

Phonological rules can extend beyond purely phonemic distinctions; stress shift (explained fully
below) also happens in pairs such as:

PHOTOGRAPH PHOTOGRAPHY

TELESCOPE TELESCOPIC

ANGEL ANGELIC

In studying word formation in this way, it becomes nearly inevitably to adopt a paradigm
where we have a basic representation of a word or morpheme, which when combined with other
words or morphemes interacts in some way, and then produces afinal version. So for example, we
have two words{CAT, /k aa t/} and{DOG, /d ao g/} and a plural morpheme +S/s/. We combine
CAT and +S to form CATS/k ae t s/ and this is simple enough. In the case ofDOGS however, the
pronunciation is /d ao g z/, and we observe that the /s/ has “changed” into a /z/. In this paradigm,
we start with adeeprepresentation, and by rules, convert this into asurfacerepresentation. Some-
times the difference between the two is relatively simple, as in the plural example, but in others
it is more complicated. If we consider the wordSIGN, we see that it has derived formsSIGNAL,
SIGNIFY and so on. What is noteworthy here is that these derived formscontain a /g/ whereas the
root form does not. Rather than saying a /g/ is inserted, it has been argued rather that the deep
form of SIGN is really /s ay g n/ (or even /s ih g n/) and that by process of rule, this is converted
to surface form /s ay n/. Thus the rules can operate even when there is no word formation per
se. Such solutions have always attracted controversy in phonology. Firstly, it can be argued that
the statement of such rules is heavily influenced by the orthography, and as often the exact nature
of orthography derives from some whim of a printer, it is a poor basis on which to form rules.
Secondly, once such processes are allowed there seems no limit to what devices can be employed.
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vocalic
consonantal
high
back
low
anterior
coronal
round
tense
voice
continuant
nasal
strident

Figure 7.16 Binary features in the Sound Pattern of English

7.4.3 Distinctive Features and Phonological Theories

In defining a feature system properly, one must formally define the attributes and the type of values
they can take. So far we have described a somewhat traditional set of features (manner, place
etc) each of which can take a multiple values (e.g. dental, alveolar, or palatal) and have made
use of descriptive devices, such as “assimilation” to describe how sounds change in particular
environments. In phonology researchers attempt to improveon this, by defining features and rule
mechanisms in an attempt to explain these sorts of effects ina more elegant and parsimonious
manner.

TheSound Pattern of English[91] (known as “SPE”) was a seminal landmark in phonology,
in that it was the first full account of how to describe Englishphonologyformally, that is, with
precise features and rules. SPE uses a binary feature system, in which each phone is described
by 13 features each of which takes a +/- value. The SPE binary feature set is shown in Table
7.16. While some of these have the familiar interpretations, a few are new. ANTERIOR is used for
consonants and indicates a front constriction,CORONAL, also used for consonants, indicates an
arched tongue. Combinations of these are enough to distinguish most English consonants. TENSE

is used for vowels in a very similar way to length andSTRIDENT is used to indicate a “noisy”
phone such as [s] or [f].

SPE showed how many seemingly desperate phenomena could in fact be explained by rules
that made direct access to the feature set. Nearly all rules were posited in terms ofcontext-
sensitive rules(these rules are used to define a third fundamental type of grammar in addition to
finite state rules and context free rules that we saw before.). For example, the tensing rule that
describes how word patterns such asDIVINE , DIVINITY andPROFANE, PROFANITY arise is given
as:
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V → [−tense] / CVCV

meaning that the vowelV in question, becomes lax (the opposite of tense) when it occurs before
aCVCV sequence (such as the /n ih t iy/ ofPROFANITY). Even for different feature sets, models
and theories, rules of this type are very common. It is worth noting however that the use of
context-sensitive rules here is merely a notational convenience; most phonological rules do not
use recursion, and so the above can readily be implemented with finite state rules, if required for
practical purposes.

Despite its success in many regards, several problems immediately appeared with SPE. One
of the main problems is that if there are 13 binary features, this should give rise to 213 = 8192
possible phones. Not only is this considerably greater thanmost phonologists would agree exist,
it is clear that many combinations (e.g.[+tense, +anterior, +high]) simply don’t correspond to
any known or even theoretically possible phone. For this andmany other reasons, a huge flurry
of activity started with the aim of defining more succinct andmore “natural” systems of features,
and accompanying rules.

In the 1970s, two theories broke from the mold of SPE by proposing that sound patterns
could better be understood if more elaborate rule and representation mechanisms were used.Au-
tosegmental phonology[180] uses two (or more)tiers, in which we have a phoneme tier (roughly
similar to SPE) and a tonal tier. The idea is that rules can be written to operate on just one tier or
the other, which is much simpler that would be the case if the phonemes and tones had to be repre-
sented on a single tier. The other theory is that ofMetrical Phonology [284] which was designed
to explain phonological phenomena of stress and intonation(described below). Together, these
theories and some that follower were often callednon-linear phonology (this is a different use
of the term “non-linear” to that in mathematics), because their representations were not sequences
of segments as in traditional phonetics, phonology and SPE.Since then a bewildering variety of
other theories and models have been produced. Among these areNatural Phonology [137] which
argued against the sometimes very abstract positions takenin theories such as SPE (for instance
the example we gave where the underlying representation ofSIGN would require a [g] segment).

Despite the large number of different theories, some trendshave stood out in how phonology
has developed. One strand of work has attempted to move away from the context-sensitive rule
formalisms described above. Mainly this follows a general move in this direction in other fields of
linguistics such as syntax, and is motivated by a desire to avoid the complications of determining
what these rules really stand for cognitively. For instance, it is often difficult to believe that a
speaker or hearer has to apply a whole sequence of rules in just the right order to generate the
surface form of a word. Instead, a series of constraints are proposed, from which new words can
be formed. Theories of this school includeDependency Phonology[145], [144], andGovern-
ment Phonology[248]. Many theories use feature systems more elaborate than those expressible
naturally in feature structures. The idea here being that features form hierarchies, and in doing so,
we can use these hierarchies to naturally limit the number offeature combinations and rules, thus
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avoiding the “segment explosion” problem of SPE. The theories ofArticulatory Phonology [70]
andFeature Geometry[100], [306], [386] are based on this idea.

In addition to the issues discussed in this chapter, it should be understood that the field of
phonology tackles many issues which aren’t directly relevant to speech synthesis needs, such as
say finding the set of language universals.Optimality Theory is one such model which has
gained particular attention in recent years [362]. In addition to this, the emphasis on phonol-
ogy even within directly relevant topics is often somewhat different from what we require from
an engineering perspective. In particular the old issue of “economy” comes up again and again,
with phonologists striving for every more natural and economical representations, without usually
much interest in assessing the processing requirements incurred. The general trends in phonol-
ogy are clear though; a move away from finite state, linear models towards more complex feature
organisations, a move from ordered context-sensitive rules to systems which use constraints and
dependencies, and a move from procedural systems to declarative systems. Somewhat ironically,
while most phonologists trace their work back to SPE, the “formal” side of this approach has
largely been forgotten, and few works in phonology since have anywhere near the level of ex-
plicitness and comprehensiveness of that work. A notable exception comes from the work of
Computational Phonology[43].

7.4.4 Syllables

One of the most important aspects of phonology concerns the structural representation of sound
patterns above the phoneme. We have already seen that morpheme boundaries are significant (e.g.
in the difference between the realisation ofPENSandPENCE) as are word boundaries. In addition
to these, we find it is very useful to make use of a third unit, thesyllable as this also helps explain
many of the effects and patterns in speech.

As we have already seen, the syllable provides a solid basis for defining the phonotactic
grammars of what constitutes a legal word. If we define a grammar for a syllable, it is an easy
matter to define a grammar for any words by simply including more syllables and any possibly
special sequences for word beginnings and ends. That said, it is interesting to ask real evidence
do we have for syllables as real entities. We seem to instinctively know that SET, FROM and
BATH have one syllable; thatTABLE, WATER andMACHINE have two, andOPERATE, COMPUTER

andORGANISE have three. These judgments seem intuitive and are not dependent on any expert
knowledge. Secondly, if we consider singing we see that in normal singing each note is sung with
one syllable. If this principle is broken the singing can sound awkward if syllables are inappropri-
ately squeezed in or elongated over several notes. Thirdly,syllables seem to act as the basic unit
of many aspects of prosody. Syllables carry stress such thatin THE PROJECTthe first syllable of
PROJECTis stressed, but inPROJECT THAT LIGHTthe second gets the stress. There are no other
possibilities - it is not possible to stress the /p r/ and not the vowel, or any other individual phone.

So what exactly is a syllable? We will take the view that the syllable is aunit of organisation.
As such, all words are composed of a whole number of syllables, and all syllables are composed
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of a whole number of phonemes. For an initial working definition, we will state that a syllable
is avowel surrounded by consonants. This definition seems to fits the facts fairly well - in all
the above cases the numbers of vowels and numbers of syllables were the same, and again from
singing we can see that the vowel seems to be the “centre” of the note. There is one commonly
raised exception to this, namely the existence of so calledsyllabic consonants. Some phoneticians
give two syllable words such asBOTTLE andBUTTON the transcriptions /b aa t l/ and /b ah t n/, in
which the second syllable is comprised only of /l/ and /n/ sounds. Conventions differ as whether to
allow this, or use the alternative, which gives these words the transcriptions /b aa t ax l/ and /b ah
t ax n/. There is probably no real way to decide from a phoneticpoint of view, but practical TTS
experience has shown no deficiencies in using /ax/ and as thismakes the definition of the syllable
simpler, we shall use that and not use syllabic consonants.

So, taking the vowel as the centre of the syllable, all we haveto do is decide which conso-
nants belong to which syllables. In words such asHOTEL, we can safely say that the /h/ belongs
to the first syllable and the /l/ to the last, but what about the/t/? There are a number of positions
to take on this. One position is the so-calledmaximal onset principle where consonants that
potentially could be in the onset or coda of a syllable are taken as being in the onset. Using the
symbol /./ to denote a syllable boundary,HOTEL is then represented as /h ow . t eh l/.

This will provide a satisfactory account for many words, andit can be argued that this has
some cognitive reality because, again from singing, we find that consonants tend to follow this
pattern. There are a number of problems however. Firstly, innon-word-initial syllables which
have /s t r/ and other such sequences,{INSTRUCT, /ih n s t r ah k t/} it can be argued that the /s/
attaches to the first syllable and not the second. Secondly, consider such words as{ BOOKEND, /b
uh k eh n d/} - here it definitely seems that the /k/ attaches to the first syllable - in fact a syllable
final /k/ and an syllable initial one sound quite different and so /b uh k . eh n d/ sounds different
from /b uh . k eh n d/. There is an obvious reason to this, namelythat BOOKEND is a word
formed by compoundingBOOK and END, and it seems that the word/morpheme boundary has
been preserved as a syllable boundary.

One of the main reasons we are interested in syllables is thatpattern of syllables within
a word, and the pattern of phonemes within a syllable helps determine much of the phonemic
variation due to allophones and coarticulation. Hence it isoften useful to assign a basic constituent
structure to describe the structure of phonemes internal toa syllable. We will explain one way of
doing this, in which four basic constituents are used, called theonset, rhyme, nucleusandcoda.
The syllable structure for the single syllable wordSTRENGTH in these terms is:

Onset

s t r

Rhyme

Nucleus

eh

Coda

ng th
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The first distinction is between onset and rhyme. Naturally enough, words which have the same
rhyme do in fact rhyme, for exampleLEND andBEND:

Onset

l

Rhyme

Nucleus

eh

Coda

n d

Onset

b

Rhyme

Nucleus

eh

Coda

n d

Within the rhyme, the nucleus is the vowel, and the coda is thepost vocalic consonants. If extra-
metrical phones are included in the syllable, these will be included in the coda. So for a word such
asCONSISTS, the syllable structure would be one of:

Coda

k

Rhyme

Nucleus

ax

Coda

n

Onset

s

Rhyme

Nucleus

ih

Coda

s t s

Coda

k

Rhyme

Nucleus

ax

Coda

n

Onset

s

Rhyme

Nucleus

ih

Coda

s t

EM

s

7.4.5 Lexical Stress

Some syllables sound “stronger” or “heavier” than others. For instance, taking a word such as
TABLE, we can say the first syllable of this sounds stronger than thesecond. This contrasts with a
word like MACHINE, where we find the second syllable sounds stronger than the first. Because of
these types of distinctions, we view stress as being a property of syllables rather than of phonemes
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or words, and hence we always talk about the stress of a syllable, rather than the stress of a word
or phoneme.

It is important to note that the term stress is used in a numberof different ways in the linguis-
tics literature. The most fundamental distinction is between lexical stressandsentential stress.
Lexical stress is a core property of a word, and as such doesn’t change. In our previous exam-
ple, TABLE is stressed on the first syllable whileMACHINE is stressed on the second; and these
are properties of the words themselves. Sentential stress on the other hand describes the effect
whereby one syllable in the sentence receives more stress than the others; and this is normally due
to some pragmatic or communication reason, and is not a fundamental property of the word itself
(e.g. I SAID I WANTED THAT ONE. We shall ignore this second type of stress for now as this is
dealt with in detail in Chapter 8.

As usual, there are many different theories and models of lexical stress. Here we will adopt
a relatively simple model which describes the stress patterns without necessarily tackling the issue
of how these patterns arise in the first place. In this model, each multi-syllable word has exactly
oneprimary stressed syllable. Using the IPA symbolhto indicate primary stress, we can write
TABLE and MACHINE as /’t ey b . ax l/ and /m ax .’sh iy n/. It is also common practiceto
use numbers to indicate stress, so that we have /t ey 1 b . ax l/ and /m ax . sh iy 1 n/, where
again by convention, the number immediately follows the vowel. We can indicate stress in longer
words such asINFORMATION in the same way as /ih n . f ax . m ey1 . sh ax n/. What of the
other syllables? It appears that the first syllable ofINFORMATION is stronger than the second and
fourth, but less strong than the third, so we call thissecondary stress. Some linguists go further
and have tertiary stress and so on, but primary and secondarystress patterns are usually taken as
sufficient. Secondary stress is denoted by the IPA symboli, or alternatively by a 2 following the
vowel.

We can identify a third category calledreduced. This is mainly used to indicate the stress
level of syllables containing the schwa vowel. Reduced vowels occur in at least three subtly
different cases. First, some words naturally, or always, have a schwa in a certain position, for
example in the first syllable ofMACHINE / m ax sh iy n/. But consider the second syllable of
INFORMATION. We have given this a schwa in our annotation and most speakers would agree with
this pronunciation. Now consider the word{INFORM, /ih n f ao r m/}, here the second syllable is
a normal full vowel. We can say thatINFORMATION is created fromINFORM by the application
of morphological rules, and in the process, the second syllable has beenreducedfrom a full vowel
to a schwa. A third form of reduction occurs in function words, when for instance a word such
as{FROM, / f r ah m/} is produced as /f r ax m/ in many instances. Finally, when people speak
quickly, they often under-articulate vowels, which leads to a loss of distinction in their identity
leaving them sounding like a schwa. This effect is also termed reduction. The number 0 is used to
represent a reduced vowel, so the full transcription forINFORMATION is /ih2 f ax0 r m ey2 sh ax0
n/

In English, stress is a fundamental part of the pronunciation of a word, and as such weak-
ens our the notion we have been adopting until now that a word’s pronunciation can be repre-
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sented only by its phonemes. There are main related noun/verb pairs in English which are dis-
tinguished by stress, such that we have{RECORD NOUN, / r eh1 k ax0 r d/} contrasting with
{RECORD VERB, / r ax0 k ao1 r d/} ; and likewise{PROJECTNOUN /p r aa 1 j eh2 k t/} contrast-
ing with {PROJECTVERB, / p r ax0 j eh1 k t/}. That said, there are very few genuine minimal
pairs in English. Some have gone to considerable lengths to argue that stress can in fact be derived
from just the phonemes (this is advocated in SPE). Valiant though these attempts are, there are
simply too many words with unpredictable stress patterns for us to be able to derived stress from
phonemes for all words.

Stress can be graphically represented in the sort of tree used to describe syllable constituent
structure. In our previous example the nodes at the syllablelevel were unlabelled; we can now
show the same tree but with stress labels at the nodes:

2

Rhyme

Nucleus

ih

Coda

n

0

Onset

f

Rhyme

Nucleus

ax

Coda

r

1

Onset

m

Rhyme

Nucleus

ey

0

Onset

sh

Rhyme

Nucleus

ax

Coda

n

An alternative to the use of absolute levels of stress such asprimary and secondary, is the
theory ofmetrical stress [284], [286] in which stress is purely relative. In this, a binary tree is
used to represent each word, and within this, each syllable is defined as eitherstrong or weak. So
INFORMATION would be defined as:

W

S

in

W

for

S

S

ma

W

tion

The strongest syllable is the one which only hasSnodes above it; everything else is defined relative
to this.

If lexical stress is a relative phenomenon, what of single syllable words? As there are no
other syllables to contrast with, the stress status of such words is technically undefinable. However,



190 Chapter 7. Phonetics and Phonology

by convention, most of these words are given a primary stressor strong stress in their syllable. The
exception is content words, which are given a primary stressif in their full form (/f r ah m/) or no
stress in their reduced form (/f r ax m/).

In order for us to perceive stress differences, stress patterns must of course manifest them-
selves in the acoustic signal. How is this achieved? Firstly, taking a contrast between “normal”
syllables and their stressed version, we can say that in the case of stress, the syllable is spoken
with greater articulation effort, that is, the articulators are more likely to move to their canonical
positions, and in so doing, produce a syllable with many of the idealised sounds which we would
expect from our discussion of articulatory phonetics. As a by product of this, we can see the that
the syllable seems more “distinct” in the spectrogram; the formants of the vowel are clearly ob-
servable, and it is often easier to ascertain the identity ofthe vowel from the formants of stressed
syllables than for unstressed ones. Likewise with the consonants, stops often have more distinct
closure and burst patterns in stressed syllables and so on. Following from the great articulation
effort, stressed syllables are general longer in time than normal versions. The source acts differ-
ently in stressed syllables also. The voice quality is likely to be more clearly periodic (not creaky
or breathy). Also, the pitch of the syllable is likely to be higher in a stressed syllables than in the
syllables immediately surrounding it. This effect is difficult to determine in isolation however, as
the intonational patterns of the utterance interact strongly here (described in more detail in Section
9.1.

By contrast, in reduced syllables, the opposite effects seem to occur. The articulation effort
is diminished to the extent that any distinctiveness in the vowel quality is absent - all vowels are
either /ax/ or /ih/. Consonants in reduced syllables tend tobe less clear. The duration of reduced
syllables can be very short indeed, even to the extent of being non-detectable in faster or more
casual speech. Finally, it is unlikely that the pitch in an unstressed syllable with be higher than
its surrounding syllables (note however, that the presenceof a reduced syllable does not cause a
decrease in pitch).

7.5 DISCUSSION

The study of phonetics has a long and rich history [97]. Just as the world’s most famous detec-
tive is the fictional Sherlock Holmes, so indeed is the world’s most famous phonetician. Today the
Henry Higgins of Pygmalion and My Fair Lady would probably appall any self-respecting linguist
or phonetician with his dogmatic and prescriptive view of how English should be spoken. Nev-
ertheless, Higgins probably does share some genuine features in common with the early British
school of phonetics.

The study of modern phonology is widely regarded to have started with the “Prague School”
of linguists, of which the main figures were Nikolay Trubetzkoy and Roman Jakobson. They
established the principle of the formal (or scientific) study of phonology and the notion of the
phoneme. Most importantly, they showed the semiotic basis of phonological contrast with the
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idea being that the linguistic use of sounds could only be studied as within a system and not in
individual, purely phonetically terms. Jakobson collaborated with two other notable figures in
speech and linguistics, Morris Halle and Gunnar Fant to produce a coherent system of distinctive
features. As already mentioned, theSound Patter of Englishwas a seminal work, both in its scope
and its affect in proposing formal methods for phonologicalwork.

7.5.1 Further reading

The most popular work in introductory phonetics is undoubtedly Peter Ladefoged’s classica
course in phonetics[271], and is highly recommended. Another excellent book, which extends
the subject and gives more detail on acoustic issues is Clarkand Yallop [97]. A more advanced
and comprehensive book is Laver’sPrinciples of Phonetics[275].

There are many excellent introductory text books on phonology including Giegerich [174],
Katamba [245], Lass [274] and Anderson [17]. Clark and Yallop [97] is again particularly recom-
mended as it gives a thorough introduction to phonology, does so with reference and comparison
to phonetics, and discusses the issues involved from the type of traditional scientific perspective
familiar to most engineers and scientists. Unfortunately,nearly all these works are quite introduc-
tory and few venture beyond SPE type phonology. While there are plenty of books and articles
which cover more recent work, they typically focus on one particular theory or model, making it
hard to perform the type of comparison that would be necessary for us to adopt any one of these
for speech technology purposes. Books and articles on the various schools of phonology are listed
above.

7.5.2 Summary

Phonetics

• Speech sounds can be described with reference to either their articulatory or acoustic fea-
tures.

• Vowel sounds are described with the primary dimensions of high/low and front/back, and
secondary dimensions of rounding and length.

• Consonants are described in terms of voicing, manner and place of articulation. The main
values manner can take are stop, fricative, nasal, affricate and approximant.

• Computer analysis can be used to study the acoustic patternsin speech. The primary repre-
sentation is that of the spectrogram.

• The resonances of the vocal tract are called formants, and these are thought to be the primary
means by which listeners differentiate between different vowel sounds.

Communication with speech

• A phoneme is a linguistic unit of speech defined on the semiotic principle of contrast.
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• We communicate via speech by using the speech apparatus to encode words as strings of
phonemes, which are then fed through the speech production apparatus.

• In traditional phonetics, phones are seen as concrete objective units, while phonemes are
contrastive linguistic units. Phonemes are realised as phones and if a phoneme has more
than one phone the set of phones are called allophones.

• Even for a single allophone, there is a large amount of variability. This is mostly a conse-
quence of coarticulation effects from the continuous movement of the articulators.

• In the modern view, there are no objective phones; these are just descriptively useful points
in a continuous space.

• There are no boundaries or markers in continuous speech; it is not possible to bottom up
determine the phoneme or phone boundaries in speech.

• We can described the linguistic content of speech using sequences of phonemes or phones;
this is known as transcription. Transcription is inherently difficult because we are enforcing
a discritisation of a continuous encoding.

Phonology

• Phonology is the study of the linguistic use of speech

• A phonotactic grammar describes which sequences of phonemes are legal for a language

• Lexical phonology describes how words are formed from constituent morphemes

• Phonemes and phones can be described with distinctive features. More compact and “nat-
ural” rules can be created by making use of distinctive features rather that phonemes or
phones.

• The syllable is a useful organisational unit which sits between the words and phonemes.
All words have an integer number one of syllables, each of which has an integer number of
phonemes.

• Lexical stress is manifested at the syllable level. Exactlyone syllable in a word is desig-
nated as the primary stressed syllable, all other syllableshave either secondary stress or are
reduced.



8 PRONUNCIATION

We now turn to the problem of how to convert the discrete, linguistic, word based representation
generated by the text analysis system into into a continuousacoustic waveform. One of the pri-
mary difficulties in this task stems from the fact that the tworepresentations are so different in
nature. The linguistic description is discrete, the same for each speaker for a given accent, com-
pact and minimal. By contrast, the acoustic waveform is continuous, is massively redundant, and
varies considerably even between utterances with the same pronunciation from the same speaker.
To help with the complexity of this transformation, we breakthe problem down into a number of
components. The first of these components,pronunciation, is the subject of this chapter. While
specifics vary, this can be thought of as a system which takes the word-based linguistic represen-
tation and generates a phonemic or phonetic description of what is to be spoken by the subsequent
waveform synthesis component. In generating this representation, we make use of alexicon to
find the pronunciation of words we know and can store, and agrapheme-to-phoneme(G2Palgo-
rithm to guess the pronunciation of words we don’t know or can’t store. After doing this we may
find that simply concatenating the pronunciations for the words in the lexicon may not be enough;
words interact in a number of ways and so a certain amount ofpost-lexical processingis required.
Finally, there is considerable choice in terms of how exactly we should specify the pronunciations
for words, and hence rigorously defining a pronunciation representation is in itself a key topic.

8.1 PRONUNCIATION REPRESENTATIONS

In this section we shall define just what exactly the pronunciation component should do, what its
input should be and what its output should be.

8.1.1 Why bother?

First of all, we should ask ourselves - why bother at all with apronunciation component? Why
not just synthesise directly from the words? To answer this,consider an approach where we don’t
have any pronunciation component per se, but attempt synthesis directly from the words. In doing
so, let us imagine a concatenative synthesiser in which we have a database of recorded samples for
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each word. If we take even a modest size vocabulary, we might have more than 50,000 words, and
so this would require 50,000 basic types in our synthesiser.It is not possible for the most part to
successfully join words directly; the nature of continuousspeech means that the effect of one word
influences its neighbours and this must be dealt with in some way. There are two possible solutions
to this; either we could adopt an “isolated word” style of synthesiser, where we record each word
in isolation and then join the words with a short pause, or we could record one example of each
word in the context of each other word. The first approach is taken by many simple concatenated
prompt systems, and while quite reliable, will never perform well in terms of naturalness. The
problem with the second approach is that for our vocabulary of 50,000, recording each word in
the left and right context of each other word would mean 50,0003 = 1.25× 1014 types in all.
Recording this number of words from a single speaker is clearly impossible, but even if some way
of reducing this was found, it is clear that the number of required recordings could still be vast.
Even if we avoid a concatenative type of approach, we would still have to build a model for every
word in the database, and this would still be an enormous undertaking.

This is clearly a problem ofdata sparsityin that we can’t collect or design models for such
a large number of types. When we consider that the required vocabulary for a real system may
in fact be even larger, and that unknown words will have to be handled somehow, we see that in
reality the situation may be even worse.

8.1.2 Phonemic and phonetic input

Now consider an approach where we transform each word into its phonemes and use those as the
input to the synthesiser. In doing so, we have drastically reduced the number of base types from
50,000 words to the 40 or so phonemes. We still have to deal with continuous speech influence,
but if we assume that the scope of this is limited to the immediately neighbouring phonemes, then
we will need a left and right context for each type, and this will give us a total of 403 = 64,000
types which is clearly more manageable. The total number is however still quite large, so it is
natural to ask if we can reduce this further. The source of thelarge number is of course having
to take the left and right context into account, rather than the number of phonemes themselves.
Hence it is reasonable to ask whether we can transform the phonemic representation further into a
space which has a further reduction in the number of base types.

We can do this by attempting to predict the effect of the context of a phoneme’s neighbours.
As we saw in Chapter 7, the traditional model of phonetics states that phonemes are be realised
as phones and that in general this realisation process is controlled by context. For example, an /l/
has two allophones, described asclear anddark , where the clear phone is found at the start of a
syllable and the dark one at the end; a /t/ is aspirated at the start of a word, but unaspirated when
following an /s/ in a consonant cluster. So if we could apply this process to every phoneme, we
could generate a sequence of phones for the input, and in doing so free the base types from many
of the effects of context. With a phoneme representation, wemight have a type /s-t-r/, representing
a /t/ in the context of being after an /s/ and before an /r/. With a phonetic representation we replace
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this with just [t] (the IPA symbol for an unaspirated [t]), using [th] for cases where aspirating
exists. Context will still play a part, because coarticulation (as opposed to allophonic variation)
still operates, but the degree of contextual effect will be lessened. As many phonemes have more
than one allophone, the number of base types may well increase (to say 60), but because we can
do without a left and right context for each, then the overallnumber will be considerably lower.

8.1.3 Difficulties in deriving phonetic input

There is however a drawback with this approach. The problem with phone representations was
discussed previously in Section 7.3.2 where we stated that although phone descriptions could be
very useful in certain circumstances, they should be treated with caution as they are a discrete
representation enforced on a continuous space; and as such only crudely reflect the actual pro-
cesses going on. To give an example, let us consider again an example of place of articulation
assimilation that occurs with words such as

TEN+ BOYS→ t e n + b o i z→ t e m b o i z

where the alveolar place of articulation of the /n/ of the first word assimilates to the bilabial place
of articulation of the /b/ of the second word (bilabial). There is no doubt that that something
is going on here; the [n] certainly seems somewhat differentfrom a “normal” [n], and this can
be verified from both acoustic and articulatory measurements. This is not the issue; rather, it is
whether the [n] hasturned intoan [m]. Such a statement says that there are only two choices;an
[n] or an [m] and in certain situations the [n] keeps its identity and in others it changes. Consider
the situation of sayingTEN BOYS with a pause between the two words; it should be clear that
the [n] sounds like a “normal” [n] and that if we said the (madeup word)TEM (/t e m/) asTEM

BOYS with a short pause, we can tell the difference between the two. Now if we say a sequence
of utterancesTEN BOYS starting with a long pause and gradually shortening it, until there is no
pause, we see that there is agradual shift in the nature of the /n/, until, when we talk quickly, it
seems impossible to make the distinction betweenTEN andTEM. This shows that assimilation is
certainly taking place, but that it is not the case that an underlying [n] is at one point realised by
the phone [n] but at a certain points suddenly becomes a different phone [m]. The process is a
continuous one of change, and it is quite inappropriate to model it as a discretely. We see exactly
the same effects with /r/ colouring, nasalisations and reduction.

In a way, we are forcing a discrete level of representation onto a range of effects that have
a substantial continuous component; and this is damaging inall sorts of ways. As an example,
consider again the phenomena of reduction; whereby we haveAND represented underlyingly as [a
n d], but where this undergoes reduction, resulting in a range of possible phonetic forms including
[a n], [�n d], [�n], [n] and so on. It may be clear that some level of reduction has occurred, but at
what stage do we delete the [d]? Where do we draw the boundary between a full [a] and it being
reduced to a schwa? Studies of hand human labelling have shown that even trained phoneticians
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often give different labels to the same utterance, and much of this disagreement stems from where
the draw the boundaries as to whether something is reduced ordeleted.

8.1.4 A Structured approach to pronunciation

In essence, our situation is this. If we stick with high-level representations such as words, we can
have a high degree of confidence about the accuracy of these, but the number of base types is far
too large. As we generate representations nearer the signal, we see that the number of base types
reduces considerably, but at a cost, in that we are more likely to create a representation that is
inaccurate in some way. There is no single solution to this problem: the answer lies in picking a
point where the compromise between number of types and accuracy of representation best suits a
particular system’s needs.

Perhaps unsurprisingly, the consensus as to where this point should be has shifted over the
years. When more traditional systems were developed, memory was very tight and hence the num-
ber of base types had to be kept low regardless of any errors. In more recent years technological
developments have eased the pressure on memory making more abstract representations possible.
Given this, there is more choice over where exactly the idealrepresentation should lie. In fact,
as we shall see in Chapter 16, the most successful systems adopt a quite phonemic representation
and avoid any rewriting to a phonetic space if at all possible. Because of this, the pronunciation
component in modern systems is in fact much simpler than was perhaps the case in older systems,
and quite often the input to the synthesiser is simply canonical forms themselves, direct from the
lexicon.

Hence the solution we advocate for a state of the art unit selection synthesiser can be de-
scribed as astructured phonemic representation, where we use the phonemic information more
or less as it is specified in the lexicon, but do so in such a way that the synthesiser also has direct
access to the context, syllable structure and stress information that governs the allophonic and
coarticulation processes. In doing so we are relying on the subsequent synthesis component to
model the allophonic and coarticulation effectsimplicitly. This can be achieved very effectively
by representing pronunciation as a phonological tree of thetype introduced in Sections. 7.4.4 and
7.4.5, as this allows us to describe the phonemes, syllablesand stress information in a single rep-
resentation. In such a scheme, the wordsSTRENGTH, TOP, LAST andHAND would for example
be represented as follows:

Onset

s t r

Rhyme

Nucleus

eh

Coda

ng th

Onset

h

Rhyme

Nucleus

a

Coda

n d
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Onset

t

Rhyme

Nucleus

aw

Coda

p

Onset

l

Rhyme

Nucleus

a

Coda

s t

From these trees, we can access the information we require; the phonemic context can be
read directly by accessing a phoneme’s neighbours; the syllable structure is presented as a tree,
and from this we can distinguish between /s t/ in a syllable onset in STRENGTH, and offset in
LAST.

8.1.5 Abstract phonological representations

We have just seen that despite potential issues with data sparsity, in general, higher level phonemic
representations are preferred over lower level phonetic ones. In pursuing this approach however,
we should ask ourselves whether the phonemic representations we have been using are in fact
optimal; might there not be an even more abstract, and less linear representation that would help
the dimensionality problem? Progress in modern phonology has in fact moved away from using
linear sequences of phonemes or phoneme like units as the “deep” or canonical representation;
freed from the constraint that representations must be linear, the more structured “non-linear”
representations reviewed in Section 7.4.3 could be considered instead.

Ogden et al [334] discusses just this issue and point outs that the problem with specifying
phonemic style representations is that this concentrates overly on the paradigmatic dimension; the
phonemic system is based on what contrasts occur at a particular point, and the issue of what
phonemes follow what other phonemes is left to a different, phonotactic part of the phonology. In
fact, we see that it is indeed possible to construct representations in which both the normal notion
of phonemic contrast, and a mechanism for governing legal sequences are handled in a unified
way. While phonemic representations are less susceptible to borderline decisions than phonetic
representations, they are not entirely free of problems.

At present, we know of no unit selection techniques which make use of such abstract phono-
logical representations, but this possibility is sure to beexplored eventually. While there is every
chance the field will indeed move in this direction, because of the lack of practical proof we will
continue with phonemic representations for the remainder of the book. We should point out that
phonemic representations do have one significant advantageover virtually any other type of pho-
netic or phonological representation in that they are generally easy for people to work with. Overly
phonetic representations can be difficult in that it takes time and effort to fill in the phonetic detail;
overly abstract representations require a significant knowledge and understanding of the partic-
ular theory which underlies them. With a little training, most people get the hang of phonemic
transcription and are able to read and generate transcriptions. This is important for text-to-speech
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because at some stage, someone must of course actually enterall the lexicon entries by hand. In
doing so, we wish to have a system which is both quick (there might be hundreds of thousands
of entries) and accurate, and the phonemic system seems to fulfill these criteria reasonably well.
That said, we should make the point that it is perfectly possible toenter the pronunciation for a
word in the lexicon in terms of phonemes, and then by ruleconvertthis to either a deeper or more
superficial representation.

Finally, using a linear phonemic representation has the benefit that it makes automatic database
labelling considerably easier. In Chapter 17 we shall consider the issue of labelling a speech
database with phoneme units, both by hand and by computer. Aswe shall see, it is easier to per-
form this labelling if we assume a linear pronunciation model, as this works well with automatic
techniques such as hidden Markov models.

8.2 FORMULATING A PHONOLOGICAL REPRESENTATION SYSTEM

Having in principle chosen a system which uses phonemes and syllable structure, we now turn to
the issue of how to actually define this for a given speaker, accent or language. It is essential that
this is done with care; if we decide say to use a single phoneme/ch/ instead if /t/+/sh/, we have to
consistently use this, such that we representCHURCH as /ch u r ch/ and not /t sh u r ch/ or /ch u r t
sh/ and so on.

The following sections explain how a phonological system isdeveloped. The first thing that
we must decide is which accent we are dealing with from the language in question. In general it
is not possible to define a phoneme inventory which can cover multiple accents, so whatever will
we develop will be particular to that accent. One solution isto this is to use the actual speaker the
TTS system will be based on, and from analysis of his or her phonemic contrasts ensure that the
correct pronunciation system is found. This solution can require too much effort, so more general
accents often have to be defined. In this chapter, we will conduct an exercise on developing
a representation for just two accents of English, namely General American and British English
received pronunciation (RP). The principles involved however are the same for most other accents
and languages.

It does seem somewhat wasteful that separate pronunciationsystems and therefore lexicons
are required for British English and American English; while differences of course exist, pronun-
ciations in the two accents aren’tcompletelydifferent. Fitt [161], [162], [163] proposed a solution
to this where a more abstract pronunciation drawn from a large set of phonemes was used as a
base lexicon. From this, filters could be used to generate accents for any accent of English.

8.2.1 Simple consonants and vowels

Here we will adopt the standard approach of using the principles ofminimal pairs andphonetic
similarity to develop a phoneme inventory (see Section 7.3.2). This is not an exact procedure and
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it is possible to come up with two equally valid phoneme inventories for a given accent. There
is therefore some discretion in determining a phoneme inventory; the key point is not to find
“absolute truth” of what constitutes the set of sound contrasts; but rather to define an inventory
that suits our purposes, and thenstandardiseon this; so that exactly the same conventions are used
in all parts of the system. Experience has shown that “drift”in phoneme conventions, whereby say
we transcribeBOTTLE as /b aa t el/ in one place and as /b aa t ax l/ in another can have adisastrous
effect as the data, rules, synthesiser and lexicon can become misaligned. The crucial point is to
chose a standard as best we can and stick to just that standardeverywhere in the system.

Recall that the principle of minimal pairs states that it is not the similarity or dissimilarity of
two sounds per se which is the issue, but rather whether they distinguish two separate words. By
using this test, it is straightforward to determine a set of contrasts in a particular position. So if we
take the form [X i p], we can find a set of contrasts as follows:

p PIP m MIP l LIP

t TIP n NIP r RIP

k KIP s SIP w WHIP

b BIP sh SHIP y YIP

d DIP z ZIP h HIP

The /X i p/ pattern doesn’t give the full list of possible contrast because not every possible legal
phoneme sequence actually ends up as a real existent word. But if we take some further patterns,
we can elicit further contrasts:

X /X eh t/ X /X ih n/ X /X ay n/
p PET sh SHIN v VINE

b BET f FIN dh THINE

d DEBT th THIN f FINE

g GET s SIN s SIGN

m MET sh SHINE

n NET

When we consider one particular pattern, the analysis seemsclear: PET and BET are different
words, so /p/ and /b/ must be different phonemes. It is reasonable to ask though, how we know
that the sound at the start ofPET is the same sound as at the start of sayPIT? There is no known
deterministic or objective way to prove that this is the case, all we can do is rely on judgment and
state that in terms ofarticulation, the two sounds are both produced with the lips, are unvoiced
are stops and so on, and that if we examine themacousticallywe see they are similar. But they
are rarely so similar to be taken as identical; their articulation and acoustic patterns are affected
by the following vowel and this does have some effect. To a certain extent, there is a leap of faith
required to say thatPET andPIT start with the same phoneme. This problem is even more acute
when we consider sound contrasts in different positions:
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p RIP m RIM n RAN

t WRIT n RING m RAM

b RIB f RIFF n RANG

d RID s REECE b BRIT

g RIG d WRITHE t STRING

So while we have no problem is saying that the last sounds inRIP, WRITE andRIB are different
phonemes, it is a harder matter to say that the last sound ofRIP should be the same phoneme as
the first of PIT. We can again only appeal to some notion of acoustic and articulatory similar-
ity. We should bear in mind though that we are attempting a compromise between an accurate
representation and a minimal one, and that different possibilities can be tried and tested.

If we consider the wordsSPAN, STAN andSCAN, we see that we have a three way contrast,
in which the second sound differs in terms of place of articulation. There is however no voicing
contrast possible at these points, so there are only three possible phonemes, unlike in word initial
position where we have three place of articulation contrasts in addition to a voicing contrast, giving
us six phonemes in all. The question then is, shouldSPAN be transcribed as /s p ae n/ or /s b ae n/?
The phonetic evidence tends to favour /p/, but this is not conclusive, and will vary from speaker
to speaker and accent to accent. Clearly though there is a systematic effect going on. There is
probably no objective answer to this, so we obey the normal convention (which may have been
influenced by the spelling) and represent these words with the unvoiced phonemes /p/, /t/ and /k/.

A similar minimal pair test can be used for vowels, in which pairs (or n-tuples) of words can
be compared and phoneme identities determined. In the following:

iy HEAT uw HOOT

ih HIT ah HUT

eh HET ae HAT

ao HAUGHT aa HOT

we can clearly identify a number of distinct vowel phonemes.

8.2.2 Difficult consonants

Now we turn to some more problematic cases. In English, the consonants /dh/, /zh/, /ng/ and /h/
are a little more difficult to deal with. There are clearly exactly four unvoiced fricatives; /th/, /f/,
/s/ and /sh/ in English and of these, /f/ and /s/ have the voiced equivalents /v/ and /z/, and these are
unproblematic. The voiced equivalent of /th/ is /dh/ and while /th/ is a common enough phoneme,
/dh/ only occurs in very particular patterns. For a start, the number of minimal pairs that occur
between /dh/ and /th/ are few; real examples includeTEETH NOUN, / t iy th/ andTEETH VERB, /t
iy dh/, while most are “near” minimal pairs such asBATH /b ae th/ andBATHE / b ey dh/ where
the quality of the vowel differs. Even if we except /dh/ as a phoneme on this basis, it occurs in
strange lexicon patterns. In an analysis of one dictionary,it occurred in only about 100 words out
of a total of 25,000. But if we taketokencount into consideration, we find in fact that it is one of
the most common phonemes of all; in that it occurs in some of the most common function words
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such asTHE, THEIR, THEM, THEN, THERE, THESE, THEY andTHIS. When we take the remainder
of the words in which /dh/ is found we see that it is found in many “old” or traditional sounding
English words such asFATHOM, HEATHEN, HITHER, LATHE, LITHE, LOATHE, NETHER, SCATHE,
SCYTHE, SEETHE, SHEATHE and TETHER. In fact, it only occurs in a relatively few “normal”
English words such asMOTHER, LEATHER and HEATHER. Clearly /dh/ is a phoneme, and for
purposes of defining our phoneme inventory, it gets a place along with the other fricatives. There
are consequences that arise from its use though, in that because of the dominance of its used in
function words, it is difficult to obtain “typical” characteristics of the phoneme (say in terms of its
average duration) that are not swamped by the fact that it is used as a function word (which are
often very short, regardless of what phonemes make them up).

Now consider /zh/, the voiced equivalent of /sh/. This occurs in words such asBEIGE /b ey
zh/. Again, while there are few direct minimal pairs, some exist (BEIGE vs BAIT or BANE) and
so we classify /zh/ as a phoneme. Problems again arise from patterns of use. It has been argued
(e.g. [97]) that /zh/ is a relative newcomer to the English language as in the past, words such as
TREASURE and MEASURE were pronounced /t r eh z y uh r/ and /m e z y uh r/ and that it is
relatively recently that these have been spoken as/ t r eh zh er/ and /m eh zh er/. /zh/ presents the
same problems that arose with /dh/, but in this case they are even more difficult because of the very
few words naturally occurring with /zh/. These problems with /zh/ and /dh/ can lead to problems
in database collection and analysis (see Section 14.1).

The sounds [ng] and [h] are noteworthy because they are severely restricted as to the posi-
tions they can occur in. Primarily, /h/ can not occur at the end of a syllable or a word, and /ng/
can not occur at the beginning of a syllable or word. There arefurther issues with /ng/ in that as
it only occurs in a post-vocalic position, it suffers from the loss of contrast that affects all nasals
in this position. So while it is clear thatSIN, / s ih n/,SIM, /s ih m/ andSING, /s ih ng/ all end in
different sounds, it is less clear what the correct representation for words likeTHINK should be.
In words such as this the last stop is in a velar position, and the nasal takes on a velar quality also
(this is similar to theTEN BOYS effect we discussed earlier). The issue is then whether we should
use a velar nasal /ng/ or a dental nasal /n/; there is no contrast possible in this position and so it is
a question of convention which we should pick. As with other such issues, the main goal is to aim
for consistency; if /ng/ is used here then it should be used inall other post-vocalic pre-velar stop
positions.

8.2.3 Diphthongs and affricates

So far we have concentrated on the paradigmatic dimension, by contrasting (say)HAT, HEAT and
HOT and showing that in a frame of /h X t/ we can distinguish a number of phonemes. We were able
to do this because a word such asHOT, clearly divides into three segments. We assign provisional
phonemic status to each, swap in other sounds and thereby determine the system of phonemic
contrasts. In many words however, it is not so easy to segmentthe word into distinct parts, and
in such words we face a question of not only what the contrastsare, but how many positions are
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there to have contrasts within.
In words such asCHAT, the sound before the vowel can be represented as either a combina-

tion of /t/ and /sh/ or as a distinct single phoneme /ch/. A similar case arises with words such as
JUICE which can be represented as a combination of /d/ and /zh/ or asa distinct single phoneme
/dz/. The argument for using two phonemes stems from the principal of keeping the numbers of
phonemes as low as possible; the argument for a single phoneme arises from the idea that these
act as a single coherent unit and are more than the sum of the two parts. There is no real way to
settle this argument, so we will somewhat arbitrarily decide to use single phonemes /ch/ and /dz/.

A similar situation arises with the diphthong vowels in words such asBOY, TOE, TIE and
BAY . In each of these, the vowel does not hold a single steady state position, either acoustically
or in terms of articulation. Rather, sayTIE has an /ae/ sound followed by an /iy/ sound. We face
the same situation that we did with affricates in that we could use a more minimal paradigmatic
representation by saying two phonemes exist here, or inventnew single phonemes to reflect the
fact that these sounds seem to act as single coherent units. Again, there is no real objective way
to decide, so we will follow our previous example and use a single symbol for each. One benefit
from this is that, as well shall see below, this allows us to state a rule that every syllable is formed
with exactly one vowel.

8.2.4 Approximant-vowel combinations

The approximants /r/, /w/, /j/ and /l/ in many ways operate like normal consonants, so that we
have contrasts in words such asROT, WATT, YACHT andLOT. Of these /l/ is probably the most
straightforward and the main point to note is that the acoustic patterns of dark /l/ in words such as
PULL, andSMALL is very different from that with clear /l/, such asLOOK andLAMP. This does not
pose much of a problem phonemically, but is an important different to bear in mind when trying
to decide whether two /l/ units will join well together.

The glides /w/ and /y/ are interesting in the ways they interact with vowels. Firstly, there is
considerable phonetic similarity between /w/ and /u/ and /y/ and /i/, and in many phonetic analyses,
words such asSHOW are transcribed as /sh o w/. If we follow our diphthong principle above, we
rule out these cases and transcribe this as /sh ow/. The process of /w/ or /y/ following a vowel is
sometimes called anoff-glide. As mentioned in Section 7.4.1, one of the difficulties in determining
a phonotactic grammar for English is that /y/ often acts as what we can call anon-glide. So in
British English, speakers sayTUNE as /t y uw n/ andDUKE as /d y uw k/. There is evidence that
the /y/ should be attached to the vowel however, just like a diphthong, to give /t yuw n/ and /d yuw
k/. Further evidence for this comes from other English accents; in the US, most speakers say /t uw
n/ for TUNE and /d uw k/ forDUKE. The effect is systematic, and would seem easier to explain if
only one factor (the realisation of a phoneme /yuu/) was changing between accents. Despite this
argument, it is most common to regardVIEW as being composed of three segments, and we shall
adopt this convention and say it is represented as /v y uw/.

Finally, we consider /r/. This is perhaps the strangest and most interesting sound in human
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speech. Setting aside the phonemic question, consider for amoment how this differs phonetically
across languages. In English, an alveolar approximant /r/ ([G] in IPA) is most common and it is
quite common for this to have a retroflex (curling of the tongue) quality as well. In contemporary
Scottish English, a tapped alveolar (D) is quite common, and is separate again from the “classical”
Scottish trill [r] (now usually only seen on stage or in film).In French and many accents of German
a uvular [J] sound is the norm, with other accents of German having a morealveolar quality. In
Spanish, words such asPERROare formed with a trilled [r], and this forms a minimal pair with the
tapped [D] of words such asPERO. It seems incredible given all this variety, that somehow all these
sounds are grouped together across languages and represented in writing as anr. Do they even
have anything in common? While we will not go into cross language issues here, it is worth noting
that words are quite commonly shared across languages, for example the wordsEMAIL , APRIL and
METRE. In the case ofMETRE, we see that it contains anr in all languages and is pronounced in a
wide variety of ways. If we study the acoustics however, we see that these different “types” of /r/
do share somewhat more in common in that they have characteristic energy bands at certain parts
of the spectrum.

When we consider the phonemics of /r/, we find that it has an interesting effect. First we
distinguish betweenrhotic accents which have /r/ in post-vocalic position (in English, these are
Scottish, Irish, General American) andnon-rhotic accents which have no realised /r/ (most Eng-
land English, Australian and some New York accents). For example, in Irish English, there is no
“long a” sound [aa], which is found in RPBATH /b aa th/; this word is pronounced /b a th/. How-
ever, in words which have an /a/ and a /r/ following it, the /a gets lengthened, andphonetically
we have something like [h aa r d]. Being a phonetic realisation effect, this doesn’t concern us
unduly, but it does show how significant (and unexpected to the unwary) the presence of an /r/ can
be. More significant are the non-rhotic accents. In these, itis not the case that the /r/ is simply
not present; rather (historically or by having some deep presence) it has the affect of altering the
quality of the vowels before it. So in a word likeHER, which might be represented as /h uh r/ in
a rhotic accent, we do not get /h uh/ but rather /h @@/ which hasan extended vowel. It is almost
as if the /r/ has turned into a /@/ and is still present. Because of this, we are faced with a choice
between transcribing non-rhoticFIRE as /f ai @/ or invent a new symbol /ai@/ which would be
regarded as a triphthong.

8.2.5 Defining the full inventory

From the above we should have sufficient knowledge to construct a phoneme inventory for any
accent or language we are interested in. In practice we find that we don’t always have to design
a phoneme inventory from scratch; for many languages or accents the existence of a significant
computer speech research community means that phoneme inventories already exist. As these
communities often develop and distribute resources using these phoneme inventories, it can be
highly beneficial to adopt one of these rather that start fromscratch. In the past, databases of
speech which contained hand labelled phone or phoneme transcriptions were highly valued, but
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as phonetic/phonemic transcription can now be done automatically, today by far the most useful
resource is in fact a comprehensive lexicon. As the development of a large (> 100,000 word)
lexicon can take years of work, any existing resources greatly help. Lexicons are in general tied
to a specific accent of the language, and as such come with a phoneme inventory pre-defined.

So in many cases a phoneme inventory may exist for the accent we are interested in. By and
large, most phoneme inventories developed for computational work roughly follow the guidelines
just described. As just pointed out, there are however several ways to resolve some of the issues,
and so it is worth examining any predefined phoneme inventories in light of the above discussion
to assess suitability. Most predefined phoneme inventorieshave not been developed with TTS in
mind, rather they were developed for purposes of speech recognition or are just “general” phoneme
inventories developed for a variety of uses. Experience hasshown that minor modifications in
predefined phoneme inventories can sometimes be beneficial for TTS purposes. The most common
problem is that sometimes the phoneme inventory has some “phonetic” features (such as markers
for aspirated or unaspirated, or a different label for the stop closure than the stop release), but these
can normally be removed with some automatic processing.

Table 8.1 gives a definition of a complete phoneme inventory based on a modification of
the TIMIT phoneme inventory. This was originally designed for use with the acoustic-phonetic
database of the same name and now one of the most well known phoneme inventories for General
American [173]. Most of the modifications we have made have been to eliminate some of the
purely phonetic distinctions in the original TIMIT inventory1. The main peculiarity of the TIMIT
inventory relates to the fact that sequences of schwa followed by /r/ are represented by a single
phoneme /axr/, and the vowel in words such asBIRD is treated similarly and represented as /b er
d/. All other combinations of vowel and /r/ are treated as twoseparate phonemes. Table 8.2 gives
a phoneme inventory for the British English RP accent, basedon the University of Edinburgh’s
MRPA (machine readable phonetic alphabet) system [276]. The consonant system is more or
less the same; this is what we would expect from the facts of English accent variation. The
vowel system is different, and in particular the treatment of “r” is different because RP is a non-
rhotic accent. The pseudo-diphthong vowels /i@/, /u@/ and /e@/ are used in cases where there

1 For the record, the differences between this and the standard phone inventory are:

1. The /axr/ unstressed schwa+/r/ phoneme has been replacedby /er/. /er/ and the old /axr/ are now distinguished
by stress alone

2. the close phones bcl, tcl etc have been removed

3. the nasal tap /nx/ has been merged with the /n/ nasal

4. /hv/ has been merged with /hh/

5. the glottal stop phone /q/ has been removed

6. the syllabic consonants /en/, /em/, /eng/ and /el/ have been replaced by /ax/ + consonant sequences, e.g. /en/→
/ax n/

7. /ix/ has been replaced by either /ax/ or /ih/, /ux/ by /uw/ and /ax-h/ by /ax/



Section 8.2. Formulating a phonological representation system 205

Symbol Example wordTranscription Symbol Example wordTranscription
b BEE B iy l LAY L ey
d DAY D ey r RAY R ey
g GAY G ey w WAY W ey
p PEA P iy y YACHT Y aa t
t TEA T iy iy BEET b IY t
k KEY K iy ih BIT b IH t
dx MUDDY m ah DX iy eh BET b EH t
jh JOKE JH ow k ey BAIT b EY t
ch CHOKE CH ow k ae BAT b AE t
s SEA S iy aa BOT b AA t
sh SHE SH iy aw BOUT b AW t
z ZONE Z ow n ay BITE b AY t
zh AZURE ae ZH er ah BUTT b AH t
f FIN F ih n ao BOUGHT b AO t
th THIN TH ih n oy BOY b OY
v VAN V ae n ow BOAT b OW t
dh THEN DH e n uh BOOK b UH k
hh HAY HH ey uw BOOT b UW t
m MOM M aa M er BIRD b ER d
n NOON N uw N ax ABOUT AX b aw t
ng SING s ih NG axr BUTTER b ah d axr

Figure 8.1 Definition of modified TIMIT phoneme inventory for General American, with example
words

“would be” an /r/ if the accent was non-rhotic. For the remainder of the book, we will use the
modified TIMIT and MRPA phoneme inventories for General American and RP English accents
respectively.

8.2.6 Phoneme names

The above has focused on minimal pair analysis, which is the major task in defining a phoneme in-
ventory. In defining the phoneme inventories shown in Tables8.1 and 8.2 we have also performed
an additional task in that we have explicitly given anameto each phoneme. The processes of min-
imal pair analysis and naming are not connected; the names intheory could be anything, such that
we could just name the discovered phonemes as 1, 2, 3 ... or a, b, c or anything else. In choosing a
naming system, we have first made the decision to use plain ascii characters for all phonemes. The
TIMIT phoneme inventory is exclusively alphabetic; the MRPA phoneme inventory is alphabetic
apart from the use of “@” for sounds with schwa. As there are more phonemes that alphabetic
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Symbol Word initial exampleWord final example Symbol Word initial exampleWord final example
p PIP RIP j YIP -
t TIP WRIT ii HEAT PEEL

k KIP KICK ih HIT PILL

b BIP RIB ei HATE PATE

d DIP RID e HET PET

g GAP RIG aa HEART PART

ch CHIP RICH a HAT PAT

dz GYP RIDGE uu HOOT POOT

m MIP RIM u FULL PUT

n NIP RUN ou MOAT BOAT

ng * RING uh HUT PUTT

f FOP RIFF oo HAUGHT CAUGHT

th THOUGHT KITH o HOT POT

s SIP REECE ai HEIGHT BITE

sh SHIP WISH au LOUT BOUT

v VOTE SIV oi NOISE BOIL

dh THOUGH WRITHE i@ HEAR PIER

z ZIP FIZZ e@ HAIR PEAR

zh VISION u@ SURE PURE

h HIP - @@ HER PURR

l LIP PULL @ CHINA ABOUT

r RIP CAR w WIP -

Figure 8.2 Definition of British English MRPA phoneme inventory, with example words

characters, we use two and sometimes three characters for a single phoneme. Often this is when
we have a sound with two phonetic components such as /ch/ or /oy/, but this is also used for simple
phonemes such as /th/ and /sh/.

In naming these phoneme inventories we have also not worriedwhether the “same” phoneme
in one accent has the same name in another accent. As we have noneed to mix phonemic tran-
scriptions across accents in normal synthesis, this is unproblematic (see however Section 17).
Strictly speaking, the principles of phonemic analysis imply that this is a meaningless comparison
anyway: phonemes only have status as units of contrast for a single accent, and so it is of no con-
sequence whether we use the same symbol for the vowel inBUY in British or American English.
In practice, it is clear from the TIMIT and MRPA definitions that the vowel sets are different but
the consonant sets are nearly identical (this of course partly reflects the fact that vowel contrasts
are the main source of phonemic differences between accentsin English). We have also avoided
the possibility of naming the phonemes after one of their allophones in the IPA alphabet. This is
because it is generally easier to use a separate and self contained symbol set for phonemes and not
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use IPA symbols as this can lead to confusions about the phoneme/phone divide.
In both the TIMIT and MRPA phoneme inventories, we have only used lower case letters. To

some extent this is a purely aesthetic issue as we wish to avoid upper case (which has a somewhat
“aggressive” quality) and mixed case (which can look ugly).There is an additional benefit in that
upper case equivalents of the symbols can be used in cases where some emphasis is required, such
as stress or other highlighting. In the above, we have chosenthough to give simple mnemonic
names to each phoneme, so that the first phoneme ofTIP is named “t”, the first ofSHIP is named
“sh” and so on. Mnemonic names are usually helpful as we oftenhave to enter words in the lexicon
ourselves or perform transcriptions, and this is easier if we can easily recall the symbols to use.
These names can sometimes trip us up, especially with vowels, so a little care should be taken.

8.2.7 Syllabic issues

We have shown previously that in addition to simple or “linear” phonemic context, a major factor
in determining the realisation of phonemes is their place inthe syllabic structure. Phonemes at
the starts of syllables or words can be realised differentlyfrom ones at the ends; the position of
a phoneme in a consonant cluster is important, and stress effects, which are expressed at sylla-
ble level, also have an important bearing on phonetic realisation. We therefore have to give the
waveform generation component access to this syllabic information.

If we actually know where the syllable boundaries lie withina word, it is a simply matter
to assign the type of tree structures described in Section 7.4.4. Quite simply, the vowel serves
as the nucleus, the consonants after the nucleus up until theend of the syllable are assigned to
the coda, and the consonants between the vowel and the syllable start are assigned to the onset.
In this way, the syllable structure is found deterministically from the syllable boundaries and
phonemes. As we saw in Section 7.4.4, syllable boundaries can in the most part be determined
by using the maximal onset principle. In the few cases where this is not so (recall ourBOOKEND

example) the boundary needs to be marked explicitly. As system designers we therefore face
some choices. On the one hand, we can choose to explicitly mark every syllable boundary in the
lexicon. This is costly however; many existing lexicons do not have syllable boundaries marked
and the additional effort in marking these may be prohibitive. Alternatively we could determine
the syllable boundaries automatically by application of the syllable onset rule. In doing so we
will of course get the syllable boundaries wrong for the difficult cases just mentioned. A third
possibility is a compromise between the two, where the difficult transcribed are marked by hand,
and where the rest are transcribed by algorithm.

For languages such as English, three levels of stress are necessary. While some phonological
systems use more (e.g. SPE), our experience has shown that, at the lexical level at least, three is
clearly sufficient. Following from a convention adopted forTIMIT, we use1 for primary stressed
syllables,2 for secondary stressed syllables and0 for reduced syllables. The stress numbers are
placed adjacent and after the vowel, so, for example, the entry for INFORMATION would be /ih2 n
. f ax0 . m ey1 . sh ax0 n/.
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All syllables receive a stress mark, and hence most vowels will be marked 2. All words
except function words must have a single primary stressed vowel. All normal schwa vowels (/ax/)
receive a 0. There are a number of possibilities regarding whether to transcribe normal vowels
with a 0 or a 2. One option is to regard 0 and 2 as weak and strong versions of one another,
such that any vowel could receive either 0 or 2. Another option is to regard 0 as being only for
schwa vowels; this means that in effect every other vowel is a2 regardless. This last option has
the benefit of simplicity, but some feel that this disregardsphonetic facts. In traditional phonetics,
the last vowel ofHAPPY is quite often transcribed as /ih 0/ or /iy 0/. In addition, many think that it
is most appropriate to transcribe the last vowel ofHABIT as /ih 0 / giving /h ae1 b ih0 t/. Here we
again face the issue of phonological organisation versus phonetic explicitness. Either option can
be taken, but it is worth noting that direct experience showed that it was possible to take the 0 for
schwa option everywhere, and label all other vowels as 2. This would then given /h a1 p iy2/ and
/h a b ax0 t/.

Finally, we come to the issue of phonotactics. This is an important part of defining a phonol-
ogy; there is little point in spending time defining a phonemeinventory which define the paradig-
matic relations if we then ignore the phonotactics which define the syntagmatic relations. Defining
a phonotactic grammar is necessary for a number of practicalreasons. Firstly, we need to define
what we think the synthesiser should be able to say in terms ofphoneme sequences. Even if we
create a very simple grammar, that states for instance that /ng/ can’t occur at the start of a word,
we can find any case where this is passed to the synthesiser by mistake and take corrective action.
Secondly, we need to keep a check of the entries in the lexicon; as these entries are made by hand
there is a chance that errors will be made. Hand in hand with the phonotactic grammar comes a set
of conventions that we must establish regarding how words should be transcribed. Finally, having
an explicit phonotactic grammar helps in database collection as we can easily tell how complete a
particular database is with regard to phonemic sequence coverage.

8.3 THE LEXICON

In our introduction to the nature of language, we explained that one of its fundamental properties is
that there is an arbitrary relation between the meaning and form of a word. A word’s pronunciation
cannot be inferred from its meaning, nor vice versa. Obviously for a language to work, these
arbitrary relations need to be somehow stored, and the device used to do this is call alexicon.
We can talk about aspeaker’s lexicon, meaning the lexicon that a particular individual uses to
store his or her words; we can also talk about thelanguage lexiconwhich is a store of all the
meaning/form pairs (words) in that language (a traditionaldictionary is this type of lexicon). For
language engineering purposes however, we talk about thecomputer lexicon, which is a physical
computer data object containing known descriptions of words.

In machine understanding and generation systems, or any systems which deal with seman-
tics and meaning, the lexicon is a vital component in a systemas it is here that the connection
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between meaning and spoken or written form is stored. In speech synthesis and recognition tasks
however, the meaning element is largely ignored, so in principle the lexicon is not strictly speaking
a necessarycomponent. However, lexicons are in fact widely used in synthesis and recognition
to store the correspondences between the two main forms of the word; that is the spelling and
pronunciation of a word. As such these are calledorthography-pronunciation lexicons.

8.3.1 Lexicon and Rules

While the relation between the meaning and form of all languages is completely arbitrary, in
general the relation between the two main forms, i.e. the spoken and written form, is not. The two
main forms do not have an equal status; speech is the primary form of the language and writing is
a secondary, invented form designed to record the spoken form. The degree to which these forms
are related is dependent on many factors, and it is clear thatin some languages the written form
closely follows the spoken form (e.g Spanish), in others therelationship is discernible but complex
(e.g. English and French) while in others it is nearly as arbitrary as the meaning/form relationship
(e.g. Chinese). Hence for native words in some languages it is possible to infer one form from the
other, and this mapping can be performed by agrapheme-to-phonemealgorithm. We will leave
a discussion of these until Section 8.4, but for now let us assume that we can build such a system
that always generates a pronunciation form from an orthographic form, even if the accuracy of
doing this can be quite low for some languages. Due to this lowaccuracy of these rules for some
languages we have to store the correspondences in a lexicon.It is important to realised that even
for the more direct languages, the widespread use of Englishloan-words, technical words and
acronyms means that at least some use of a lexicon is required.

Most text-to-speech systems use a combination of a lexicon and rules to perform pronun-
ciation. The justification for this two pronged strategy haschanged somewhat over the years.
In traditional systems, the explanation usually went something like this: “grapheme-to-phoneme
rules are used as the main pronunciation mechanisms, but in addition we use anexceptions dic-
tionary which deals with cases which don’t follow the normal patterns of the language”. Thus
it was rules which were primary, and the lexicon was used for cases where the rules failed. The
reasons for the primacy of the rule system were that, firstly,this was still in the days when using
“knowledge” was a respectable way of building all types of speech, language and AI systems, and
so using rules was a natural way that anyone would approach this problem. Secondly, memory
space was limited, such that storing tens of thousands of words was prohibitive. Note that using
rules to save memory typical incurs a processing cost, but atthe time speed was not generally seen
as a critical issue (ie, it was simply impossible to have enough memory to store the words, but it
was possible to use slow rules, even if it resulted in a non-real time system). Finally, it takes time
to develop a quality lexicon, and in the past there simply weren’t the resources and experience to
have built a comprehensive lexicon. More common today is thejustification “We use a lexicon to
store pronunciations, and resort to rules for missing entries in the lexicon.” Hence the situation is
reversed; the lexicon is seen as primary and the rules are there as backup when the lexicon fails.
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The reader should be aware that there is still a lingering hangover in the literature from the
earlier period regarding the rules vs lexicon issue. Rules are often inherently favoured over the
lexicon and one often comes across statements stating that there is not enough memory to store
all the words in a language. Such reasoning is rarely solid, as no decision can be taken about this
until the actual size of the lexicon and the processing cost of the rules are quantified. For smaller
footprints systems (say< 10 megabytes), lexicon size will definitely be an issue, but for larger
systems the size of the unit selection database will far out weigh the size of the lexicon. One also
finds that alongside this we also see justifications that rules are a more sophisticated approach and
that simply storing words in the lexicon is a dumb brute forceapproach. As we shall see below,
this is a false argument; rules and lexicons are simply different techniques which trade-off memory
and processing cost; both have their place and one is not a priori better, more sophisticated or even
more accurate than the other. One occasionally encounters the opposite view, in which lexicons
are seen as the only true way to handle pronunciation, and hence the use of very large lexicons is
advocated. This can be dangerous too; while most people are aware that rules often make mistakes
there is sometimes a failure to realise that significant errors can exist within the lexicon also; too
often this possibility is ignored and the lexicon is taken asthe absolute truth.

Most accounts of the lexicon and rule setup in a TTS system would give a reader the idea
that these were two completely separate mechanisms, which just happen to have been brought to
bear on the same problem. In fact, the distinction between lexicon and rule approaches is not as
clear cut as it seems, and in moderns TTS systems, it is best tothink of what we normally think
of as “lexicons” and “rules” as being at certain points on a scale. From the outside, the distinction
seems clear; a lexicon is a declarative data structure (e.g.a list) which contains entries, a rule set
is a series of processes which examine the grapheme sequenceand generate a phoneme sequence.
The distinction is however not always clear cut. Most rule systems (see below) use a context
window on the orthography to help disambiguate which phoneme should be generated. If we take
a word such asIRAQ for instance, it is quite possible that no other words with anything like this
grapheme pattern will be found; so if the rules correctly predict this word, can we not say that the
rules have learned the pronunciation for this and only this word, and that the rules have in fact
implicitly stored the pronunciation?

In machine learning, this phenomenon is calledmemorising the data: this is often consid-
ered harmful if the system learns exactly those examples it was given but not any generalities; if
this is the case we say that the model hasover fitted the data. For a trainable model with enough
parameters, it is entirely possible that it will end up memorising all the training data rather than
learn the generalisations behind it. This is normally seen as an undesirable property in a rule sys-
tem, but in our case, it can be argued that this is not strictlyso. In most machine learning problems,
thepopulationof data is effectively infinite, and the training data is a small sampleof the popula-
tion. As the sample is not identical to the population care must be taken not to learn it too exactly,
otherwise the trained algorithm will not perform well when presented with different samples from
the population. As we shall see below, learning grapheme-to-phoneme rules is somewhat differ-
ent, in that the population (all existent words) is large butfinite, and there is a good chance of
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encountering exactly the same words in different samples. Hence memorising common examples
is not in itself harmful [76].

8.3.2 Lexicon formats

In speech technology, it is quite often to find existing lexicons in what we can termsimple dic-
tionary format . Such lexicons can be stored as simple ascii files, where eachentry starts with
the orthography, followed by the pronunciation and possibly other information. The entries are
ordered by the orthography such that a few typical entries would look like this:

deep d iy1 p
deer d ih1 r
defend d ax0 f eh1 n d
define d ax0 f ay1 n
degree d ax0 g r iy1
delicate d eh1 l ax0 k ax0 t
delight d ax0 l ay1 t
demand d ax0 m ae1 n d
density d eh1 n s ax0 t iy2

It is clear that this format explicitly gives priority to thewritten form, as this is used to order and in-
dex the entries. Dictionary formats can be problematic though, for the reason that the orthographic
form of a word is not unique; homographs are fairly frequent and these must somehow be handled.
Two common amendments to this style are to have multiple lines with the same orthographic form

project p r aa1 jh eh2 k t
project p r ax0 jh eh1 k t

or to use more than one entry for the pronunciation on each line

project p r aa1 jh eh2 k t, p r ax0 jh eh1 k t

Even if this is done, we still somehow need to know that /p r aa1jh eh2 k t/ is the noun form of
project, it is not sufficient to say thatproject simply has two different pronunciations. While
POS markers could be added, we soon find that when we also consider the issue of pronunciation
variants (which are arbitrarily different ways of pronouncing the same word) or orthographic vari-
ants (different ways of spelling the same word) we see that the simple dictionary style comes under
considerable pressure, and looses its main positive feature, that it is easy to read and process.

A solution to this is to build the lexicon as arelational database. In this, we have exactly
one entry for each word. Each entry contains a number of uniquely identified fields, each of which
has a single value. For for a simple word, the entry may just contain two fields, ORTHOGRAPHY
and PRONUNCIATION. It is a simple matter to add more fields such as POS or SYNCAT. Each
entry in a relational database can also be seen as a feature structure of the type we are now familiar
with, and because of this similarity, we will use the featurestructure terminology for ease of
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explanation. Hence some simple words would look like






ORTHOGRAPHY defend
PRONUNCIATION d ax0 f eh1 n d











ORTHOGRAPHY degree
PRONUNCIATION d ax0 g r iy1











ORTHOGRAPHY define
PRONUNCIATION d ax0 f ay1 n






In this the orthography has no preferred status, and the entries can be indexed by the orthography
or pronunciation field. The main advantage of using this style is that it is straightforward to add
more fields to the entries while still maintaining a well defined structure. Hence we can add POS
information to distinguish between homographs








ORTHOGRAPHY project
PRONUNCIATION p r ax0 jh eh1 k t
POS verb















ORTHOGRAPHY project
PRONUNCIATION p r aa1 jh eh2 k t
POS noun








Throughout the book we have been using a convention whereby we give a name to each word, for
instancePROJECT-NOUN for the last entry above. We should state that this name has noobjective
status; it is simple a “handle” that allows us to uniquely identify the word. We normally use the
spelling as the handle and add some additional identifier if this isn’t sufficiently unique - again,
this is just a convention, the handles could be 1,2,3, ... or a,b,c, .... It is up to the system designer
whether to include this in the entry or not: including it means that there is one unique value for
each word in the lexicon, and this can have useful housekeeping functions. On the other hand, the
developer needs to create these handles and ensure their uniqueness. For demonstration purposes



Section 8.3. The Lexicon 213

we will include them in the following examples, and so the above would look like









NAME PROJECT-VERB

ORTHOGRAPHY project
PRONUNCIATION p r ax0 jh eh1 k t
POS verb



















NAME PROJECT-NOUN

ORTHOGRAPHY project
PRONUNCIATION p r aa1 jh eh2 k t
POS noun



















NAME DEFEND

ORTHOGRAPHY defend
PRONUNCIATION d ax0 f eh1 n d
POS verb










It is often useful to make use of lists as values as we want to describe the full range of possibilities
without necessarily ascribing any causes to them. For example, many noun/verb pairs don’t differ
in orthography or pronunciation, and so for our purposes we treat these as a single word (see
Section 4.2). We still wish to record the fact that the word can have several parts of speech; this
may for instance be used by the POS tagger










NAME WALK

ORTHOGRAPHY walk
PRONUNCIATION w ao1 k
POS {verb,noun}










Orthographic and pronunciation variants can be handled this way also:







NAME EITHER

ORTHOGRAPHY either
PRONUNCIATION {iy1 dh er0, ay1 dh er0}















NAME COLOUR

ORTHOGRAPHY {colour, color}
PRONUNCIATION k ah1 l axr
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8.3.3 The offline lexicon

Now let us consider the issue ofcertaintyor knowledgewith regard to pronunciation. To help in
this, let us make a distinction between two types of lexicon.The first is thesystem lexicon: this
is the database of word pronunciations actually used by the system at run time. The other is the
offline lexicon; this is a database of everything we know about the words in our language: it is the
sum of our recorded knowledge. The offline lexicon has all sorts of uses; we use it to label speech
databases, to train the POS tagger, for help with text analysis and so on. The system lexicon is
created from the offline lexicon, and there are a range of choices about what entries and fields to
include. We should stress that regardless of the needs and requirements of the system lexicon, it is
highly beneficial to have as large and comprehensive an offline lexicon as possible.

When we consider the offline lexicon, it is not the case that a given word is strictly “in” or
“not in” the lexicon. For instance, we may have entries that are incomplete, in that we know the
values for some fields but not others. Most likely there will be missing words also, that is words
that we know of but which we haven’t entered. Not every value in every field will be correct;
errors may occur or there may be entries which we are not entirely certain of. More formally, we
can evaluate our off-line lexicon in terms ofcoverage, completeness, andquality :

Coverage This is a measure of how many words in the language are in the lexicon. For every
word in the language, we can assign it to one of three categories:

known Words which are present in the lexicon
missing Words which exist, are known to the developers, but which areare not present in

the lexicon.
unknown Words which exist, are not known to the developers and are notin the lexicon.

CompletenessEvery lexicon entry has a number of fields, but some of these may be unfilled.

Quality A measure of how correct the values in an entry are.

What is perhaps less clear is that these measures can be traded off against one another. Recall
that we said (Section 4.2) that for our purposes the derived forms of a word are also considered
words in their own right, soWALK , WALKING and WALKED are all distinct words. It is quite
common for dictionary writers to only define the main, base form, so that if we come across an
existing lexicon it is quite likely that we would findWALK but notWALKING or WALKED . We can
easily create the empty entries forWALKED andWALKING , and in this way we have improved our
coverage, but have left these entries incomplete as we have only specified the orthography, not the
pronunciation. To complete these entries, we can use rules to add the pronunciations, for example
by simply concatenating /ih0 ng/ to the end of the stem to create WALKING . In doing so, we don’t
however know if the rule generated the correct form; so at this stage, the quality of the new entry
is unknown. Finally by performing a manual check, we can tellif the rule has operated correctly.

In this example we have seen how our knowledge of missing words (that is words known to
us, but not in the lexicon) can be used to improve coverage. Wehave also seen that we can use rules
to improve the completeness of the lexicon, but in doing so wedon’t necessarily know if the rule
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has generated the correct answer. This is one example of the way the rules and lexicon can interact.
We can generalise this approach to providing more extensivecoverage and completeness. With
regard to the unknown versus missing distinction, with a well developed lexicon the most likely
missing entries are of the type just mentioned, that is absent derived forms of known words: we can
improve our coverage of missing words by the process just outlined. By contrast we can be sure
that the number of unknown words is vast; this will include a huge number of technical or medical
terms and of course many names. For unknown words, the task isreally to find these words from
sources outside our personal knowledge. One way of doing this is to conduct a search for unique
words in any text corpus, or any collection of text material (e.g. the internet). Given such a list,
we have effectively improved our coverage but done so in sucha way that the completeness for all
these new entries is limited to an orthographic definition. We can improve completeness as before,
but this time we have to generate the base form of the pronunciation as well as any derived forms.
We can find the base form by a grapheme-to-phoneme algorithm,and use the morphological rules
to find the derived forms, and in that way general a complete lexicon. Our only issue now is
with quality; as we have used a grapheme-to-phoneme algorithm there is a good chance that many
entries will be completely wrong. All the automatically generated entries can be labelled as such,
so that we know not to have the same degree of confidence in these as the other hand checked
entries. In due course all these can of course be checked and edited so as improve the certainty
and quality of the lexicon.

These processes show the value of the off-line lexicon; it isin effect the full depository of
our knowledge about words in the language. Creating this is highly beneficial in that gives us a
full database of words from which to generate the system lexicon, to train or develop a grapheme-
to-phoneme algorithm, and for other uses mentioned above.

8.3.4 The system lexicon

If we generate the offline lexicon by the above process we willhave a lexicon that is very large,
but will have a considerable number of entries whose qualityis unknown. In traditional TTS, the
normal approach was to only have entries which were carefully checked in the lexicon, with the
idea that the rules would be used for all other cases. However, it should now be clear that whether
we use the rules at run-time to handle words not in the lexicon, or use the rules offline to expand
the lexicon will not have any effect on the overall quality: all we are doing is changing the place
where the rules are used.

Given this large offline lexicon, we see then that the real debate about rules vs lexicons is
not one of quality, but rather one of balance between run-time and off-line resources. If we take
the case where we include the entire off-line lexicon in the system lexicon, we will have a system
which uses a considerable amount of memory, but where the processing speed is minimal (simply
the small amount of time taken to look up a word). If on the other hand we create a system
lexicon that is only a small subset of the offline lexicon, this will result in a smaller footprint,
but as the pronunciation of absent words will have to generate at run-time, the processing costs



216 Chapter 8. Pronunciation

could be considerable. One very useful technique for lexicon reduction is to take a set of rules,
run them over all the words in the database and record which entries agree with the pronunciations
generated by the rules. If we then delete all these entries, we have saved considerable space but
will generate exactly the same quality output. In fact this technique is just the opposite of what
we did before where we used the rules to create pronunciations for incomplete entries. There we
used the rules to create the largest possible lexicon, whilenow we have used the rules to create the
smallest possible lexicon. In both cases the quality of the output is the same.

In fact, there are a number of possibilities beyond this. Considering the last point again,
what we did was to use the rules to reduce the size of the lexicon, in effect the rules summarise
the redundancy in the lexicon. This technique can be thoughtof as lossless compression; this
is, the output isexactlythe same as when the full lexicon is used, its just that the generalities of
the lexicon have been exactly captured in a set of rules. If wedesire a smaller system still, we
can opt forlossy compressionwhere the output is not the same as before and can be expected to
contain some errors. After we delete the entries which the rules correctly predict, we further delete
some less frequently occurring entries, resulting in a smaller system, but one in which a few more
words will be wrong. We can tune this exactly to our space requirements right down to the point
where we have no run-time lexicon at all and simply rely on therules every time. We can move in
the other direction too; if we have some additional memory and we find that the “decompression
time” needed to use the rules is too slow, from a lossless compression system we can add in some
correctly predicted common words back into the lexicon. This will have the effect of increasing
memory but speeding the system up.

8.3.5 Lexicon quality

As the lexicon is the repository of all knowledge regarding the orthography and pronunciation of
words, it is vital that the quality of the entries that it contains is as high as possible. All too often
this issue is overlooked, and unfortunately many lexicons that are used today have significant
numbers of errors. It should be obvious enough that if the pronunciation of a word is entered
incorrectly in the lexicon, when the TTS system comes to say that word it will sound wrong.
Often listeners are completely thrown by this; they don’t perceive that the correct word has been
spoken wrongly, rather they suffer a complete loss of comprehension. Other consequences arise
from errors in the lexicon; if this is used to label the speechdatabase, we might find a case where
an instance of an /uh/ vowel is wrongly labelled as /uw/. Whenthis unit is used in synthesis to
saw a word such as /b uh k/ the result will be /b uw k/; again throwing the listener. This is even
more serious than the first case because this will affect words other than the one where the mistake
occurs. Personal experience has shown, that after the recording of a high quality speech database,
the quality of the lexicon is the single biggest factor in determining overall TTS quality.

A certain amount of skill is required to add entries by hand; the primary requirements are that
one should have a familiarity with the pronunciation schemebeing used and a knowledge of the
accent in question. In many cases the person adding or checking entries has the same accent as the
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lexicon itself, but this isn’t always the case, and so particular care needs to be taken when adding
entries of a different accent; it is all too easy to mistakenly think we know how someone else says
a word. That said, it is certainly not the case that one needs to be an expert phonetician; personal
experience has shown that most developers can perform this task if given adequate training.

Many errors result from a small number of basic causes. A primary source of error is that
people make the pronunciation too close to the orthography.Inexperienced developers could for
instance add /e/ phonemes at the ends of words where the orthography has ane, such that we
would get /h ey t e/ instead of /h ey t/ forHATE. Other simple errors include using /j/ for /jh/, using
/c/ for /k/ and so on. One simple trick is to find an existing checked word that we know rhymes
with the word we are about to enter; so that when enteringHATE we look upLATE and simply
change the first phoneme. This is particularly useful when working with an accent one isn’t sure
of. Another is to use an existing version of a synthesiser to playback the word synthesised with the
new transcription; this technique very quickly exposes errors such as adding an /e/ to the ends of
words. Finally, we can build an automatic pronunciation verification system, that simply checks
whether the pronunciations for a entry is legal within the phoneme inventory, stress system and
phonotactic grammar definitions.

Those more experienced in phonetics often make the oppositemistake of creating lexicon
entries that are too close to the phonetics. Here we see caseswhere many multiple variants are
added because of a slight perceived difference or possibility of difference in a pronunciation. For
the wordMODERATE we might get /m o1 d ax0 r ax0 t/, /m o1 d r ax0 t/, /m o1 d eh0 r ax0 t/and so
on all being added because of perceived differences. In general, the tendency to “split hairs” and
add many pronunciation variants for each word should be avoided. Even if two speakers do seem
have have a difference in how they pronounce a word, it shouldbe remembered that the phonemic
representation is only approximate in any case, and can not be expected to cover all differences.
Using too many variants can be harmful as it leads to a fragmentation of the data, and makes it
difficult to learn and generalise.

8.3.6 Determining the pronunciation of unknown words

Even with experienced lexicon developers, severe difficulties can arise because of unknown words.
Recall that these are legitimate words which exist in the language but which the developer is
not personally familiar with. To see the extent of this problem, take any large (i.e. unabridged)
dictionary, open it at random and have a look - it usually doesn’t take long to find unfamiliar
words. The profusion of words unknown to us is quite considerable as we see the dictionary is
full of medical, chemical and nautical terms, old words thathave fallen out of usage, and so on. If
we then add to these the issue of names we see that the problemsmount up. For many unknown
words, even though the word’s meaning and form is unfamiliarto us, the patterns of letters seems
familiar, and because of this we have a reasonable chance of guessing the correct pronunciation.
Many are in groups of words that may be personally unfamiliarto the developer, but which are
common enough for other people. Sailing terms are a good example of this, where for example,
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most people can correctly read aloudbobstay, cringles andjibe even they don’t know
what these words mean. Other terms are ore difficult however,such that most struggle with how
to read aloudfo’c’sle boatswain andgunwale if they are not familiar with the terms.
For such groups of words, the only answer is to consult a knowledgeable source; either a book on
sailing or a sailor in person.

In considering this issue, we come across an interesting philosophical issue regarding the
pronunciation of words. Quite simply, how do weknowwhat the correct pronunciation forany
word is? Saying that word pronunciations are properly defined in traditional dictionaries avoids the
point; this would imply that words not in a dictionary have nostandard pronunciation, and misses
the fact that dictionary writers try and listen to real speakers to elicit the actual pronunciation [484].
The best we can do is say that the “correct” pronunciation fora word is X because that is what
the population of speakers believe. For most common words, this is unproblematic; and everyone
of a particular accent will say the wordsWALK , DOG and HOUSE the same way. Problems do
arise though because people do not in fact always pronounce words the same way, even within a
single accent. The issue is whether we can establish a correct pronunciation, relegating the others
to some “incorrect” status, or whether we have to accept multiple correct forms. Establishing the
boundaries here is difficult, it seems equally absurd to insist on a “gold standard” of a single correct
pronunciation, or an “anything goes” policy where all pronunciations are equally legitimate. There
is a personal element in this as well; it doesn’t bother me whether someone saysCONTROVERSY

as /k o1 n t r ax0 v er2 s iy/ or /k ax0 n t r o1 v ax0 s iy2/, but somehow when someone says /n
uw1 k uw2 l ax0 r/ forNUCLEAR this just seems wrong. To take another example, it is now quite
common to hear American English speakers to pronounce the “silent” /l/ in words like CALM and
SALMON - while this may seem clearly “wrong”, how can it be if millions of people now follow
this habit?

Difficulties most arise with regard to rare names. In most European countries, the native
pronunciation of names is well established, and even if a name is borrowed from one language to
make a new name in another language, we can often find the correct pronunciation in the original
language. The situation in the United States is significantly different, in that the sheer diversity
of names outweighs any other country. In the US, we see firstlythat many names have moved
considerably from their original pronunciation, but secondly many names are genuinely made up
or so altered from the original that they effectively becamenew names2. This situation creates
many cases where there is only a handful of families with a particular name, making it difficult for
the lexicon developer to find the pronunciation. Even more problematic is that we find cases where
a handful of families share the orthography for their name but have different pronunciations. It is
often unknown even if these names share a common origin. How then do we determine the correct

2 Note that there is a consistent myth in that peoples; names were changed by officials during transit through the Ellis
Island immigration service. What evidence we have suggeststhat this is not in fact the major source of new names,
as some degree of consistency had to be kept between embarkation in the origin country and immigration procedure.
Many minor changes in spelling and so on certainly happened,but it was not the case that immigration officials simply
invented new names because they thought the real name was tooawkward to handle.
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pronunciation for such a name? As Spiegel [409] says:

Complicating the issue is that everyone is a pronunciation expert for their own name,
and (only slightly less so) for the people they know. Sometimes people are unaware
of other (valid) pronunciations for their names, even when the pronunciation is more
common.

Hence even if we decide that the correct pronunciation forsmith is /s m ih1 th/ we will still
find enough people who complain that the system got it wrong because their name is pronounced
/s m ay1 th/. There is no objective real solution to this problem as this is one of system usage and
user requirements. The real point is that developers who deploy TTS systems should be aware that
the may not be any objective truth as to whether a system is saying a name correctly or not.

8.4 GRAPHEME-TO-PHONEME CONVERSION

A grapheme-to-phoneme(G2P) algorithm generates a phonemic transcription of a word given
its spelling. Thus it generates a sequence of phonemes from asequence of characters3.

8.4.1 Rule based techniques

Grapheme-to-phoneme conversion by rule is perhaps the classic application of traditional knowl-
edge based rules in TTS. Indeed, in the past it was thought that this was how humans performed
the task; when presented with an unknown word they would apply a set of rules to find the pro-
nunciation. The most common approach is to process the character sequence left-to-right, and for
each character apply one or more rules in order to generate a phoneme. It should be clear that
these rules can’t operate in isolation, otherwise at character would always result in a /t/ phoneme.
Rather the character context of the character is used and in this was we can generate /th/ whent
is followed byh.

Most approaches use context sensitive rewrite rules of the type introduced in Section 5.2.4.
Recall that these are of the form

A→ B/d/C

which reads as “A is converted (rewrites to) d when preceded by B and followed by C”. In any well
developed system, multiple rules will match a given context, and so a means of choosing amongst
rules is required. A common technique for this is toorder the rules and apply each in turn, so that

3 In this book, the use of the termgrapheme-to-phonemeconversion relates specifically to algorithms which perform
just this task; elsewhere this term is sometimes used for theprocess which uses algorithms and the lexicon, and indeed
sometimes used for the entire process of text analysis. The term letter-to-sound rules is also encountered, but this
is increasingly misleading as most modern techniques don’tused rules in the traditional way. A final complication
regarding the terminology of this field is that strictly speaking a grapheme is a minimal unit of spelling rather than a
single character, so inthat theth is described as a single grapheme. As our input is always a sequence of characters,
we are really performing character-to-phoneme conversion.
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the first matching rule is the one chosen. As this is a purely hand written technique the developer
has to order these rules him or herself. A common technique isto order the rules with the most
specific first. Rule systems of this kind include [8], [307], [155], [226], [136].

These systems can often produce quite reasonable results for highly regular systems with
a shallow orthography (e.g. Spanish). The results are generally very poor though for languages
like English and French, which has increasingly led to the adoption of data driven and statistical
techniques [300].

8.4.2 Grapheme to phoneme alignment

All the data driven techniques described below use algorithms to learn the mapping between char-
acters and phonemes. They use an existing lexicon as training data, and often words in this are
held out as test data and so these data driven techniques are only usable in cases where there a
comprehensive lexicon is available. In general words do nothave a one-to-one correspondence
between characters and phonemes: sometimes two or more characters produce a single phoneme
(e.g.gh→ /f/ in rough) and sometimes they don’t produce a phoneme at all (e.g. thee in hate
→ /h ey t/). A pre-requisite for training then is toalign the characters with the phonemes for each
entry in the lexicon.

Most techniques for performing this are based on adynamic time warping, (DTW ) tech-
nique [343]. This works by assigning a cost to every phoneme that can align with a grapheme.
“Good” correspondences are given low costs while “bad” correspondences are given high costs.
The DTW technique is a dynamic program algorithm which effectively searches all possible align-
ments and picks the one which has the lowest total cost. This is a significantly easier task than
either writing the rules by hand or aligning every word in thelexicon by hand. For example, the
characters maps to the phoneme /s/ with a low cost, but maps to /n/ with a much high cost. In
many cases there is an obvious phoneme which maps from the character, but in other cases, e.g.
h this is used to represent many different phonemes (/sh/, /th/, /dh/ etc) in writing and so has a
number of low costs.

A probabilistic version of this was used by Jelinek [239], who used the hidden Markov
model Baum-Welch training technique (described in Section15.1.8 to learn the probability that a
character would generate a phoneme. This was extended by Taylor [433] who showed that it was
possible to do this from aflat start meaning that no initial seeding is necessary. In general, the
alignment method is independent of the actual algorithm used, so that any alignment technique
can be used with any of the algorithms described below.

8.4.3 Neural networks

The first data driven G2P algorithm was the NetTalk algorithmdeveloped by Sejnowski and Rosen-
berg [397], [396], [377]. This work became genuinely famous, not for its raw performance or use
in practical text-to-speech, but because it was one of the first real demonstrations of a neural net-
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work in operation. A popular demonstration of the system speaking the pronunciations it had
learned added to the fame of the system as it showed how the system performed better with each
training iteration. NETtalk uses a feed-forward network consisting of an input layer, a hidden
layer and an output layer. The input considers a character ata time, and uses a context window of
three characters before and three after. This results in a total of 7 groups of units in the input layer
of the neural network. Each group has a series of nodes which can be used in a binary coding
fashion to represent each character (For example, if we have5 nodes, thena would be 00001,b
would be 00001,c would be 00001, andz would be 11010. A single group of units is used in the
output and a single phoneme is therefore generated.

A number of further studies have also used neural networks for G2P [191],[240] but this
technique’s importance is mostly due to it being an powerfuldemonstration in the early days of
machine learning.

8.4.4 Pronunciation by analogy

Pronunciation by analogy is a popular data driven technique first introduced by Dedinaand
Nusbaum [127] and popularised by Damper and colleagues [422],[122],[123], [300], [27]. Its
motivation comes from studies of human reading and draws from studies by Glushko [175] and
Kay and Marcel [247]. The basic idea is that given an unknown word, a human considers known
words which are orthographically similar, and adapts a pronunciation of the nearest word to use
for the unknown word. For example, if we are confronted with anew wordzate, we consider
that while we don’t know the pronunciation of this, we do knowof many similar wordsdate,
late, mate, all of which have the same ending pronunciation. In addition, we also know that
most words that start withz generate a /z/ phoneme, and so we apply both these analogies and
decide thatzate should be pronounced /z ey t/. Marchand and Damper [300] givea review of
this technique and describe it as belonging to the family of machine learning techniques known as
memory based learning[119].

The algorithm works by comparing the characters in the inputword with each entry in the
lexicon. For each matching substring, a lattice is built with the input characters and the out-
put phonemes (which are found by the alignment process). Thelattice comprises a path of the
characters< c1, ...,cN > and a set of arcs which span character sequences in the path. Each arc
represents one match between a sequence of characters and a sequence of output phonemes. Hence
in through we would have an arc fromc0 (a dummy start character) toc2, showing the match
between the letterst h and the phoneme /th/. In addition a frequency count is kept ofhow many
times this match is found in the lexicon. This lattice then represents a summary of all the matches
in the lexicon for this word. Finally, a decision function isused to find the single best sequence of
phonemes.

The decision function can take a number of forms, and finding better methods of designing
this function is the main goal of research in pronunciation by analogy. Marchand and Damper
[300] give a review of some techniques. The original approach is to find the shortest paths through
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the lattice, meaning choosing the matches which have the longest individual spans. If more than
one shortest path is found, then the one with the highest frequency count is used. Other approaches
include calculating the product of arc frequencies, the standard deviation of the path structure, the
frequency of thesamepronunciation, the number of different pronunciations generated, and the
minimum of arc frequencies.

8.4.5 Other data driven techniques

A number of other data driven techniques have also been used to G2P conversion. Pagel et al
[343] introduced the use of decision trees for this purpose,a choice which has been adopted as
a standard technique by many researchers [249], [198]. The decision tree works in the obvious
way, by considering each character in turn, asking questions based on the context of the character
and then outputing a single phoneme. This can be seen as a way of automatically training the
context-sensitive rules described above.

Other data driven techniques include support vector machines [114], [111], [18], transfor-
mation based learning [67], [519] and latent semantic analysis [38]. Boula de Mareüil et al [62]
describe a formal evaluation of grapheme-to-phoneme algorithms and explains the complexities
involved in ensuring that accurate and meaningful comparisons can be performed.

8.4.6 Statistical Techniques

The statistical approach has been somewhat of a latecomer tographeme-to-phoneme conversion,
perhaps because of the success of other data driven techniques such as pronunciation by analogy
or the impression that context-sensitive rewrite rules areadequate so long as they can be automat-
ically trained, e.g. by a decision tree. In recent years however a number of approaches have been
developed which give a properly statistical approach.

As mentioned previously, Jelinek [239] proposed a system toalign graphemes and phonemes
using the Baum-Welch algorithm original developed for speech recognition. His intention was to
expand the lexicon to include unknown words that would then be used in a speech recogniser.
His use of the statistical approach was limited only to the alignment step however, the actual
grapheme-to-phoneme conversion was performed by other techniques. Taylor [433] took this work
to its logical conclusion by using HMMs to perform the whole task. In this approach, states repre-
sent the phonemes, each of which has a discrete output probability distribution over the characters
which form the observations. The system therefore mimics a “writing” process where the under-
lying form (phonemes) generates the surface representation (characters). G2P is then the opposite
process of recovering the phonemes from the characters. If performed with a standard HMM, the
results are quite poor but with various refinements the technique can be made to perform as well as
any other. These include using context in the models, using an n-gram over the phoneme sequence
and by performing pre-processing steps to make the alignment task easier. The main advantage
of this technique is that no explicit alignment is required;the system implicitly generates a “soft”
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alignment during training. The use of the n-gram phoneme constraint also means that even if the
answer is wrong, the generated phoneme sequence should be a likely one, and not simply a random
sequence that is un pronounceable.

A more common approach is to use technique proposed by Galescu and Allen where a search
is performed using a joint n-gram model over both the grapheme and phoneme sequences [44],
[172], [223], [86]. Typically, the alignment is performed in the normal way. This training data
then gives a collection of short sequences of phonemes and graphemes which are aligned. For
example, the wordPHONEMEgives{ ph, f }, { o, ow }, { n, n }, { e, iy }, { m e, m }. Once the
entire training lexicon has been converted to this format ann-gram is calculated over all sequences.
At run time, a simple search gives the most likely sequence given the characters. The technique
is completely general and allows for a variety of refinementsin terms of n-gram smoothing and
estimation techniques. It avoids the pre-processing stepsof the HMM technique described above
but does does however require a separate alignment step.

8.5 FURTHER ISSUES

8.5.1 Morphology

It is common in linguistics to say that words are not atomic entities with regard to syntax or
semantics but rather are composed ofmorphemes. If we consider the wordsBIG, BIGGER and
BIGGEST we see there is a clear connection between the three words. The issue that concerns us
is whether we should consider all of these as separate words,and store them in the lexicon, or just
store the root formBIG and then use rules to derive the other forms.

There is no right or wrong answer to this; the fundamental issue of one of size vs speed. If
we have plenty of storage space and require quick processing, it is better to store all words. If
storage space is limited it may be better to store only the root and generate other examples no
the fly. In modern TTS systems, the first approach is generallytaken as memory is cheap, and
even for large lexicons, the size of these is swamped by the size of the unit selection database. It
is traditional to defined two types of morphology;inflectional, where (in English) we typically
add well defined suffixes to words to make other words in the same class (as above). This is in
contrast toderivational where we make new words that often have different parts of speech or
different meanings, such that we formCREATION from CREATE. While in general it is possible
to store all common derived and inflected forms of words, the set of possible words is very large
indeed; for example we can attach the suffix -ESQUE to virtually and noun or proper noun (e.g.
TAYLORESQUE).

We can deal with this in a number of ways, but the most common approach is to store all
roots and common inflections and derivations in the lexicon.When other inflections or derivations
are encountered, these are treated as unknown words and passed to the grapheme-to-phoneme
convertor. This then can attempt a basicmorphological decompositionwhich attempts to find
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known morphemes within the word. Either this succeeds for all parts of the word, in which case
the pronunciation can be formulated by using these parts, oronly some of the morphemes are
identified, in which case a mixture of a lookup table for the known morphemes and a grapheme-
to-phoneme conversion for the unknown morphemes can be used. The difference may be slight
for English, but this approach is certainly more attractivefor languages with rich morphology such
as German [370], [460], [483].

8.5.2 Language origin and names

A further clue to how to pronounce a word is given by the originof the word. While we know that
late is pronounced /l ey t/, and that the finale is not pronounced; we also know thatlatte is
pronounced /l ah t ey/ with a pronounced finale. The reason is of course thatLATTE is an Italian
word and so receives an “Italian” pronunciation. We should note however that the word isnot
pronounced the way an Italian person would say it, but ratheran English pronunciation using an
approximation of the Italian phoneme sequence. Quite how “natively” words such as this should
be spoken is by and large a cultural issue, many native English speakers pronounce the final /t/
in RESTAURANT many do not. Given, there have been approaches which have used analysis of
character sequences to find the language of origin, typically using n-grams trained on separate
lexicons from each language [94], [289].

A final point concerns the types of words that are most likely to be used by grapheme-
to-phoneme algorithms. The approach taken by most machine learning research is to arbitrarily
divide the lexicon into training and test data, for example by assigning every tenth word to the test
set. When using G2P algorithms for lexicon compression purposes this is a reasonable thing to do,
but when using the G2P algorithm for rare words that are unknown to the system, this becomes
less valid. In a system with a large, well developed lexicon,the words most likely to be processed
by a G2P convertor are vary rare, new formations (e.g.email) loan words or proper names. The
chances are that G2P algorithms will fare worse on these thannormal words, so care should be
taken in assuming results taken from a normal word test set apply to the words we are likely to
find in real usage. Taking this into account, a better approach would be to design or train G2P
systems on just those words which we are most likely to see. For instance Spiegel [409] describes
a system which uses an extensive set of rules to model proper names. The system includes all
the types of names found in the United States and is designed primarily for directory enquiry and
other telephony applications.

8.5.3 Post-lexical processing

Some systems use the output from the lexical lookup process and/or grapheme-to-phoneme con-
version directly as the input to the synthesizer. In some systems however, an additional step often
known aspost-lexical processingis performed which modifies the output in some way. The
most significant factor in determining how much post lexicalprocessing is the specific form of
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the input to the synthesizer. This was discussed in Section 8.1.3, where we saw that we could
choose high level phonemic representation or a low level detailed phonetic representation. A low
level representation will require significant processing,for example to turn an /n/ into an /m/ in
a labial context, but as many modern systems use high level representations often no post-lexical
processing of this type is required.

Some processes operate at a purely phonological level, and so regardless of the type of input
to the synthesizer, some processing may still be required. English doesn’t really have any clear
demonstrations of this, but when we consider French we see that the process ofliaison must be
modelled. In general, the wordLES is pronounced /l ey/, but when followed by a word starting in
a vowel, it is pronounced /l ey z/ as inLES AMIS→ /l ey z a m iy z/.

8.6 SUMMARY

Basis for pronunciation

• Using a phonemic or phonetic representation helps reduce the size of the specification for
the synthesizer.

• A choice has to be made between a high level abstract representation or low level detailed
representation

• In general, modern systems use high level representations.

Pronunciation systems

• Phoneme inventories can be designed using the principles ofphonetic similarity and minimal
pairs.

• There is no single correct phoneme system for a language but if care is taken an adequate
system is normally not too hard to define.

• In many cases, suitable phoneme sets already exist, especially for well studied accents and
languages

Lexicons and rules

• Pronunciations can be generated by lexicon look up or by algorithm. These two techniques
should be viewed as points on a scale.

• lexical lookup is fast by expensive in memory

• using rules is expensive in processor time but cheap in memory

Grapheme-to-phoneme conversion

• Grapheme-to-phoneme conversion is the process of guessinga word’s pronunciation from
its spelling.
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• Traditional systems used context-sensitive rules. These are generally inaccurate for lan-
guages like English, but can still produce good results for languages with more regular
spelling.

• Many data driven techniques exist, including neural networks, pronunciation by analogy and
decision trees.

• Some statistical techniques have recently been proposed.



9 SYNTHESIS OF PROSODY

This chapter is concerned with the issue of synthesising acoustic representations of prosody. The
input to the algorithms described here varies but in generaltakes the form of the phrasing, stress,
prominence and discourse patterns which we introduced in Chapter 6. Hence the complete process
of synthesis of prosody can be seen as one where we first extract a prosodic form representation
from the text, described in Chapter 6, and then synthesize anacoustic representation of this form,
described here.

The majority of this chapter focuses on the synthesis ofintonation. The main acoustic
representation of intonation is fundamental frequency (F0), such that intonation is often defined as
the manipulation of F0 for communicative or linguistic purposes. As we shall see, techniques for
synthesizing F0 contours are inherently linked to the modelof intonation used, and so the whole
topic of intonation, including theories, models and F0 synthesis is dealt with here. In addition, we
cover the topic of predicting intonation form from text, which was deferred from Chapter 6 as we
first require an understanding of intonational phenomena theories and models before explaining
this.

Timing is considered the second important acoustic representation of prosody. Timing is
used to indicate stress (phones are longer than normal), phrasing (phones get noticeably longer
immediately prior to a phrase break) and rhythm.

9.1 INTONATION OVERVIEW

As a working definition, we will takeintonation synthesisto be the generation of an F0 con-
tour from higher level linguistic information. Intonationis probably the most important aspect of
prosody (the others being phrasing and prominence) in that it has a richer degree of expression. As
we explained in Chapter 6, the primary semantic content of prosody is in affective representations
such as emotion and attitude, and intonation is the primary way in which this is communicated. A
sentence can be made to sound believing or incredulous simply by changing the intonation. Into-
nation is also used augmentatively in that many prominencesare indicated with changes in local
F0. Phrasing is also often indicated by a lowering of F0 at phrase ends and a subsequent raising
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of F0 at phrase beginnings. Finally even if intonation is notused for any affective or augmentative
purpose, all utterances have characteristic intonation patterns which must be modelled correctly if
the speech is to sound natural.

9.1.1 F0 and pitch

In this book we have used the terms F0 (fundamental frequency) and pitch interchangeably, as
there are few cases where the difference matters. Strictly speaking, pitch is what is perceived,
such that some errors or non-linearities of perception may lead this to be slightly different to
fundamental frequency. Fundamental frequency is a little harder to define; in a true periodic
signal this is simply defined as the reciprocal of the period,but as speech is never purely periodic
this definition itself does not suffice. An alternative definition is that it is the input or driving,
frequency of the vocal folds.

In prosody, F0 is seen as the direct expression of intonation; and often intonation is defined
as the linguistic use of F0. The relationship between the twois a little more subtle than this though
as it is clear that listeners do not perceive the F0 contour directly, but rather a processed version of
this. The exact mechanism is not known, but it is as if the listener interpolates the contour through
the unvoiced regions so as to produce a continuous, unbrokencontour.

9.1.2 Intonational form

There is probably no area of linguistics were there is less agreement than when it comes to the
nature of intonational form. In the following sections we will cover many of the well known
models and theories, and it will be clear that there is enormous variation in how researchers have
chosen to represent intonation. Disagreements occur in allother areas of linguistics; it is just
the degree to which the theories differ in intonation that isso noticeable. For instance, when we
consider the theories of verbal phonology described in Section 7.4, we do in fact find that there are
quite a number of approaches to the problem, but all researchers at least agree that thereis such a
thing as phonology.

We can give an overview of the situation as follows. The function of intonation is to express
emotion and attitude, to augment the verbal component by firstly emphasising or marking words,
and secondly by giving phrases and utterances characteristic patterns which show their structure
and type. Although rarely expressed as such, this much is uncontentious1 At the other end of
the scale, it is widely accepted that F0 is the main acoustic manifestation of intonation. The
disagreement stems around how any intermediate intonational form should be represented. In
some early studies, researchers did actually try to map directly from intonational semantics to
acoustics [107], [287], but these studies were criticised by many, summarised clearly by Ladd
[269]. Basically, in measuring say the F0 of anger, we must ofcourse do this with reference

1 Any disagreement would be based around the notion of whetherthere was a pure linguistic intonational core, and a
separate para-linguistic or extra-linguistic component.



Section 9.1. Intonation Overview 229

to particular speakers and if we did this, the difference in basic physiological behaviour between
speakers might well swamp any subtleties in the effects of anger itself. Put more plainly, regardless
of how high or low a speakers voice, a woman, child or man plainly exhibits clear regularities in
how these effects are expressed, and we are missing something if we state that the mean value of
anger is say 150Hz. This leads us to the conclusion that theremust be some sort ofintonational
form that speakers of a language/accent share, and which is readily identifiable to those speakers.
This is obviously somewhat similar to the idea of the form of words and phonemes in verbal
language, and often just this parallel is drawn such that we are trying to find the intonational
equivalents of notions such as word, phoneme, phone and allophone.

The basic problem is that while nearly everyone agrees that some representation of prosodic
form must exist, we have no equivalent test to the minimal pair test for phonemes. Recall from
Section 7.3.2, that this said that if two sounds could be found that distinguished two words, then
we could call these phonemes. If however we had two sounds which clearly sounded different (say
dark and light [l] in English), but which did not distinguishwords, then these were not phonemes
but allophones. Crucially, this test lies on the extremely convenient ability of listeners to tell
whether two words are the same or not - this can be done withouteven knowing what the words
mean. In intonation, and other aspects of prosody, we simplydo not have such a test, and the
“semantic space” while perhaps simpler overall, doesn’t arrange itself into nice discrete categories
the way the words in a lexicon do.

We should realise from the start however that not every modelwas designed with the same
goals in mind; for instance, theBritish school (explained in Section 9.3.1) evolved from old
style prescriptive linguistics, and even quite recent publications were concerned with the teaching
of “correct” intonation patterns to non-native learners ofEnglish. The aims ofautosegmental-
metrical (AM) (Section 9.3.3) school were to provide a theory of intonation that worked cross
linguistically such that phenomena from African and Asiantone languages, pitch accent lan-
guagessuch as Swedish, andintonation languagessuch as English could all be described with a
unified model. An aim of theFujisaki model (Section 9.3.5) was to create a model that followed
known biological production mechanisms, whereas the aim oftheTilt model (Section 9.3.6) was
to create a model solely for engineering purposes.

The models differ significantly in what they take as the primary form of intonation. In the
AM model this is quite abstract while in the Tilt model this isquite literal or “acoustic”. These
differences in primary form should not be taken to mean that the proponents of these models do
not believe that there should be more abstract or more concrete representations, just that the “best”
representation happens to lie where they describe it. In themany synthesis schemes based on the
AM model there are other, more phonetic or acoustic levels, and in the Tilt model there is always
the intention that it should serve as the phonetic description of some more abstract higher level
representation.
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9.1.3 Models of F0 contours

Imagine that we have an adequate representation of intonational form and that we have extracted
such a representation from the input text. How then should wego about generating an F0 contour?
We have seen a consistent pattern throughout the book where mappings between one domain
and another are performed by means of either explicit rule, or, in more recent systems, machine
learning algorithms such as decision trees or neural networks. The general formulation of this is
as a mapping between a set of features and a label:

X( f1, f2, ... fN)→ Li

This approach worked for semiotic classification homographdisambiguation, POS tagging
phrase break prediction, prominence prediction and many other problems described in Chapters 4
and 5. It would therefore seem reasonable to try such an approach for intonation synthesis. Strictly
speaking, the algorithms used in text analysis are calledclassifiers; as they attempt to classify an
entity using features which descrive it. This is a labellingprocess of assigning one label from a pre-
defined set to the entity. In F0 and timing (discussed below) the problem is similar but now we have
to assign a continuous value to our entity, and techniques which perform this are calledregression
algorithms. In many cases the same algorithms can be use for both; for example decision trees are
really classifiers but can be adapted to become regression algorithms by replacing the labels at the
nodes with distributions. Neural networks are really regression algorithms but can be converted to
classifiers by interpreting each output node as representing a binary part of a label.

In practice standard regression algorithms are difficult touse directly for F0 prediction, be-
cause of a serious mismatch in the nature of the input and output representations. In general the
input representation is a representation of intonational form as just discusses (for example, pitch
accent types and positions) whereas the output is a continuous list of real valued numbers. In
particular, the feature combination needs to generate not one, but a sequence of F0 values, which
is further complicated because the number of values in this sequence can vary from case to case:

X( f1, f2, ... fN)→ F01,F02, ...F0M,

Furthermore, when we come to performing a bottom up analysis, where we wish to describe
the continuous contour with a discrete set of linguistic units, we find the mapping even more
complicated. Because of these problems, it is nearly universal to use some sort ofacoustic model
which acts as an interim representation between the abstract intonational form and the F0 contour.
This model has a fixed number of parameters per unit, and so we can use one of the standard
mapping algorithms (such as CART) to generate these parameters from the intonational form:

X( f1, f2, ... fN)→ P1,P2, ...PL,

As a second step we can use the specialised model to generate the F0 values themselves:
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Y(P1,P2, ...PN)→ F01,F02, ...F0M,

These models usually work on a principle whereby theyencodeor stylize the real F0 con-
tour. In other words, they give a tractable simplification ofthe F0 contour in which the salient
linguistically important aspects of the contour are preserved, while less necessary parts are dis-
carded. At its simplest, the parameters would be a discrete list of target points in the contour.
From these, a continuous F0 contour can be synthesized. If wekeep the number of points constant
for each linguistic unit, then we have a situation where the parameters of the model align nicely
with the linguistic description, while hopefully still allowing accurate synthesis of the contour.
The values of these parameters can then be learned by a machine learning algorithm or written by
hand, as we now have a much simpler situation where we can align input and output pairs. The
models described below generally take a more sophisticatedapproach, but in essence the principle
is the same: to make the mapping between the discrete prosodic form units and the F0 contour
more tractable.

9.1.4 Micro-prosody

Micro-prosody is a term used to denote some of the lowest level, more detailed aspects of prosody.
Often this includes the interaction between verbal effectsand prosodic effects on the main acoustic
components of prosody such as F0. It has been widely observed[405], [270] that the phones of an
utterance have an affect on the F0. While these effects are less noticeable than the effect of prosody
proper, they need to be handled if a complete model of F0 synthesis or analysis is to be performed.
Typical effects include a sudden raising or lowering of F0 ata boundary between a voiced and
unvoiced section of speech. The degree to which micro-prosody needs to be synthesized is debat-
able. Most intonation algorithms synthesise smooth contours and simply ignore micro-prosody
altogether and unit selection systems have the fine micro-prosodic detail already included in the
units they use. If however any automatic analysis of F0 is to be performed, the micro-prosody
must be handled. One common approach is simply to use an algorithm to smooth the F0 contour,
in an attempt to make it appear more like the stylised intonation contour that we believe represents
the underlying intonation pattern. Modern statistical techniques can handle miro-prosody more
directly, by considering it as noise in the data.

9.2 INTONATIONAL BEHAVIOUR

In this section we describe some basic intonational phenomena and attempt to do so in a theory
neutral way.



232 Chapter 9. Synthesis of Prosody

9.2.1 Intonational tune

The intonation tune can be broadly described as the core pitch pattern of an utterance. Tunes differ
from one another intype and inassociation. By using differenttypesof tunes, the speaker can
express for example an emotion such as surprise, disbelief or excitement. Theassociationof the
tune connects the prosodic part of intonation (the tune itself) to the verbal part, by associating parts
of the tune with particular words. By shifting association from “john” to “match” in examples 118
and 119, one can convey different effects. By varying the type of tune, one can also express
different effects as in example 120.

(118) John went to the match (as opposed to Harry)

(119) John went to thematch not the theatre

(120) John went to the match (disbelief: but he hates football !

Describing tune type is perhaps the most difficult issue in prosody. Tune schemes can be
broadly divided into those which classify tunes using dynamic features (rises and falls) and those
which use static features (tones). Theories also vary in thesize of the units they use.Global
descriptions make use of a few basic patterns that cover the entire phrase,atomistic theories make
use of smaller units that combine together to form larger patterns. Jones [242] is at the global
end of the scale, the British school [333], [193] uses sub-phrase units (see Section 9.3.1 , while
the AM school [352], [351] and the Dutch school [446] use units which are smaller still (Sections
9.3.2, 9.3.3.

Much of the discussion on the subject of tune centres around how to describepitch accents.
A pitch accent is commonly manifested in the F0 contour as a (relatively) sudden excursion from
the previous contour values. This is where association comes in, as pitch accents only occur
in conjunction with prominent syllables, and in doing so attract attention to that syllable. Pitch
accents can only occur in association with prominent syllables (see Section 6.3 on prominence),
but need not occur on all prominent syllables.

Most work agrees that the prosodic phrase as described in Section 6.2 is the basic domain of
intonational tune patterns. Hence the phrase not only groups words together, it also serves as the
start and end of each section of tune. In many models, we have anuclear accent, which occurs
once per phrase.

The other main area of interest in tune description concernswhat happens at the ends of
intonation phrases. Often F0 is low at a phrase boundary, butin many circumstances F0 is high.
For instance, if another phrase directly follows the current one, acontinuation risemay be present.
If the tune is that of a yes/no question, the final pitch may also be high. The British school deals
with these effects by using different nuclear accent and tail configurations. The AM model makes
use of high and lowboundary toneswhich distinguish the different types of contour.

It would be impossible to show all the possible types of intonational tune for English, but six
common tunes which vary because of their nuclear accent types are shown in Figures 9.1 to 9.6.
These examples are not comprehensive and other theories mayclassify these contours differently.
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Fo

time

anna came with manny

*

Figure 9.1 Typical Fall Accent. “Anna came with Manny.” The nuclear fall is on the stressed
syllable of “manny” denoted by an* . The fall is a commonly found intonation accent and is often
used in neutral declarative situations.

Fo

time

anna came with manny

*

Figure 9.2 High Fall, “Anna came with Manny !”. This shape corresponds to a British “high
fall”, +raised or pitch level 4. In this particular utterance there is still a single intonation phrase,
and the word “anna” also has an accent, but this accent is pre-nuclear. Some may argue that there
is no phonological distinction between fall and high fall, and that the high fall is really just an extra
prominent fall.

The examples merely demonstrate some of the intonational effects that can be produced.

9.2.2 Downdrift

It has been observed by many researchers that there is often agradualdowndrift in the value of
F0 across a phrase [446], [447], [351], [107], [285], [167].How downdrift (often referred to as
declination) is dealt with by different theories varies widely. Ladd [267] gives a review of some
of the different theories.

Many treat downdrift as an automatic physiological effect arising from changes in sub-glottal
pressure during the course of an utterance [287], [107]. This account gives the speaker little
conscious control over declination. The approach of the Dutch School [446], has been to use three
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Fo

time

it was amazing

*

Figure 9.3 Rise fall accent, “It was Amazing !”. Spoken with a sense of wonderment, this accent
is similar to a fall, but with a much larger preceding rise. The peak value of the F0 contour is also
later than with a simple fall accent.

Fo

time

*

with annamanny comedid

Figure 9.4 Fall rise accent, “Did Manny come with Anna ?” A peak in the F0 contour occurs in
the stressed syllable of “manny” (* ). After coming down from the peak, the contour rises slowly and
finishes with a sharp rise at the end of the phrase. This type ofaccent is often used for simple yes/no
questions.

parallel declination lines, which refer to a baseline, a mid-line and a line corresponding to the top
of the speaker’s normal range. The contour must follow one ofthese lines or be rising or falling
between them. Fujisaki’s model is more flexible in that the rate of declination and initial starting
value can be varied, but the overall effect is still automatic [167]. Liberman and Pierrehumbert
[285] show that the final F0 value for utterances is invariantunder a wide range of utterance
lengths and pitch ranges which is inconsistent with the viewthat declination slope is constant.
They propose an exponential decay downdrift effect, with the additional feature offinal lowering
at the end of the phrase. Figure 9.7 shows three different views of declination.

A major claim of Pierrehumbert’s thesis [351] was that more than one factor was responsible
for the downdrift of F0 contours. As with many other theories, she proposed that the phonetic dec-
lination effect exists, but also argued that the major contribution to the downdrift of utterances was
downstepwhich was a phonological effect and therefore controllableby the speaker. Figure 9.8
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Fo

time

did come with anna

*
manny

Figure 9.5 Low Rise, “Did Manny come with Anna ?!”. This accent shape mayat first glance look
similar to the fall-rise, but differs in that the stressed syllable (* ) of the word which carries the nuclear
accent is not a peak but a valley. Thus the F0 contour rises from the nuclear accent. Quite often this
accent is preceded by a falling F0. This accent can be used to convey incredulity or disbelief.

Fo

time

did come with annamanny

*

Figure 9.6 High Rise, “Did Manny come with Anna ?”. Here the accent fallson the first syllable
of Anna. There is no valley as with the low rise, and the F0 on the nuclear syllable is much higher.
High rise accents are often used for yes/no questions where the speaker is looking for confirmation in
a statement, as in “ok?” or “ right?”. It is similar in many ways to the low rise, with the F0 contour
rising from the nuclear accent, the main difference being that the nuclear accent occurs considerably
higher in the speaker’s pitch range, and is often not preceded by a falling section of contour.

shows a downstepping and non-downstepping version of the same sentence. These two sentences
are not only different in F0 shape, they also have subtly different meanings. (The first sounds more
excited, the second sounds more relaxed and confident.)

9.2.3 Pitch Range

In music, if a sequence of notes is repeated an octave higher than the original, the tune remains
the same, even though the frequency values of the notes are different with respect to the original.
Rather it is the constancy of thepatternthat gives the perceptions of the tunes being the same.
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0
0.5

1.0

1.5

(a)

(b)

(c)

Fo

Fo

Fo

Figure 9.7 The Dutch model, figure(a), has three declination lines, which refer to a baseline, a
mid-line and a line corresponding to the top of the speaker’snormal range. The contour must follow
one of these lines or be rising or falling between them. Pierrehumbert’s system (figure (b)) scales
the pitch range 0.0 to 1.0 for normal speech but allows higherlevels. The contour is not required to
follow any of these declination lines - they are merely the “graph paper” on which the F0 contour
is produced. Note how the lines converge with respect to time. The Fujisaki model (figure (c)) only
specifies a baseline, which decays exponentially.

The same effect is observable in intonation: by increasing the overall pitch of an utterance
while keeping the basic tune pattern constant, the perceived tune remains the same. The relation-
ship between intonational tunes in different pitch ranges is not as simple as the musical equivalent.
It has been shown that the increase or decrease in pitch rangeneed not be constant throughout the
phrase, as utterances always tend towards a fairly constantfinal F0 value.

Pitch range varies for a number of reasons. In single isolated utterances it can be used for
increasing the overall emphasis of the utterance. When one “raises one’s voice” in anger one is
using an increased pitch range. Pitch range factors also have a role to play in longer utterances. If
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really really good

Fo

Fo

(a)

(b)

really really good

time

time

Figure 9.8 Two utterances of the phrase “really, really good”. Figure (a) has the two “really”s at
the same pitch level, with a fall on “good”. In Figure (b) eachword is downstepped relative to the
previous word.

a speaker started at the same F0 level with every intonation phrase, the speech would sound very
bland. Speakers use a variety of pitch ranges to be more expressive. The boundaries between pitch
range and prominence effects are not clearly defined. For example, in many systems it is difficult
to say if an unusually high accent is due to extra (local) prominence or a temporary shift in pitch
range.

9.2.4 Pitch Accents and Boundary tones

Many theories of intonation define pitch accents as the fundamental unit of intonation. While we
defer specific systems of pitch accent descriptions for the section below on intonational models,
here we attempt to describe some pitch accent phenomena in theory neutral terms. In most models
that use pitch accents, we see a basic distinction between the pitch accent’s inherent properties and
its setting.

In general, by inherent properties, we mean the shape of the F0 contour of the pitch accent.
To a degree, we can separate the F0 pattern of the pitch accentfrom the surrounding contour, but
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this is only for convenience, in reality the pitch accents rarely have distinct beginnings and ends.
The most common type of pitch accent takes the form of a peak inthe F0 contour. The

actual shape of this map be a rise followed by a fall, or a rise followed by a relatively level section
and then a fall. The degree of the excursion is important, andgenerally speaking the higher the
excursion the more prominent the pitch accent will sound. There are many other types of pitch
accent also. One common type is the simple fall, where the contour is level, falls over a short
region and then continues at a reasonably level rate. Another important type is the low pitch
accent, or rising pitch accent. The local shape of this is a little harder to define, but basically this
type of accent is marked by a negative excursion in the F0 contour. This can take the shape of a
fall followed by a rise, or just a specific low point in the contour. This is often associated with
question intonation, or cases where the speaker is doubtingthe listener and so on. Beyond these,
theories differ as the range of additional types. The important point about pitch accent shape is
that too often these are thought of as simple peaks in the contour; falls and low pitch accents are
just as important.

The pitch accent’s setting in the overall contour is also vital. This is governed by two factors;
its height, meaning how high or low it occurs in the speaker’s range and its alignment with the
phonetic content. In terms of height, we find a few characteristic patterns. In general, pitch
accents height decreases as a function of time throughout the utterance, as we just mentioned on
the section about downdrift. We also find that as with the sizeof the excursion, the accent height
is correlated with the degree of prominence (in fact in many models, accent height and excursion
size are governed by the same parameters).

The issue of alignment is more subtle. While intonation doeshas a form of its own, its
interaction with the verbal phonetic content of the utterance is important to how it is produced and
perceived. We have already seen that association is a key link between the prosodic and verbal
component as it determines which syllable or which word is accented. In addition to this, the
precise position of the accent in time with respect to the accented syllable is very important. Some
models [260], [259], [258], talk ofearly accents andlate accents, and some argue that exactly
the same intrinsic pitch accent shape can give rise to quite different overall perceptions if only the
alignment differs. Quite detailed studies of alignment have been conducted [465], [266] and [132],
and found that this is a complex issue, and it is not even clearjust what should be aligned with
what. Some suggest that the start of the vowel in the accentedsyllable should act as one anchor
point, with the peak or mid point of the pitch accent acting asthe other. Many other alignment
models are however possible and in general the interactionsbetween the intonation and phonetics
are quite complicated.

The other major intonational effect is the behaviour at phrase boundaries. The F0 at these
points can be systematically raised or lowered for specific effect. The termboundary tone is
often used as the equivalent intonation unit to pitch accent. Strictly speaking, this term is only
applicable to AM models, but it has gained wide enough usage that we use it here to describe
general behaviour at boundaries regardless of whether the particular model uses tones or not.
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9.3 INTONATION THEORIES ANDMODELS

9.3.1 Traditional models and the British school

The British School of intonation includes contributions made as far back as Palmer [344]. Other
major contributions in this school have come from O’Connor and Arnold [333], Crystal [117], and
Halliday [193]. All these variants on Palmer’s original theme use dynamic features such asrise
andfall to describe intonation.

In the account given by Crystal, the most important part of the contour is the nucleus which
is the only mandatory part of an intonation phrase. The nuclear accent can take one of several
configurations, e.g. fall, fall-rise, low rise. Other partsof the contour are termed thetail (T) which
follows the nucleus, thehead(H) which starts at the first accented syllable of the intonation phrase
and continues to the nucleus, and thepre-head(P) which precedes the head. The intonation phrase
has a grammar of (P) (H) N (T), where the brackets denote optional elements.

The relationship between the form and acoustics of this school is the most loosely defined
of all the models described here; this is hardly surprising however as none of the originators of
this system had the technology to analyse F0 contours in detail. The description of form is related
to actual contour shapes that are found, but the descriptions should not be interpreted too literally.
Both “fall” and “rise-fall” accents have rises followed by falls, the difference being that the rise
in the fall accent is much smaller and earlier in the syllablethan the rise in the rise-fall accent.
Halliday describes his tones using rise and fall terminology, but does away with the standard
naming system preferring simply to name his tones 1, 2, 3, 4 & 5.

Some more formal descriptions have been proposed for use with the British School phonol-
ogy. In particular, two models which have been designed for speech synthesis purposes are those
of Isard and Pearson [231] who use Crystal’s phonology and Vonwiller et al [479], who use Hall-
iday’s. Both these synthesis models use the full range of theBritish school tune descriptions and
Isard and Pearsons’s scheme is capable of variations in prominence and pitch range.

9.3.2 The Dutch school

The Dutch School [446], [447] is based on the principle ofstylization of F0 contours. Stylization
in the Dutch system involves taking a F0 contour and attempting to fit a series of straight lines
as closely as possible to the original contour. This stage isuseful as it reduces the amount of
data needed for further analysis: a small number of straightlines are easier to deal with than a
continually varying F0 contour. From these stylizations, aseries of basic patterns can be found -
this process is calledstandardization.

The version of the theory presented in t’Hart and Cohen [446]describes contours in terms
of three declination lines - high, middle and low. Pitch accents are realised by rising and falling
between these declination lines. An example of a stylized and standardized contour is shown in
Figure 9.9 (from Willems [494]).
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Figure 9.9 Example of a standardized contour in the Dutch system. The dotted lines denote the
three declination lines and the thicker solid line shows thepath of the F0 contour. The first excursion
to the top declination line is a head accent (British school). The second accent which rises to the top
line and then falls to the baseline is a fall accent. The rise at the end is a continuation rise.

Because of the stylization process, the continuously varying nature of the F0 contour is
eliminated, and because of the standardization process, the contour description is further reduced
into a small number of units (rises, falls etc). The idea of F0stylisation has proved popular with
many models and techniques outside the Dutch school [481], [121].

9.3.3 Autosegmental-Metrical and ToBI models

Ladd terms this group theautosegmental-metrical (AM) model of intonation. Its origins are
in Liberman’s [284] and Bruce’s [286] work, but its first fullexposition was in Pierrehumbert’s
seminal thesis [351]. From that basic model, a number of alternatives and amendments have been
proposed, but the basics remained unchanged. Most significantly, the intonation part of theToBI
scheme comes directly from Pierrehumbert’s work in this school. Before these early publications,
it was rare to associate the word “phonology” with prosody, but these early works promoted the
idea that intonation and prosody could be described and modelled with much the same technical
apparatus as normal phonology. Hence this school is often referred to asintonational phonology
[266], [269].

The AM model describes intonation as a series of high and low tones. By using a system of
diacritics which distinguish tones located on accented syllables from those occurring at boundaries
and between accents, Pierrehumbert argued that intonationcould be described by patterns of two
basic tones, which she calledH (high) andL (low). Pitch accents can be represented as either a
single or double tone. Every pitch accent has astarred tone (* ) which signals that it is that tone
which is directly associated with the accented syllable. The possible pitch accents areH*, L*, H*
+ L, H + L*, L + H* andL* + H . At phrase boundaries,boundary tonescan be found, which



Section 9.3. Intonation Theories and Models 241

are marked with a (% ). Phrase tonesare used to show path of the contour from the last (nuclear)
accent to the phrase boundary, marked with a (-).

Unlike the British school analysis, there is no strict division of the contour into regions
such as head and nucleus. Both nuclear and pre-nuclear accents can be any one of the six types
described above. The nucleus accent is distinguished because the phrase and boundary tones that
follow it allow a much larger inventory of intonational effects.

Each tone forms a target from which F0 contours can be realised by using interpolation
rules. As with many other theories, the AM model retains the idea of a declination baseline,
but says that the downdrift commonly observed in F0 contoursis mainly due to the phonological
effect ofdownstepwhich again is controllable by the speaker. In her original work, Pierrehum-
bert proposed that the downstep effect is triggered by the speaker’s use of a sequence ofH L H
tones, using evidence from African tone languages as justification (see Figure 9.8 for examples of
downstepping and non-downstepping contours).

The history of the AM model is particularly interesting in that it has a dual character of being
intended as a “pure” linguistic theory in the MIT, Chomsky/Halle phonology tradition, and as a
working model for the Bell Labs TTS system. It is important torealise that from a theoretical
linguistic point of view, the model as just described is not intended to be a “complete” model of
intonation as used in human communication. Rather, the AM school divides the general intonation
system into a part which is properly linguistic, a part whichis para-linguistic and a part that is
extra-linguistic. The distinction is seen as important within this school as the properly linguistic
part, i.e. that described above, is the main area of interestas it forms part of the general grammar of
a speaker’s language faculty. For a complete description however, we require the para-linguistic
effects too, which include for instance the degree of prominence of a pitch accent, and extra-
linguistic effects such as global F0 settings. For our purposes, the distinctions between these
subsystems are less important, but it is important to realise that the system ofH* + L accents and
so on is only a partial representation of an utterance’s intonation.

9.3.4 The INTSINT Model

The INTSINT model of Hirst et al [212], [213], [211], was developed in an attempt to provide
a comprehensive and multi-lingual transcription system for intonation. The model can be seen
as “theory-neutral” in that it was designed to transcribe the intonation of utterances as a way of
annotating databases and thereby providing the raw data upon which intonational theories could be
developed. Hirst has described the development of INTSINT as an attempt to design an equivalent
of IPA for intonation. As stated in Section 6.10, there is no such thing as completely theory neutral
model as all models make some assumptions. Nevertheless, INTSINT certainly fulfills its main
goals of allowing a phonetic transcription of an utterance to be made without necessarily deciding
which theory or model of intonation will be subsequently used.

INTSINT describes an utterance’s intonation by a sequence of labels each of which repre-
sents a target point. These target points are defined either by reference to the speaker’s pitch range,
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in which case they are marked Top (T), Mid (M) or Bottom (B), orby reference to the previous tar-
get point, in which case they are marked Higher (H), Same (S) or Lower (L). In addition, accents
can be marked as Upstepped (S) or Downstepped (D).

Hirst [212] describes this system in detail and shows how it can be applied to all the major
languages. Several algorithms have also been developed forextracting the labels automatically
from the acoustics and for synthesizing F0 contours from thelabels2. Applications of this model
to synthesis include Veronis et al [475].

9.3.5 The Fujisaki model and Superimpositional Models

Fujisaki’s intonation model [166] takes a quite different approach to the models previously dis-
cussed in that it aims for an accurate description of the F0 contour which simulates the human
production mechanism. Fujisaki’s model was developed fromthe filter method first proposed by
Öhman [335].

In the model, intonation is composed of two types of components, thephraseand theaccent.
The input to the model is in the form of impulses, used to produce phrase shapes, and step functions
which produce accent shapes.

This mechanism consists of two second order critically damped FIR filters (these are intro-
duced fully in Section 10.4). One filter is used for the phrasecomponent, the other for the accent
component. The F0 contour can be represented by equations 9.1, 9.2 and 9.3.

lnF0(t) = lnFmin+
I

∑
i=1

Api Gpi (t−T0i)+
J

∑
j=1

Aaj (Gaj (t−T1j )−Gaj (t−T2j )) (9.1)

where

Gpi (t) =

{
α2

i te
−αit for t ≥ 0

0 for t < 0
(9.2)

and

Gaj (t) =

{
min[1− (1+ β jt)e−β j t ,θ] for t ≥ 0
0 for t < 0

(9.3)

2 In addition to being an expert on multi-lingual intonation,Hirst is also know for being able to do a particularly fine
rendition of “Don’t Cry For Me Argentina”.
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Figure 9.10 Three phrase components of differing amplitude. Graph (a) shows the path of the F0
contour, while graph (b) shows the input impulses.

Fmin baseline
I number of phrase components
J number of accent components
Api magnitude of theith phrase command
Aaj magnitude of thejth accent command
T0i timing of theith phrase command
T1j onset of thejth accent command
T2j end of thejth accent command

αi
natural angular frequency of the phrase control mechanism
of the ith phrase command

β j
natural angular frequency of the accent control mechanism
of the jth accent command

θ a parameter to indicate the ceiling level of the accent component.

Although the mathematics may look a little complicated, themodel is in fact very simple.
Each phrase is initiated with an impulse, which when passed through the filter, makes the F0
contour rise to a local maximum value and then slowly decay. Successive phrases are added to the
tails of the previous ones, thus creating the type of patternseen in figure 9.10. The time constant,
α, governs how quickly the phrase reaches its maximum value, and how quickly it falls off after
this.

Accents are initiated by using step functions. When these step functions are passed through
the filter they produce the responses shown in figure 9.11. Theaccent time constant,β, is usually
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Figure 9.11 Three accents of differing duration. Graph (a) shows the path of the F0 contour, graph
(b) shows the input step function for the second accent. As the accent duration increases, the accent
becomes less like a peak and develops a flat top.

much higher thanα, which gives the filter a quicker response time. This means the shape produced
from the accent component reaches its maximum value and falls off much more quickly than
the phrase component. Phrases are initiated by impulses, which have the effect of resetting the
baseline when fed through the filter. Figure 9.10 shows the F0contour produced by the phrase
component.

A number of amendments have been proposed to the Fujisaki model aimed at giving it more
flexibility for modelling languages other than Japanese forwhich it was originally designed. For
instance, Van Santen et al [465], [467], [411] have proposeda model which allows more than
one type of phrase contour, and allows the modelling of micro-prosodic effects as well as detailed
alignment of the contour to the phones. The principle of superimposition is attractive in itself
as it seems intuitive to model different parts or functions of the F0 contour separately and then
combine these to produce the final contour for the utterance.This has lead to other types of
superimpositional models, for instance thesuperposition of functional contoursmodel of Bailly
and Holm [31], discussed in detail in Section 9.6.4.

9.3.6 The Tilt model

TheTilt intonation model developed by Taylor [434] [439] [436] was developed with the explicit
intent of creating a practical, engineering model of intonation. To this extent, issues of purely
linguistic concern (such as phonological rules in the AM model) or biological plausibility, as in the
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Figure 9.12 A pitch accent split into rise and fall components.

+1 +0.5 0.0 −0.5 −1.0

Figure 9.13 Five pitch accents with differing values of tilt, from +1 (pure rise) to -1 (pure fall).

Fujisaki model were ignored. While the Tilt model is no more plausible as a means of intonation
production that say concatenative synthesis, itwasdesigned so that its parameters would have a
clear linguistic interpretation.

The Tilt model describes intonation abstractly as a series of events, and in this sense it fol-
lows the AM model. The main difference is that instead of having a fixed set of categories for
pitch accents and boundary tones; it uses a set of continuousparameters instead. The reason for
this is that Taylor thought the evidence for the particular categories defined in the AM model
as being weak. The basic argument was that the AM model acted like a parallel to the verbal
phonological model. With verbal language, phonetically wehave a continuous space, either ar-
ticulatory or acoustic, but cognitively, this is divided upinto a discrete set of phonological units,
ie the phonemes. The AM model follows the same policy with intonation, but Taylor’s concern
was that there was no equivalent for the minimal pair test to decide how the phonetic space should
be divided up. In fact, as far as he was concerned, no objective test could be developed to find
the pitch accent categories of a particular language. The solution was to abandon the idea of a
discrete number of categories and instead describe the intonational events with a small number
of continuous parameters. While the possibility of some objective test being developed is still
possible, being anengineeringmodel purely, it made sense to err on the side of caution and use a
model which at least described F0 contours accurately and effectively.
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In the Tilt model, there are two types of eventaccentandboundary (these are effectively the
same as the pitch accents and boundary tones in the AM model).Each event comprises two parts,
a rise and afall , as shown in Figure 9.12. Between events straight lines called connectionsare
used. All variation in accent and boundary shape is governedby firstly changing the relative sizes
of the rise and fall components, and secondly by how the eventaligns with the verbal component
(basically, whether it is higher or lower in the pitch range,or occurs earlier or later with respect
to the accented syllable). This then gives a total of six parameters, 4 describing the shape of
the event and 2 describing how it aligns. This basic model (called the rise/fall/connection model
[439]) models contours accurately but is not particularly amenable to linguistic interpretation. The
Tilt model itself is a transformation of the 4 parameters foreach event (rise and fall amplitude, and
rise and fall duration) into the 3 Tilt parameters. Amplitude and duration are given by

Amplitude= A = |Arise|+ |Af all |
Duration= D = |Drise|+ |D f all |

The Tilt parameter itself is used to define the general shape of the event, independent of its am-
plitude, duration or alignment. To find the value of Tilt, we first calculate an interim value,Tilt
amplitude, found by taking the ratio of the differences of the rise and fall amplitudes divide by
the sum of the rise and fall amplitudes:

tiltamp=
|Arise|− |Af all |
|Arise|+ |Af all |

and likewise for duration

tiltdur =
|Drise|− |D f all |
|Drise|+ |D f all |

these two quantities are highly correlated, which allows usto combine them into the single final
Tilt parameter:

tilt =
tiltamp+ tiltdur

2
Figure 9.13 shows a number of event shapes for different values of the Tilt parameter.

9.3.7 Comparison

Many other models have been proposed in addition to the above, but the models described are
perhaps the most popular and at least cover the range of models available. An entire book could
be devoted to discussing the philosophical, historical, theoretical and practical issues surrounding
why one model has the features it does and why it may or may not be better than another model.
For now, however we will simply describe some of the differences in the model to help better
understand why these differences occur.
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Purpose

Not all models were designed for the same purposes. The AM models are usually not described as
models at all, but as theories as to how intonation actually works in human communication. Issues
such as cross-language studies and links with other components of human grammar and so on are
particularly important in this group. The Fujisaki model isoften said to be biologically justifiable,
meaning that it mimics the actual articulation of the human production mechanisms. The Tilt
model is only described in practical terms, as a tool to get the job done and has no claims to model
any aspect (cognitive or biological) of human behaviour. These different approaches are of course
quite common in all areas of language study; what is of note isthat intonation seems to be one
of the few areas where engineering and scientific approachesstill have enough commonality to
constitute a single field.

Phonological vs Phonetic vs Acoustic

The AM model is phonological, the INTSINT model phonetic andthe Fujisaki and Tilt models
acoustic. While these differences are obviously important, one should be wary as to placing too
much significance on these as being statements about what themodel developers think is the
“real” nature of intonation. For example, Hirst proposed INTSINT as an intonational equivalent
to IPA that would allow researchers to label what intonationinformation a contour contained
independent of linguistic theory, in just the same way that aphonetician might make detailed
transcriptions of verbal phenomena. Once done, a phonological theory can be built using these
transcriptions as data, and so it is not correct to say that Hirst thinks intonation is “phonetic” in
character. Likewise, in the AM model, there is the assumption that production includes phonetic
and acoustic components, and in acoustic models the assumption again is that there are higher
level more abstract representations. In fact, there is nothing to stop creating a single formulation
where the AM model would serve as the phonological representation, the INTSINT model as a
phonetic representation and the Tilt model as the acoustic representation.

Tones vs Shapes

There is a basic distinction in most models as to whether intonation is an inherently tone or pitch-
level based system (as in AM models), or whether it is based onpitch shapes or pitch dynamics
(as in the Dutch model, Fujisaki model or Tilt). In theoretical linguistics this debate is seen as
particularly important as researchers are attempting to find the “true nature” of intonation, with
“conclusive” evidence occasionally being produced for oneview over the other. The issue is hard
to resolve, and it may be case where intonation is actually a mixture of both.

Superimpositional vs Linear

Some models have a superimpositional nature (Dutch, Fujisaki) where pitch accents are seen as
being relatively short term which “riding” on top of a phrases which are seen as being relatively
long. By contrast, in linear models (AM/Tilt) contours are composed of linear sequences of in-
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tonational units. Often a grammar is used which states whichunits can follow each other, but so
long as the sequence lies within the grammar, any unit can follow any other.

Being brief, the main reason for supporting the superimpositional model is that F0 contours
do seem to exhibit patterns of global behaviour, where phrases define particular F0 patterns. The
main reason for supporting linear models comes from speech production concerns. Here, we see
that if we support a superimpositional model then the speaker has topre-plan the utterance some
way ahead of time. This doesn’t seem to correspond to known facts in speech production, where
we know for example that a speaker can change the course of theF0 contour at any time.

Finally we should note that some papers have shown how labelsin one model can be trans-
lated to labels in another [436], [374].

9.4 INTONATION SYNTHESIS WITH AM MODELS

We now turn our attention to this issue of intonation synthesis itself. In Chapter 6 we described a
variety of techniques for generating the prosodic form representations of phrasing and prominence
from text. We only made passing reference to the issue of generating intonational form from text
as this really required a thorough discussion on the issue ofintonational form first. With this job
now done, we can describe techniques for both generating intonational form descriptions from text
and for generating F0 controls from intonational form.

While it is possible to build synthesis algorithms with any of the models outlined in Section
9.3.3, we will focus our attention on the most popular techniques, which divide into those based
on AM models (described here) and those based on acoustic models (described next).

9.4.1 Prediction of AM labels from text

We approach the task of predicting intonation from text in much the same way as we predicted
phrasing and prominence from text. With the AM model, our jobis to assign an intonational label
to each syllable, and no matter what algorithm is used, this is formulated as a mapping from a
set of features describing the syllable and its context to a label. A typical approach of this type
is given by Lee [280] who trained a decision tree to generate ToBI labels using linguistic features
such as position in phrase, part of speech tags and syntacticinformation. In general though, any
of the standard text prediction machine learning techniques introduced in Chapter 5 can be used
on this task, and the approach is by and large the same as for prominence prediction and phrasing
prediction. Many other approaches for the prediction of AM and other intonation representations
from text have been proposed, including HMMs [325], decision trees/CART [513], [378] and rules
[462], [365].
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9.4.2 Deterministic synthesis methods

Given a representation of intonational form predicted fromtext, we next attempt to synthesize
an F0 contour from this. In this section we will examine two rule based deterministic proposals
for doing this, the first developed for use the with original Pierrehumbert model and the second,
developed more specifically for use with ToBI.

Anderson, Pierrehumbert and Liberman [16] proposed a synthesis scheme (hereafter called
APL) which generated an F0 contour from an arbitrary AM tone description. Recall that a feature
of the AM model is that it is linear in the sense that there is noglobal pattern to intonation,
each intonational unit in the sequence operates largely independently. This is reflected in the
synthesis algorithm where an acoustic model made of target points is used. In the algorithm, each
intonational event generates a set of target points which define the basic shape of the event. Pitch
range in the model is expressed by two lines, thereference linewhich expresses the default or “at
rest” value of F0, and thebaselinewhich is the minimum F0 value, and the value that F0 falls to
at the end of a phrase which is terminated by anL- L% boundary tone. Declination as a global
trend is absent from the model; rather, downdrift is synthesized by a trend where each successive
pitch accent is in general placed lower in the pitch range. Between pitch accents, phrase accents
and boundary tones, linear interpolation is used to “fill in”the F0 values. An important nuance
in the algorithm is its treatment of phrase final behaviour. Following extensive studies reported in
previous work [285], Anderson et al added a component to the algorithm which dropped the F0
contour to the baseline after the nuclear accent, regardless of whether the model itself would have
predicted such a value. This greatly increases the naturalness of the contours produced as they
have a proper impression of finality compared to other synthesis algorithms they investigated.

A more recent algorithm designed to work with the ToBI schemewas proposed by Jilka,
Mohler and Dogil [241]. This in many ways extends the original work by Anderson et al as it too
synthesises the ToBI events as isolated units, places them in context in the utterance, and then uses
interpolation to cover the regions between. The algorithm improves on the original work in that it
pays particular attention to where target points should be placed with respect to their syllables, and
for instance models in some detail the fact that accents thatoccur early in phrases are often later
with respect to their syllable position than accents which occur later in phrases (its as if the phrase
boundaries are repelling the accents in both directions). In this algorithm, a topline and baseline
are used as the reference points. When downstepping occurs,it triggers a lowering in the topline,
and this is the general mechanism by which downdrift occurs.Example rules for the position of
the target points are given below:
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Intonational eventcontext resultant time position
H* First syllable in phrase 85%

Last syllable in phrase 25%
One syllable phrase 50%
All other cases 60%

L* First syllable in phrase 85%
Last syllable in phrase 25%
One syllable phrase 50%
All other cases 60%

L+H* (H part) First syllable in phrase 90%
Last syllable in phrase 25%
One syllable phrase 70%
All other cases 750%

L+H* (L part) Normal case 0.2s beforeH*
If voiceless region 0.2s beforeH* (reference point)90 %of voiced region to left of reference

9.4.3 Data Driven synthesis methods

Black and Hunt [51] described a data-driven technique for synthesising F0 contours from ToBI
labels. In fact, their work can be seen as a data-driven version of the APL algorithm, in which the
target points are learned from the data rather than specifiedby hand. The approach was based on
learning the mapping between ToBI labels, which had been marked on a database by hand, and F0
contours extracted automatically. The APL model defines target points at very specific locations,
but these are difficult to determine bottom-up so the Black and Hunt approach instead uses three
target points for each ToBI label. These are place the beginning, middle and end of the syllable
associated with the label. This gives us a representation where the input is a ToBI label and a set
of features describing the linguistic context of the label,and the output is three target points. In
this form, the mapping is now amenable for use by a standard machine learning algorithm.

Black and Hunt in fact used a linear regression technique, with features such as lexical stress,
numbers of syllables between the current syllable and the end of the phrase, identity of the previous
labels and so on. Once learned, the system is capable of generating a basic set of target points for
any input, which we then interpolated and smoothed to produce the final F0 contour. Other data
driven techniques such as CART have proven suitable for synthesizing from AM representations
[292], [340].

9.4.4 Analysis with Autosegmental models

The biggest difficulty with the AM models is the difficulty in labelling corpora. Several studies
have been conducted in labelling with ToBI with the general conclusion that while labellers can
often identify which syllables bear pitch accents, they arevery poor at agreeing on which particular
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accent is correct. As we explained in Section 6.10, the inter-labeller agreement with models such
as ToBI is worryingly low, and in many practical database labelling projects many of the pitch
accent distinctions have been dropped [488], [487].

Two major problems stem from this. Firstly, any database which has been labelled with ToBI
will have a significant amount of noise associated with the pitch accent label classes. Secondly,
for any large scale machine learning or data driven approach, we need a considerable amount of
labelled data to the extent that it is impractical to label data by hand. As we shall see in Chapters
15 and 16, virtually all other aspects of a modern data drivenTTS system’s data are labelled
automatically, and so it is a significant drawback if the intonation component can not be labelled
automatically as well. Because however the level of human labeller agreement is so low, it is very
hard to train a system successfully on these labels; we can hardly expect an automatic algorithm
to perform better than a human at such a task.

One solution that is increasingly adopted is to forgo the distinction between label types
altogether, see for instance [488]. While the break index and boundary tone components are often
kept, only a single type of pitch accent is used; in effect thelabellers are marking whether a word
is intonationally prominent or not. However, it should be clear that such an approach effectively
reduces ToBI to a data driven system of the type described below.

9.5 INTONATION SYNTHESIS WITH DETERMINISTIC ACOUSTICMOD-
ELS

Here we describe how to synthesise F0 contours using the Fujisaki and Tilt models and as we
will see, the approach is similar in both cases. Synthesis from the Fujisaki or Tilt parameters is
of course given by the models themselves, and so presents no problems. For TTS purposes then,
the issue is to generate the Fujisaki or Tilt parameters fromthe text. Two basic approaches can be
taken in this regard; either we try and generate the parameters directly from the text, or we take
a two stage approach where we first generate an abstract, discrete prosodic form representation
from the text, and then proceed to generate the model parameters from these.

9.5.1 Synthesis with superimpositional models

The Fujisaki model is most commonly used with Japanese, but has been used or adapted to many
other languages. In Japanese, we find that the range of pitch accent phenomena is narrower than
in languages such as English, which means that the model’s single type of accent is particularly
suited. In addition, the nature of intonation in Japanese means that accents are marked in the
lexicon, which greatly simplifies the problem of prominenceprediction. Hence a simple approach
to this, which uses accent information from the lexicon alone, is often sufficient. A common
approach therefore is to determine phrase breaks and prominent syllables from the text, and then
phrase by phrase and syllable by syllable generate the inputcommand parameters for the Fujisaki
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model using one of the standard machine learning techniques.
Hirose et al [206], [205] describes such an approach for Japanese. In doing so, he makes use

of the basic lexicon tone distinctions in Japanese to given where accents occur, thus simplifying
the prominence and accent prediction process considerably. To generate the accent commands, he
uses parts of speech, syllable structure, relative positions of these, numbers of proceeding phrases
and punctuation. Syntactic units are also optionally used.A number of neural network algorithms
are used, including recurrent networks. In addition, multiple regression analysis in a vein similar
to the ToBI Black and Hunt [51] technique was investigated, in most cases the results were very
similar regardless of which algorithm is used (this of course follows the pattern for other prosody
prediction problems).

One significant advantage that Hirose makes note of is that even when the prediction algo-
rithm generates incorrect parameters for the Fujisaki model, the result is still a “natural” contour
because the model itself is tightly constrained. In other words, the contour produced issomecon-
tour, just not the right one. By comparison, when predictionis poor with target models, the result
may be a contour that bears no similarity to the type that a human could produce.

9.5.2 Synthesis with the Tilt model

Dusterhoff et al [146] described a three stage technique forsynthesising intonation with the Tilt
model. First, they predict where accents are placed; this iseffectively a prominence prediction
algorithm of the type described in Section 6.8. Next, for each accent, the three intrinsic and 2
extrinsic Tilt parameters are generated. This is done with adecision tree, using features such as
syllable position in phrase, length of phrase and so on. Finally, the Tilt model itself generates
the F0 contour. In general though there are many similarities between synthesis with Tilt and the
Fujisaki model, so a technique which works with one can probably be adapted to the other.

9.5.3 Analysis with Fujisaki and Tilt models

An advantage that the Tilt model has over many others is that automatic analysis is significantly
easier using this model. Taylor [436] describes a complete technique for first finding pitch accents
and boundary tones and then determining the Tilt parametersfrom the local F0 contour in the
surrounding region. Many algorithms have also been developed for automatically finding the
Fujisaki model parameters from data [165], [71], [314], [7], [379].

9.6 DATA DRIVEN INTONATION MODELS

A common criticism of the Fujisaki model [285], [436] is thatthere are many contours which
the model can not generate. These include gradual low risingcontours which occur when a low
accent occurs early in a phrase, and the effect of phrase finallowering where the contour falls past
the normal baseline to a final baseline in declarative utterances. Suggestions that fix the problems
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have been made, for instance by including phrase-final negative phrase commands and so on, but
such suggestions detract from the elegance of the original model. The Tilt model can be criticised
asovergenerating in that there are contours it can generate which are never observed. When we
consider simpler stylisation models we see that these models often massively over generate.

To solve these problems, we can of course refine the models, but this can result in endless
“tinkering” in which the models loose their originally elegance and simplicity. The basic problem
is that when we design a model, we wish it to be elegant and easyto interpret, but we always
run the risk that some intonational phenomena that we haven’t taken into account may appear and
be outside the model’s capabilities. We then face the choiceof adding to the model, which often
appears as a “hack” or designing a completely new model.

We can however consider a quite a different approach where wecompletely abandon the idea
of creating an explicit model, but instead infer the model from data. Bailly [29] has considered
this issue and asked whether explicit intonation models arerequired at all; perhaps we should
concentrate on databases and labelling, and leave the specifics of the model to be determined by
modern machine learning techniques. As we shall see in Chapter 13, it is convenient to describe
synthesis techniques in terms of three generations, where the first generation used explicit hand
written rules, the second generation uses basic and quite constrained data driven approaches, and
a third generation which used general data driven and statistical approaches. The same pattern can
be seen in intonation synthesis, where for example the APL algorithm is first generation and the
Black and Hunt decision tree ToBI algorithm is second generation. The techniques described here
can be considered third generation as they match closely theapproaches used in the HMM and
unit selection synthesis techniques described in Chapters15 and 16.

In the following sections, we give an overview of the techniques used, but as many of these
follow the synthesis techniques described in Chapters 15 and 16, we wait until then to give a fully
formal account.

9.6.1 Unit selection style approaches

The unit selection synthesis technique described in Chapter 16 uses an entirely data driven ap-
proach, whereby recorded speech waveforms are cut up, rearranged and concatenated to say new
sentences. Given the success of this approach in normal synthesis, a number of researchers have
applied these algorithms to F0 synthesis [296], [310], [311].

F0 contours extracted from real utterances are by their verynature perfect. The basic idea
therefore is to collect a database of naturally occurring F0contours, and use these at synthesis
time for new utterances. It is extremely unlikely that one ofthe complete contours in the database
will be exactly what we want; for this to be the case we would have have to have exactly the same
text for the synthesis and database utterance. At a smaller scale, say at the phrase, word or syllable
level, it is however possible to find exact or close matches and so the database processed to create
a set ofF0 units. Each unit has a set of features describing it, and at run time, these features are
compared with features generated by the prosodic prediction. Sometimes exact matches are found,
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but often only close matches are found in which case a distance, called thetarget costis calculated
from the desired features to the ones for each unit in the database. The lower the distance, the
closer a unit is to the desired features. Obviously we wish toavoid large discontinuities in F0
values when we move from one unit to the next, and so a second distance, called thejoin cost
is used to give a measure of how similar two units are at their edges. For F0 contours, a simple
metric such as absolute F0 difference is often sufficient.

The idea then is to find the best sequence of F0 units for our desired features, and this is
calculated by summing the target and join costs for a complete sequence of units. Formally, this is
given by:

C(U,S) =
T

∑
t=1

T(ut ,st)+
T−1

∑
t=1

J(ut ,ut+1) (9.4)

whereU is a sequence of units from the database,S is the sequence of desired features,ut is one
unit, st is one set of desired features andT(.) andJ(.) are the target and join costs respectively. A
search is then conducted to find the single sequence of unitsÛ which minimises this cost:

Û = argmin
u

{ T

∑
t=1

T(ut ,st)+
T−1

∑
t=1

J(ut ,ut+1)

}

(9.5)

The advantage of this approached is that we areguaranteedto synthesise a natural contour,
the only question is whether it will be the “correct” naturalcontour for the linguistic context. This
approach is appealing in that is simple and should work for all languages and genres. Furthermore,
as database sizes grow, the quality of this technique will continually improve as we will become
more and more likely to find good matches in the database.

9.6.2 Dynamic System Models

The main drawback of the above unit selection approach is that the algorithm suffers from a “hit
or miss” problem with respect to finding matches in the database. In other words, we have a fixed
number of units, and it is sometimes a matter of luck whether we find a good match or not. While
the technique can produce excellent F0 contours, occasionally no good matches are found and the
results can be poor. Unit selection approaches can be seen asones where certain F0 contours are
memorised by the system. We can contrast this with statistical approaches, where the aim is to
learn the general nature of all F0 contours, by learning model parameters (not memorising) from
a limited amount of training data. The advantage is that the technique is more robust when we
need to synthesize contours we have not previously come across. The downside is of course that
in building our model we have made some assumptions, and so the reproduction of F0 contours
may not be as accurate for cases that we have in fact seen.

Ross and Ostendorf developed a model based on thedynamic system model, a model well
known in control engineering (also know as aKalman filter ). This model is described by astate
equation and anobservation equation, given respectively as follows:
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xk+1 = Fjxk +u j +wk (9.6)

F0k = H jxk +b j +vk (9.7)

The idea here is that the state equation describes a trajectory through time. The above is a first
order IIR filter of the type we will describe in Section 10.4, for now all we need know is that by
appropriate setting of the parametersFj , u j andwk, we can generate a wide variety of trajectory
shapes. By inferring these parameters from data, we can train this equation to generate contours.
The termu j can be seen as an input, and can be thought of as the equivalentof the phrase or accent
command in the Fujisaki model.wk is a term for modelling noise, and is what gives the model its
statistical nature; for now we can think of this as an error term in the model, which allows us to
robustly and statistically learn the other parameters.

Rather than use this equation as is, we also use the observation equation which performs a
mapping from each point in the state trajectory to an actual F0 value, again with trainable param-
eters determining the exact nature of this mapping. While weshould be somewhat cautious about
giving explicit interpretations to statistical models, wecan think of the overall process as follows.
The state equation generates a “true” intonation contour that properly expressed the actual lin-
guistic manifestation of the prosodic form. These trajectories are smooth, clean and simple. We
know however that real F0 values, as measured by pitch detection algorithms (see Section 12.7)
are noisy, in that the contours are rarely smooth or predictable at the lowest level. The observation
equation models this part of the system. If we used the outputof the state equation to model F0
values directly, our problem would be significantly harder as we would then have to model every
perturbation in the contour, and would miss the general and underlying trends in the contour.

During synthesis, the model is “driven” by means of the inputparametersu j andb j and also
optionally by varyingFj andH j . This can be done in a number of ways, but Ross and Osterndorf
use simple equations which link the usual linguistic features (position within the phrase, stress
value of the syllable etc) to change the values of the parameters every syllable. During synthesis,
the noise terms are ignored. Training the model is somewhat complicated, but in essence we
attempt to generate F0 contours on a training corpus and adjust the parameters until the best match
between is found between the F0 contours produced by the model and the natural ones. This
approach is very similar to the expectation maximisation (EM) technique used to train hidden
Markov models. This is explained in full in Section 15.1.8.

9.6.3 Hidden Markov models

The dynamical system model is a natural choice for statistical generation of F0 contours as it is
well suited to the job of generating continuous trajectories. If it has any weakness we can point to
the fact that the state trajectories are limited to being those of a first order filter, the noise terms
have to be Gaussian and the training process can be quite intricate. An alternative is to use hidden
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Markov models (HMMs) as these are in general easier to train and allow more complexity with
regard to noise/covariance terms.

HMMs are however similar to dynamic system models in certainways in that they have
a hidden state space, within which the model dynamics operate, and a projection from this to
an observation space. We have used HMMs before for various tasks including part-of-speech
tagging and phrase-break prediction. In those cases, the output distributions were discrete and
gave the probability of seeing (say) a word given a POS tag. Itis also possible to have HMMs
with continuous output distributions which give the probability of seeing a continuous value given
a state. This sort of HMM can therefore be used for F0 generation. In the dynamic system model,
the hidden state space is a continuous trajectory, and this seems very natural for F0 contours.
HMMs by contrast have a discrete state space, and when we movefrom one state to another during
generation, the observation probabilities suddenly change. In this mode an HMM will generate
extremely unnatural contours where we have a series of constant F0 values, a jump to a different
series of constant F0 values and so on. No real F0 contours have behaviour anything like this. If
we however adopt the formulation of Tokuda et all [453], we can generate from the HMM states
while also taking into account the learned dynamics of F0 behaviour. Inanoglu [230] describes a
system where F0 for various emotions can be accurately generated by HMMs (diagrams of this
are shown in Figures 15.14 and 15.15). This method of HMM synthesis is the subject of Chapter
15 and so we leave further explanation of HMM F0 synthesis until then. We finish however with
the observation that by using this formulation, extremely natural F0 contours can successfully be
generated with HMMs.

9.6.4 Functional models

Given the considerable difficulties in constructing a modelof prosodic form, never mind any
difficulties in using such a model, we can ask whether an explicit model of prosodic form is
really necessary. While experience has shown thatsomenotion of prosodic form is necessary
(see Section 9.1.2), it may not in fact be necessary to model this explicitly; rather we can learn a
model of prosodic form and keep it as a hidden part of a more general model [501], [502]. The
superposition of functional contours (SFC) [216], [321], [217], [31] is a model in which the
mapping from the meaning and linguistic structure to F0 is attempted in a unified fashion. The
SFC model is based on the idea that there are a number of identifiable prosodicfunctions3 and
that each has a characteristic prosodic pattern. As the scope of each function is variable, and as we
can have several independent functions operating on a particular part of the utterance (for instance
syntax and emotion), then we need to combine these effects together to form a single prosodic
pattern.

In the SFC model, the syllable is used as the unit of prosodic control and each is described
by three F0 values and a duration value representing the prosodic lengthening to be applied. Each

3 Here the word “function” means “purpose” and is a combination of affective and augmentative prosody.
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prosodic function is assigned a generator, whose purposes is to generate the prosodic output for the
particular sequence of syllables given when that prosodic function is active. A training database
therefore comprises a set of utterances, each marked with the multiple prosodic functions and the
4-parameter descriptions for each syllable. Each generator is then trained by an iterative procedure
which learns globally what prosodic patterns each generator should produce. In the original paper
Bailly and Holm used neural networks as the generators, but in principle, any trainable model
can be used for this, including the dynamic system models andHMMs described above. The
advantage of this approach is that realistic and natural prosody can be generated without the need
for determining which syllables receive pitch accents and what type they should be. All this is
modelled and optimised implicitly in the model.

9.7 TIMING

Many aspects of intonation, prominence and phrasing are manifested in differences in thetiming
of speech. It is therefore the task of the timing module in a TTS system to assign a temporal
structure to the utterance. The first question then to ask is how exactly should we specify these
timing values? Most commonly this is formulated in terms of unit durations, although other
models assign timing values to significant points in the utterance [35]. The question then is, what
type of units should we assign these durations to? It is well known from experimental phonetics
that the temporal properties of speech are complex. If one talks more quickly, it is not the case that
every part of the utterance contracts by a constant factor. Emphasis generally lengthens sections
of speech, but in very particular ways. At a micro-level, we know that the articulators all have
specific dynamic properties and when a phone is spoken at a faster rate, some articulators may
undershoot their target more than others.

A completely comprehensive approach to timing would therefore attempt to model all these
factors, but in general it is very hard to determine any reliable anchor points at a level lower than
the phone. In practical TTS, the complex sub-phone timing patterns are often ignored as firstly
it is difficult to predict the interactions and secondly it issubsequently difficult to know what to
do with the sub-phone information once obtained. In practice then the most common approaches
are to predict syllable durations or phone durations. Syllables are attractive as they seem to be
the natural units of prosody; we have seen elsewhere that they are the units of prominence and
therefore pitch accent placement. In addition, we usually think of the syllable as being the natural
unit of rhythm. Phones are attractive as they are the smallest units we can predict and therefore
allow the most detail in prediction.

9.7.1 Formulation of the timing problem

Unlike intonation, timing synthesis can timing synthesis can in fact be formulated as a regression
algorithm directly as our goal is to predict a single continuous value from a set of features. Re-
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gardless of whether we are predicting a phone duration or syllable duration, the problem can be
formulated as a mapping from a set of features to a single value, expressed in seconds:

X( f1, f2, ... fN)→ di

Apart from the fact that we are predicting a continuous valueinstead of a class label, this
formulation is the same as we have been using throughout the book for other classification prob-
lems and so it is natural to apply these approaches directly to the duration problem. In addition to
these, a number of specialised approaches have also been developed for use with this problem.

9.7.2 The nature of timing

The most common view of timing is that it is governed by both phonetics and prosody. Regardless
of other factors, the fundamentals of articulatory speech production give a basic temporal pattern to
speech. The articulation required to produce some vowels, such as /ii/ mean that they are inherently
longer than others such as /o/. In addition to these, largely“automatic” aspects of timing, we also
have phonetic timing factors that are part of the allophonicsystem of the language. The classic
example in English is with words such asMELT andMELD where we see that the vowel inMELD

is considerably longer than inMELT. This is a consistent phenomenon (BENT vs BEND, TIGHT vs
TIDE), but isnot a physiological phenomenon alone; it is quite possible to speak these word pairs
with equal durations, and some accents of English, most noticeably Scottish do in fact do this. In
general however, it seems that the identity and interactions of phones has a strong bearing on the
duration of each.

In addition to this we have prosodic factors. It is well observed that the durations at the
ends of phrases are longer than elsewhere. The extent of thisphrase final lengthening is not
completely understood, but roughy speaking we expect the last syllable in a phrase to be longer
than otherwise, and that the amount of lengthening in each phone increases towards the end of that
syllable. It is important to realise that more than timing isaffected by the presence of a phrase
end; voice quality changes here too and the in general the speech is spoken with considerably less
vocal effort.

The other main prosodic factor affecting timing is prominence, with prominent syllables be-
ing considerably longer than non-prominent ones. Althoughnot a proper prosodic factor, lexical
stress behaves in the same way so that lexically stressed syllables are longer than unstressed syl-
lables. It is hard to determine whether intonation has much of an effect on duration as all pitch
accents lie on prominent syllables and so it is difficult to separate the effects of each. One ob-
served phenomenon occurs when a complex intonation form is used with a very short, say single
syllable, utterance. If we say the nameSUE? with a doubting intonation pattern which has a low
accent followed by a rise, we find that the length of the word seems to stretch to accommodate the
complex pitch pattern.
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9.7.3 Klatt rules

One of the most widely set of deterministic rules was developed by Dennis Klatt [253], [10].
Although designed for use with the MITalk formant synthesiser, these rules can be used with any
synthesis technique.

In this, the basic properties of each type of phone are given by two values, aminimum
duration M and aninherent duration . The inherent duration is a sort of average, but is best
thought of as the duration of the phone spoken in a neutral canonical context. The final is then
given by

Duration= [(inherent duration−minimum duration)×A]+minimum duration (9.8)

The termA is calculated by the successive application of a set of rules, where each firing rule
multiplesA by a factor. The factors are calculated as follows:

clause-final lengtheningIf a segment is the vowel or in the coda of a clause-final syllable, then
A = 1.4A.

non-phrase-final shortening If a segment is not in a phrase final syllableA = 0.6A. If the seg-
ment is a phrase-final postvocalic liquid or nasalA = 1.4A.

non-word-final shortening If a segment is not in a word final syllableA = 0.85A.

Poly-syllabic shortening If a vowels is in polysyllabic words,A = 0.80A.

Non-initial-consonant shortening If a consonants is in non-word-initial position,A = 0.85A.

Unstressed shorteningUnstressed segments are half again more compressible; so that minimum
duration = minimum duration/2. If the segment is unstressedor reduced, setA as follows:

• vowel in word medial syllable:A = 0.5A
• other vowels:A = 0.7A
• prevocalic liquid or glide:A = 0.1A
• all others:A = 0.7A

Prominence if the segment is in a prominent syllable,A = 1.4A.

Post vocalic context of vowelsA vowel is modified by the consonant that follows it in the fol-
lowing ways:

• no following consonants, word final:A = 1.2A
• before a voiced fricative:A = 1.6A
• before a voiced plosive:A = 1.2A
• before a nasal:A = 0.85A
• before a voiceless plosive:A = 0.7A
• before all others voiced fricative:A = A

These effects are less in non-phrase final positions, in which case setA = 0.7+(0.3A)
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Shortening in clusters • vowel followed by a vowel:A = 1.2A

• vowel preceded by a vowel:A = 0.7A

• consonant surrounded by consonants:A = 0.5A

• consonant followed by a consonant:A = 0.7A

• consonant preceded by a consonant:A = 0.7A

In addition, Klatt also states that pauses should be 200ms long, and that non-reduced vowels
preceded by voiceless plosives should be lengthened by 25ms.

9.7.4 Sums of products model

Van Santen [411], [464] proposed thesums-of-products modelwhich can be seen as a semi-
trainable generalisation of the Klatt model described above. Van Santen makes a few key obser-
vations regarding the nature of duration prediction. Firstly he notes that many possible feature
combinations will never be observed in the training data (this of course is the same sparse data
problem we have come across before). Crucially however, he notes that duration modelling can
be seen as a well behaved regression modelling problem, in which certain properties of the prob-
lem allow us to make assumptions that can help ease data sparsity. Specifically, he states that to
a large degree the factors influencing duration aremonotonic (or “directionally invariant” in his
terms). In practice this means, while we know that emphasis and phrasing both affect the length
of a phone, and that while strictly speaking we can not consider these features as being indepen-
dent, their general influence on the duration is well behaved, such that emphasis always lengthens
a phone as does phrasing; it is not the case that the effects ofthese features ever reverses. This
means that it is possible to build a model where the interactions of these features do not have to be
comprehensive.

In general, models of this type will not work because they don’t model interactions be-
tween the features. In van Santen’s approach however, the process of building the model is to
use knowledge to design the features. Hence the features actually used in the model will often
be transformations of the ones generally available in the utterance structure. This process of hand
design helps produce features which can operate more independently than the original features.
The parameters can be set in a number of ways; how this is done is independent of the model itself.
A sampling approach is one possibility.

9.7.5 The Campbell model

Campbell [83] proposed a model that uses the syllable as the fundamental unit of duration. In this
a syllable duration is predicted from a set of linguistic features after which the individual phone
durations within the syllable are then calculated. This approach has the attraction in that it is more
modular, where we have one component modelling the prosodicpart of the duration and another
modelling the phonetic part.
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The prosodic part of the Campbell model uses a neural networkto calculate a syllable du-
ration. This is an attractive approach as the neural network, unlike the Klatt or sums-of-products
model, can model the interactions between features. A somewhat awkward aspect of the model
however is the fact that the syllable duration itself is of course heavily influenced by its phonetic
content. If left as is, the phonetic variance in model duration may swamp the prosodic variance
that the neural network is attempting to predict. To allow for this, Campbell also includes some
phonetic features in the model. Campbell maps from syllableto phone durations using a model
based on hiselasticity hypothesiswhich states that each phone in a syllable expands or contracts
according to a constant factor, normalised by the variance of the phone class. This operates as
follows. A “mean” syllable is created containing the correct phones with their mean durations.
This duration is then compared to the predicted duration, and the phones are either expanded or
contracted until the two durations match. This expansion/contraction is performed with a constant
variance, meaning that if the vowel is expanded by 1.5 standard deviations of its variance, the
constant before it will be expanded by 1.5 standard deviations of its variance.

The problem of the absolute syllable duration can be easily solved by having the neural
network predict this z-score instead of an absolute duration, an approach followed by [456]. This
then frees the neural network from phonetic factors completely and allows it to use only prosodic
features as input.

In general this model is quite effective as it solves the feature explosion problem by positing
a modular approach. One significant weakness however is thatthe elasticity hypothesis is demon-
strably false. If it was true then we would expect the z-scores for all the phones in a syllable to be
the same, but this is hardly ever the case; depending on context, position and other features the z-
scores for phones across a syllable vary widely. This is a problem with only the second component
in the model and a more sophisticated model of syllable/phone duration interaction could solve
this. In fact, there is no reason why a second neural network could not be used for this problem.

9.7.6 Other regression techniques

As we might expect by this stage in the book, most of the usual classification/regression algo-
rithms have been applied to the duration prediction problem. These include decision trees [372],,
neural networks for phone prediction [109], [157], geneticalgorithms [319] and Bayesian belief
networks [182]. Comparative studies of decision trees and neural networks found little difference
in accuracy between either approach, [473], [187], [72].

9.8 DISCUSSION

In this chapter, we have considered techniques for synthesizing the acoustics of prosody. Any
discussion on this topic will draw more or less the same conclusions as given in the discussion in
Chapter 6, where we explained that there was an enormous range of models, theories and explana-
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tions for prosodic phenomena. The consequence of this is that developing engineering solutions
to practical prosodic problems was considerably more difficult than with the verbal component
of language. Hence the problem is complicated because thereis no commonly agreed way of
representing the linguistic form of the phenomena we are attempting to synthesize.

While many of the AM models and deterministic acoustic models provide useful and ad-
equate representations for intonation, the trend is clearly towards the data driven techniques de-
scribed in Section 9.6. These have several advantages; besides bypassing the thorny theoretical
issues regarding the “true nature” of intonation, they havethe ability to automatically analyse
databases, and in doing are also inherently robust against any noise that can occur in the data,
whether it be from errors in finding F0 values or from other sources.

The purpose of all the prosody algorithms described in this chapter is to provide part of the
specification which will act as input to the synthesizer proper. In the past, the provision of F0
and timing information was uncontested as a vital part of thesynthesis specification and most
of today’s systems still use them. As we shall see in Chapters15 and 16, however, some third
generation systems do not require any acoustic prosody specification at all, making used of higher
level prosodic representations instead. Rather than use F0directly, stress, phrasing, and discourse
information are used. While such an approach completely bypasses all the problems described in
this chapter, it does have the consequence of increasing thedimensionality of the feature space
used in unit selection or HMM synthesis. It is therefore a practical question of tradeoff whether
such an approach is better than the traditional approach.

Most work on the acoustics of prosody has focused on the modelling of F0 and timing. This
has mainly been because these are the parts of prosody which are most readily identifiable and
separable from the influence of verbal factors. In addition,these are the aspects of speech which
signal processing algorithms find easiest to modify. It is quite clear however that prosodic factors
have a strong influence on a range of other acoustic aspects ofthe signal. For instance at the ends
of phrases the vocal effort is considerably reduced, and theoverall voice quality is quite different
than elsewhere. To date, only a few studies have considered these effects [424], [417], [183]. If
the prosodic influence on voice quality is not modelled within a TTS system the naturalness with
definitely suffer, but it is unclear whether these affects should be modelled explicitly, or implicitly
within a unit selection or HMM synthesizer.

9.8.1 Further Reading

Articles on all the models and techniques described here arereadily available, but there are few
which consider all models together and offer comparisons. The best account of the AM model
is given by Ladd [269]. Ladd not only describes the model and its development, but also serves
as a solid introduction to the whole field of intonational phonology and the practical phonetics
associated with it. Accounts of the INTSINT model are given in Hirst [212], the Tilt model in
Taylor [436], the Fujisaki model in Fujisaki [166], the SFC model in Bailly and Holm [31], the
Dutch model in [447], the British school in O’Connor and Arnold [333].
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9.8.2 Summary

Prosodic form and acoustics

• The history of intonation research is full of attempts at finding a system of prosodic form
which could act as the equivalent of phonemes in the verbal component of language

• No consensus has been reached on this issue, which has lead tothe large number of quite
different models that have been developed.

• F0/pitch and timing are the two main acoustic representations of prosody, but this is largely
because these are quite easy to identify and measure, other aspects of the signal, most notably
voice quality are heavily influenced also.

Intonation models

• The British school describes intonation contours as comprising a pre-head, head, nucleus
and tail, and each has an inventory of shapes.

• The AM school (which includes ToBI) describes intonation interms of abstract High and
Low tones. Diacritics (*, %, -) are used to specify which tones align with syllables and
boundaries. The tones can be combined in various ways to forman inventory of pitch accents
(e.g. H* +L).

• The INTSINT model provides a way of labelling intonation across theories and languages,
and provides a way of labelling data for further analysis in much the same was as the IPA is
used in phonetics.

• The Fujisaki model describes intonation as a sequence of commands with continuous param-
eters which when fed into the appropriate filters generates an F0 contour. The model has an
accent component and phrase component which are superimposed to give the final contour

• The Tilt model describes intonation with a sequence of events, each of which is described
by a set of continuous parameters.

• Many more intonation models exist, some of which are modifications of the above.

Intonation Synthesis

• The acoustic models, such as Tilt and Fujisaki, have synthesis algorithms “built-in” and
hence synthesis is fairly trivial with these.

• The phonological models usually have independently developed synthesis algorithms

• In recent years, the notion of explicit models has been challenged by a number of data-driven
techniques which learn intonation effects from data.

• Some models, such as SFC, do away even with notions of explicit prosodic form and learn
the all the processes and representations of intonation from data.
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Timing

• The purpose of a timing algorithm is to assign a time, usuallyin the form of a duration to
each linguistic unit.

• Nearly all algorithms take the form of a regression algorithm, where a number of linguistic
features are used as input to a algorithm which outputs a time.



10 SIGNALS AND FILTERS

This chapter introduces the fundamentals of the field ofsignal processing, which studies how
signals can be synthesised, analysed and modified. Here, andfor the remainder of the book, we
use the term signal in a more specific sense that before, wherewe take it to mean awaveform
that represents a pattern of variation against time. This material describes signals in general, but
serves as a precursor to the following chapters which describe the nature of speech signals and
how they can be generated, manipulated and modified. This chapter uses the framework ofDigital
Signal Processing, a widely adopted set of techniques used by engineers to analyse many types of
signals.

10.1 ANALOGUE SIGNALS

A signal is a pattern of variation thats encodes information. Signals which encode the variation
of information over time can be represented by atime waveform, which is often just called a
waveform. Figure 10.1 shows an example speech waveform. The horizontal axis represents time
and the vertical axis represents amplitude, hence the figureshows how the amplitude of the signal
varies with time. The amplitude in a speech signal can represent different physical quantities: for
example, the variation in air pressure in front of the mouth,the displacement of the diaphragm
of a microphone used to record the speech or the voltage in thewire used to transmit the speech.
Because the signal is a continuous function of amplitude over time, it is called ananalogue signal.
By convention, analogue signals are represented as a continuous functionx over timet. This is, if
we give a value for time, the functionx(t) will give us the amplitude at that point.

Signals can be classified asperiodic, that is signals which repeat themselves over time, or
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(a) The sine wave
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(b) The cosine wave

Figure 10.2 Sine and cosine waves

aperiodic, that is signals which do not. Strictly speaking, no speech sound is ever exactly periodic
because there is always some variation over time. Such signals are termedquasi-periodic. In
Figure 10.1 it should be clear that the vowel sound is quasi-periodic, whereas the fricative is
aperiodic. In the subsequent sections we will build a framework for describing signals, by first
considering periodic signals and then moving on to considering any general signal.

10.1.1 Simple periodic signals: sinusoids

The sinusoid signal forms the basis of many aspects of signal processing.A sinusoid can be
represented by eithersine function or acosinefunction

x(t) = sin(t)

x
′
(t) = cos(t)

It may not be immediately clear why the sine and cosine function, which we probably first en-
countered in trigonometry, have anything to do with waveforms or speech. In fact it turns out
that the sinusoid function has important interpretations beyond trigonometry and is found in many
places in the physical world where oscillation and periodicity are involved. For example, both the
movement of a simple pendulum and a bouncing spring are described by sinusoid functions.

Plots of these functions against time are shown in Figure 10.2, and from these it should be
clear that both are periodic, that is that they exactly repeat over time. Theperiod T is the length
of time between any two equivalent points on successive repetitions. In the simple sinusoid, the
period isT = 2π; that is, for any give point, the signal has the same value 2π seconds later.

From Figure 10.2 we see that the sine and cosine function haveidentical shape, and differ
only in their alignment. That is, if we shifted the cosine wave π/2 to the right, it would exactly
match the sine wave:

sin(t) = cos(t + π/2)
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(b) The cosine function with frequency 100Hz

Figure 10.3

The extra term in the cosine function is called thephase shift, denotedφ, and can be used to
move sinusoids earlier and later in time. Whenφ = π/2 the cosine exactly aligns with the sine,
but different values will produce different alignments, asshown in figure 10.3a. It should be clear,
that because the signal has period 2π, φ need only have values in the range 0 to 2π to account for
all possible phase shifts. Because a sine can be representedby a cosine with an appropriate phase
shift and vice versa, we can use either sines or cosines exclusively. By convention, cosines are
generally used, giving the general formula:

x(t) = cos(t + φ)

We definefrequency, F, as the number of times the signal repeats in unit time, and this is clearly
the reciprocal of the period:

F =
1
T

(10.1)

The frequency is measured in cycles per second,Hertz, and so the frequency of our sinusoid
is 1/2π Hz. A sinusoid of a different frequency can be generated by multiplying the variablet
inside the sine function. For a frequency of 1Hz, we multiplyt by 2π, and so for any frequencyF
expressed in Hz, we multiplyt by 2πF. Figure 10.3b shows a sinusoid.with frequency 100Hz.

x(t) = cos(2πFt + φ)

To save us writing 2π everywhere, a quantity calledangular frequency is normally used, which
is denoted byω and has unitsradians per second:

ω = 2πF =
2π
T

(10.2)
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Figure 10.4 A square wave of fundamental frequency 100Hz

The parametersω andφ can thus be used to create a sinusoid with any frequency or phase. A final
parameter,A is used the scale the sinusoid and is called theamplitude. This gives the general
sinusoid function of:

x(t) = Acos(ωt + φ) (10.3)

10.1.2 General periodic signals

Many non-sinusoidal waveforms are periodic: the test for a periodic waveform is that there exists
some periodT, for which the following is true:

x(t) = x(t +T) = x(t +2T) = x(t +3T)... (10.4)

That is, at multiples ofT the value is always the same. The lowest value for which this is true is
called thefundamental period, denotedT0. The frequencyF0 = 1/T0 is called thefundamental
frequency , and its angular equivalent isω0 = 1/2πT0. A harmonic frequency is any integer
multiple of the fundamental frequency, 2F0,3F0, ....

It can be shown thatany periodic signal can be created by summing sinusoids which have
frequencies that are harmonics of the fundamental. If we have a series of harmonically related
sinusoids numbered 0,1,2, ...,N, then the complete signal is given by:

x(t) = a0cos(0×ω0t + φ0)+a1cos(1×ω0t + φ1)+a2cos(2×ω0t + φ2)+ ... (10.5)

were appropriate setting of the amplitudesak and phase shiftsφk is used to generate the given
waveform.

As 0×ω0t = 0 anda1cos(φ0) is a constant, we can combinecos(φ0) and a0 into a new
constantA0, leaving the first term as simply this newA0. This can be thought of as an “amplitude
offset” (or “DC offset” in electrical terminology), so thatthe waveform does not have to be centred
on the y-axis. In the most general case, the number of terms can be infinite, so the general form of
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(b) superimposed sine waves of the first to seventh
harmonics
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(c) synthesised wave of the first and third harmon-
ics
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(d) synthesised waves of the harmonics 1 to 7
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(e) synthesised waveform of harmonics 1 to 29

Figure 10.5 Fourier synthesis of a square wave for different numbers of harmonics
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equation 10.5 is:

x(t) = A0 +
∞

∑
k=1

akcos(kω0t + φk) (10.6)

Equation 10.6 is a specific form of theFourier series, one the most important concepts in signal
processing. The process as just described is known asFourier synthesis, that is the process of
synthesising signals by using appropriate values and applying the Fourier series. It should be noted
that while the sinusoids must have frequencies that are harmonically related, the amplitudes and
phases of each sinusoid can take on any value. In other words,the form of the generated waveform
is determined solely by the amplitudes and phases.

To demonstrate some of the properties of Fourier synthesis consider the task of synthesising
a square wave, as shown in Figure 10.4, and defined by:

x(t) =

{

1 for 0≤ t ≤ 1
2T0

−1 for 1
2T0≤ t ≤ T0

(10.7)

This signal can be generated by adding only the odd harmonicsof the fundamental, using the same
phase for every harmonic, and choosing appropriate amplitudes:

ak =

{

4/kπ k = 1,3,5, ...
0 k = 0,2,4,6, ...

(10.8)

Figure 10.5 shows the process of creating a square waveform by adding more and more harmonics
to the fundamental sinusoid.

We have only been able to generate the square waveform because we knew the appropriate
values forak andφk for every harmonic. The converse problem, of finding unknownak andφk

for a known waveform functionx(t) is termedFourier analysis and will be described in section
10.1.4.

10.1.3 Sinusoids as complex exponentials

While the general form of the sinusoid,x(t) = Acos(ω0t + φ) faithfully represents a sinusoid, it
turns out that for types of operations we consider below, a different form of the sinusoid, known
as thecomplex exponentialgreatly simplifies the mathematics and calculations. The basis of this
representation isEuler’s formula which states:

ejθ = cosθ+ jsinθ (10.9)

whereθ is any number andj =
√
−1. Theinverse Euler formulas are:

cosθ =
ejθ +e− jθ

2
(10.10)

sinθ =
ejθ−e− jθ

2 j
(10.11)
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From here on, we will make frequent use ofcomplex numbers, which comprise of a real
partx, and an imaginary partjy, where j =

√
−1, such thatz= x+ jy.

If we add an amplitude and setθ = ωt + φ, we get;

Aejω+φ = Acos(ωt + φ)+ jAsin(ωt + φ) (10.12)

where A, ω and φ are all real and have the same meanings as before. At first glance, this
seems insane - why on earth should we replace our previous, easily interpretable representation
of a sinusoid, A cos(ωt + φ), with a different equation, that includes an extra, imaginary term,
jAsin(ωt +φ), and then rewrite it as an exponential? The reason is purely that it makes manipula-
tion much easier. As a demonstration, consider the following, which allows us to represent phase
differently:

x(t) = Aejωt+φ = Aejφejωt (10.13)

ejφ is a constant, not dependent ont, and we can combine this with the amplitudeA to form a new
constant,X, giving:

x(t) = Xejωt = Aejωt+φ = Aejωtejφ (10.14)

Here, the new quantityX, is acomplexamplitude and describes both the original amplitude and the
phase. The purely sinusoid part,ejωt is now free of phase information. This is highly significant,
because it turns out that in general, we want to describe, modify and calculate amplitude and phase
together. (From here on, amplitude terms in complex exponential expressions will generally be
complex - if the pure amplitude is required, it will be denoted |A|.)

While the complex exponential form has an imaginary part.jsin(ωt) to the waveform, in
physical systems such as speech, this does not exist and the signal is fully described by the real
part. When requiring a physical interpretation, we simply ignore the imaginary part ofejωt .

Using the complex exponential form, we can write a more general form of the Fourier syn-
thesis equation:

x(t) =
∞

∑
−∞

ake
jkω0t (10.15)

whereak is a complex amplitude representing the amplitude and phaseof thekth harmonic:

ak = Ake
jφk (10.16)

Equation 10.15 is the general form of Fourier synthesis which sums harmonics from−∞ to +∞.
It can be shown that for all real valued signals (that is ones like speech with no imaginary part),
the complex amplitudes areconjugate symmetricsuch thata−k = ak. In this case, the negative
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harmonics don’t add any new information and the signal can befaithfully constructed by summing
from 0 to∞:

x(t) =
∞

∑
0

ake
kω0t (10.17)

In fact, the summation from−∞ to +∞ keeps the mathematics easier, so we often use the complete
form.

10.1.4 Fourier Analysis

What if we know the equation for the periodic signalx(t) and wish to find the complex amplitudes
ak for each harmonic? TheFourier analysis equation gives this:

ak = 1/T0

Z T0

0
x(t)e− jkω0tdt (10.18)

It should be clear, that integrating a sinusoid over a singleperiod will give 0 for all sinusoids1

Z T0

0
sin(ω0t)dt = 0

This holds for any harmonic also - while we have more positiveand negative areas, as we have an
equal number of them then the sum will always be zero. In exponential form, we can therefore
state:

Z T0

0
ekω0tdt = 0

Now consider the calculation of theinner product of two harmonically related sinusoids, where
one is the complex conjugate of the other

Z T0

0
ejkω0te− jl ω0tdt

this can be written:
Z T0

0
eω0(k−l)tdt

Whenk 6= l , this quantityk− l is an other integer, which will represent one of the harmonics. But
we know from equation 10.1.4 that this will always evaluate to 0. However, whenk = l , then
k− l = 0 so the integral is

Z T0

0
ejω00tdt =

Z T0

0
1dt = T0

1 This can be seen by using the interpretation that integration over an interval is finding the area between the curve
and the x-axis. From the sine wave in Figure 10.2 we see the area between 0 andπ will cancel out the area betweenπ
and 2π.
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(a) The square wave and sine waves of the first
harmonic
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(b) multiplication of square wave and sine wave of
the first harmonic
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(c) The square wave and sine wave of the second
harmonic
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(d) multiplication of square wave and sine wave of
the second harmonic
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(e) The square wave and sine wave of the third
harmonic

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.005  0.01  0.015  0.02

am
pl

itu
de

time

(f) multiplication of square wave and sine wave of
the third harmonic

Figure 10.6 Fourier synthesis of a square wave for different numbers of harmonics. We can see
that the curve in figure d has symmetry about the x-axis and so there is an equal amount of area above
and below the x-axis. The total area is therefore 0, hence thecontribution of the second harmonic to a
square wave is 0. Figures b and f have more area beneath the x-axis than above, hence the total area
will sum to a non-zero value.
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Using these results, we can state theorthogonality property of sinusoids:

Z T0

0
ejkω0te− jl ω0tdt =

{

0 if k 6= l
T0 if k = l

(10.19)

Imagine we have a signalx(t) = ejl ω0t of known fundamental period but unknown harmonic (that
is, we knowω0 but notl ). We can calculate the inner product of this signal with eachharmonick=
1,2,3... of the fundamental. All the answers will be zero except the one for when the harmonics
are the same (k = l ). As a general periodic signal is just the sum of a set of harmonics, we can
use this method to find the value of every harmonic in a signal.Mathematically, we show this by
starting with the Fourier series:

x(t) =
∞

∑
−∞

ake
jkω0t

If we multiply both sides by the complex conjugate exponential and integrate over periodT0 we
get:

Z T0

0
x(t)e− jl ω0tdt =

Z T0

0

( ∞

∑
−∞

ake
jkω0t

)

e− jl ω0tdt

=
∞

∑
−∞

ak

(Z T0

0
ejkω0te− jl ω0tdt

)

=
∞

∑
−∞

ak

(Z T0

0
e− j(k−l)ω0tdt

)

= al T0 (10.20)

and if we replacel with k we get the Fourier analysis definition.
Fourier analysis can easily be demonstrated graphically. Figure 10.6 shows the multiplica-

tion of a square wave with sinusoids of different harmonics.It can be seen from the graphs that the
first and third harmonics have a non-zero area, and so their Fourier coefficient will be non-zero.
The multiplication of the square wave and second harmonic produces a curve which is symmetri-
cal about the x-axis and so the area beneath the x-axis will exactly match the area above, resulting
in a total area of 0.

One interesting point about the Fourier synthesis and analysis equations is that while they
have a similar form, one is a sum while the other is an integral. This is solely because periodic
signals are composed of a integer number (possibly infinite)of discrete harmonics, necessarily
enforcing a discrete frequency description. The waveform however, is a continuous function. As
we shall see, there are several variations on these equations in which frequency can be continuous
or time discrete.
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(c) magnitude spectrum
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(d) phase spectrum

Figure 10.7 The two ways of showing the full spectrum for a square wave. For a square wave, the
real part is zero for all harmonics, and the phase isπ for all harmonics.

10.1.5 Frequency domain

The previous sections have shown how arbitrary periodic signals can be composed of harmonics
with appropriate amplitudes and phases. It is often very useful to study the amplitude and phases
directly as a function of frequency. Such representations are referred to asspectra and are de-
scribed as being in thefrequency domain. By contrast, waveforms as a function of time are said
to be in thetime domain.

Because the harmonic coefficients are complex, we can plot the spectrum in eitherCarte-
sian or polar form. The Cartesian form has areal spectrum andimaginary spectrum as shown
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(c) magnitude spectrum
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(d) phase spectrum

Figure 10.8 Spectra for square wave with delay. The real and imaginary spectra are clearly differ-
ent from figure 10.7. The magnitude spectrum is the same, and the phase spectrum is the same apart
from the additional shift.

in Figures 10.7a and 10.7b . Alternatively, we can plot the coefficients in polar form with amag-
nitude spectrum andphase spectrum, as shown in Figures 10.7c and 10.7d. For the Cartesian
interpretation, we see that the all the real parts are 0, and only the imaginary spectrum has values.
This is equivalent to saying that no cosine functions were used, only sines: this can be seen in
Figure 10.5. This can also be seen from the phase spectrum, were all the phases have a value of
π/2, again showing that only sine waves are used.

Now consider the square wave that is identical to the one we have been analysing, except
that it is shifted 1/4 period to the left. If we subject this to Fourier analysis, we get the spectra
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Figure 10.9 A waveform created from harmonics 1,3,5 and 7 of a “square” wave. The magnitude
values are the same as the standard definition, but the phase values for harmonics 3 and 9 are set to 0.
This will sound exactly the same as the waveform shown in 10.5d, even though the shapes of the two
waveforms are quite different.

shown in figure 10.8. This shows that the imaginary part is nowzero, and the real part spectrum
now contains the non-zero coefficients. The phase spectrum is also different, while the magnitude
spectrum is the same as for the original square wave. This result is highly significant as it shows
that only the magnitude spectrum is unaffected by a delay in the signal, and so we can say the
magnitude spectrum best captures the essential characteristics of the shape of the square wave.

The difference in the two square waves is in their relative position in time - one is slightly
later than the other. This agrees with what we expect from human hearing: if we play a note on
a piano and then play the same note at some other time, the notes sound exactly the same, even
though their position with respect to some reference timet = 0 will generally be different. In fact,
from extensive studies, we know that the human ear is largelyinsensitive to phase information in
discerning speech and other sounds, such that if two signalshave the same magnitude spectrum
but different phase spectra, in general they will be perceived as sounding the same2. This fact
not only applies to the square wave as a whole, but to the individual harmonics as well - if we
synthesise a waveform with the magnitude spectrum of a square wave, andany phase spectrum,
it will sound exactly the same as the normal square wave. As the square wave shape is only
created by careful alignment of the sinusoids, it will generally be the case that a wave created
with an arbitrary phase spectrum will not form a square waveform at all; nevertheless,any two
waveforms with the same magnitude spectra will sound the same regardless of phase or the
shape of the waveform.Figure 10.9 shows a waveform created with the magnitude values of a
square wave.

This is an important fact for speech analysis and synthesis.For analysis, we generally only
need to study the magnitude spectra and can ignore phase information. For synthesis, our signal

2 Phase information is however used tolocalisesounds, that is, we use the phase difference between the signal arriving
at each ear to estimate where the source of the signal is
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generator need only get the magnitude information correct,the phase is much less important.
We will now discuss thefrequency rangeover which the spectrum is defined. First note that

when considering frequency plots of continuous signals, itis important to realise that the upper
limit in the graph is arbitrarily chosen - in fact all continuous signals have frequency values to
∞. Just because humans can only hear frequencies up to say 20,000Hz doesn’t mean to say they
stop being physically present above this level. Secondly note that the spectra for the square wave
in Figures 10.7 and 10.8 are plotted with negative as well as positive values for frequency. Our
initial definition of frequency stated that it was the inverse of the period, and since we can’t have
a negative period, why negative frequency? The use of negative frequency comes from the fact
that a true continuous signal, is defined in time from−∞ to ∞. As we shall see later, time and
frequency share a duality, with neither being more “real” than the other. As time extends from−∞
to ∞, so does frequency.

If we take the cosine sinusoid definition and write it in termsof complex exponentials using
the inverse Euler equation 10.11,

x(t) = cos(ωt) =
ejωt +e− jωt

2

x
′
(t) = sin(ωt) =

ejωt +e− jωt

2 j

we see that this signal actually hastwo frequencies, a positiveω and a negativeω. This is a general
property of allreal signals: they will have conjugate symmetry aroundω = 0, i.e. the vertical axis
in the spectrum. Conjugate symmetry is a complex property, in which the real part of the spectrum
is reflected in the vertical axis, and the imaginary part is reflected in the vertical axis and again in
the horizontal axis. This is clearly seen in Figures 10.7 and10.8.

Signals which are not purely real, such asejωt itself, only have one frequency value. Because
of this, it can be argued that complex exponentials really are a simpler form that the sine or cosine
form.

10.1.6 The Fourier transform

In general, we need to analyse non-periodic signals as well as periodic ones. Fourier synthesis
and analysis can not deal with non-periodic signals, but a closely related operation, theFourier
Transform is designed to do just this. By definition, the Fourier transform is:

X( jω) =

Z ∞

−∞
x(t)e− jωdt (10.21)

Its similarity to Fourier analysis (Equation 10.18) shouldbe clear:

ak = 1/T0

Z T0

0
x(t)e− jkω0tdt
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Figure 10.10 Real spectra for a signal of constant shape but decreasing period. As the period
decreases, the harmonics get closer, but the envelope of thespectrum stays the same. In the limit,
period→ ∞, the harmonics will be infinitely close and the spectrum willbe be a continuous function
of frequency.
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The differences are that firstly we are now computing an integral from−∞ to ∞ rather than over
a single period: as our signal now may not have a period we can not of course integrate over it.
Secondly, the result is acontinuousfunction over frequency, not simply the complex amplitudes
for a set of discrete harmonics. For non-periodic signals wehave to abandon the idea of harmonics:
the magnitude and phase are instead expressed as a continuous function of frequency.

The Fourier transform can be explained as follows. Imagine we have arectangular pulse
waveformx(t), which has values for a finite durationT, defined as follows:

x(t) =

{

1 for −1/2T ≤ t ≤ 1
2T

−1 otherwise

This is equivalent to just a single period of a square wave, centred att = 0 with values−1 every-
where else. This is clearly not periodic. But imagine we artificially make a periodic version by
replicating its shape as shown in Figure 10.10a. This gives us our familiar square wave and by
Fourier analysis we get the spectrum, the real part of which is shown in Figure 10.10b. Now imag-
ine we perform the same trick, but move the repetitions further apart - in effect we are increasing
the period of our waveform (Figure 10.10c). After performing Fourier analysis, we get the real
spectrum shown in Figure 10.10d. It should be immediately apparent that the overall shape (the
envelope) is the same, but that the harmonics are now much closer together, as we would expect
of a waveform of longer period. If we extend the period further still (Figure 10.10e), we get the
real spectrum shown in Figure 10.10f and here the harmonics are closer still. AsT0→ ∞, the
“harmonics” in the spectrum become infinitely dense, resulting in a continuous function.

Let us now calculate the continuous spectrum of the rectangular pulse directly. From its
definition, the Fourier transform of the waveform is:

X( jω) =

Z T/2

−T/2
e− jωtdt

=
e− jωT/2

− jω
− −ejωT/2

− jω

We can use the inverse Euler formula to simplify this as:

X( jω) =
sin(ωT/2)

ω/2
(10.22)

Any function of the formsin(x)/x is known as asinc function. The real spectrum of this is
shown in Figure 10.10b, and we can see that this has the exact shape suggested by the envelope
of the harmonics in Figure 10.10. Figures 10.10c and 10.10d show the waveform and Fourier
transform for a pulse of shorter duration. The Fourier transform is now more “spread-out”, and
this demonstrates an important of the Fourier transform known as thescaling property.
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Figure 10.11 Waveform and real part of spectrum for two rectangular pulses of different duration.
These figures demonstrate the scaling principle whereby compression in one domain gives rise to
spreading in the other.

The inverse Fourier transform is:

x(t) = 1/2π
Z ∞

−∞
X( jω)ejωtdt (10.23)

and when we compare this to the Fourier synthesis equation (Equation 10.18)

x(t) =
∞

∑
−∞

ake
jkω0t



282 Chapter 10. Signals and Filters

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2000 -1500 -1000 -500  0  500  1000  1500  2000

am
pl

itu
de

frequency

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

am
pl

itu
de

time

Figure 10.12 Figure a) is the real part of a spectrum, and figure b) is its inverse Fourier transform.
Along with Figure 10.11, these figures demonstrate the duality principle.

we can see that the discrete frequency representation of a fundamental frequency multiplied by a
harmonic index has now been replaced with a continuous frequency variableω.

Let us now use the inverse Fourier transform to find the waveform for a defined spectrum.
Consider a spectrum which is 1 within a certain frequency region and -1 elsewhere:

X( jω) =

{

1 for −ωb≤ t ≤ ωb

−1 otherwise
(10.24)

The inverse Fourier transform of this is:

x(t) = 1/2π
Z ωb

−ωb

ejωtdt

=
1
2π

e− jωbt

− j2πt
− −e− jωbt

− j2πt

=
sin(ωbt)

πt
(10.25)

This is shown in figure 10.12. When we compare equation 10.25 to equation 10.22 and figure
10.11 to figure 10.12 we see that the Fourier transform of a rectangular pulse is a sinc spectrum,
and the inverse Fourier transform of a rectangular spectrumis a sinc waveform. This demonstrates
another special property of the Fourier transform known as theduality principle . These and other
general properties of the Fourier transform are discussed further in section 10.3.
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10.2 DIGITAL SIGNALS

We now turn our attention todigital signals. All the signals we have discussed up until now are
analogue signalsin which the amplitude and time dimensions are represented by real numbers.
By contrast, Digital signals are represented by a sequence of integers. In the “real-world”, most
signals are analogue, including speech signals, where the amplitude is a measure of sound pressure
level or some other physical quantity. Digital signals are mostly found in computers.

10.2.1 Digital waveforms

A digital signal is represented by a sequence of evenly spaced points, the value at each point being
the amplitude, represented by an integer. This integer amplitude value can be interpreted as the
digital manifestation of sound pressure level, or voltage or some other such analogue quantity.
Formally, a digital sequence is represented as follows:

x[n] = ...,x−2,x−1,x0,x1,x2, ... (10.26)

For digital sequences, it is usual to usen and writex[n], to distinguish from continuous time
t in analogue signals. Each point in the sequence is called asample, and the distance between one
sample and the next is called thesample period, Ts. Thesample rateor sample frequencyis given
by Fs = 1/Ts. The sample rate limits the frequencies which the digital signal can describe. The
highest frequency that a digital signal can contain is called theNyquist frequency and is exactly
half the sample rate.

The choice of sample rate is a compromise between wanting to have the highest possible
quality (high sample rate) and the lowest storage or transmission cost (low sample rate). Practical
data from human perception studies shows that the limit of human hearing is about 20,000Hz and
this figure would lead us to use sampling rates of>40,000 Hz. Indeed, compact discs and digital
audio tapes have sampling rates of 44,100Hz and 48,000Hz respectively. However, it can be shown
that for speech signals, very little useful speech energy isfound in the higher frequencies, and so
sample rates of 16,000Hz are often used and found to be perfectly adequate for accurate represen-
tation of speech signals. Where space is tight, lower sampling rates are used, most commonly in
the telephone which has a standardised sample rate of 8000Hz. While speech at this sample rate
is normally quite intelligible, it is clear that it sounds much poorer than when higher sample rates
are used.

The bit range describes thedynamic range of a digital signal, and is given by the range
of the integer used to store a sample. Widely used values are 16 bits, which gives an absolute
dynamic range of 216, meaning the amplitude of the sample can range from -32,768 to 32,767.
Dynamic range is normally expressed in the logarithmic decibel scale. In digital signals, we take
the reference as 1 and therefore the dynamic range of a 16 bit signal is:

10log(216)≈ 96dB (10.27)
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To save on space and transmission bandwidth, telephones andother systems frequently use 8
bits (48db) and 12 bits (72db). At 8 bits, speech quality is noticeably worse than at 16 bits. 12 bits
is a reasonable compromise, but if space is not an issue (and with most types of speech synthesis
it is not), 16 bits is normally used.

10.2.2 Digital representations

We use somewhat different notation when dealing with digital signals. First, an integern is used
instead oft for the time axis, wheren is related tot by the sample period:

n = tTs (10.28)

From this, we can relate the continuous signalx(t) and digital signalx[n] by x[n] = x(n/Ts). We
use square brackets “[ ]” rather than parentheses (round brackets) “( )” when describing digital
functions. Strictly speaking, a signalx[n] is in then-domain but we shall informally refer to it as
being in the time domain.

Secondly, it is common to usenormalised frequency, rather than natural frequency. From
10.28 we see that the relationship between frequency, angular frequency and normalise angular
frequency is

ω̂ =
ω
Ts

=
2πF
Ts

(10.29)

Using n and normalised angular frequencyω̂ makes calculations easy as the equations are
the same regardless of sample rate. To convert to real frequency, the normalised frequency is
simply multiplied by the sample rate. In general, we use the same terms for amplitude and phase
for both analogue and digital signals.

10.2.3 The discrete-time Fourier transform

For a continuous signal, we can move from the time domain to the frequency domain via the
Fourier transform, but as we are now dealing with digital signals, this formula cannot be used di-
rectly. We will now derive an equivalent transform for digital signals. Starting with the previously
defined Fourier transform (Equation 10.21)

X( jω) =

Z ∞

−∞
x(t)e− jωtdt

we can use this on a digital sequence with the relationx[n] = x(n/Ts). The Fourier transform
is calculated as a integral over a range, which can be interpreted as finding the area under the
curve over this range. The numerical method of the Riemann sum says that we can approximate a
continuous area function by adding up the areas of separate rectangles. The area of each rectangle
is the value of the function at that point multiplied by the width of the rectangle. In our case,



Section 10.2. Digital signals 285

the width of the rectangle is the sample periodTs. This gives a numerical version of the Fourier
transform:

X( jω) =
∞

∑
−∞

(x(nTs)e
− jωt)Ts

Ts is independent of the integral, we move it outside, and usex[n] in place ofx(nTs) giving:

X( jω) = Ts

∞

∑
−∞

x[n]e− jωnTs

We can get rid of theTs by making use of normalised frequency,ω̂ = ω/Ts. The result is the
discrete-time Fourier transform or DTFT :

X(ejω̂) =
∞

∑
−∞

x[n]e− jω̂n (10.30)

It should be clear that the DTFT is a transform in which time isdiscrete but frequency is contin-
uous. As we shall see in later sections, the DTFT is a very important transform in its own right
but for computational purposes, it has two drawbacks. Firstly, the infinite sum is impractical, and
secondly we wish to obtain a representation for frequency that is useful computationally, and such
a representation must be discrete.

10.2.4 The discrete Fourier transform

For the first problem, we choose a sufficiently large intervalL such that the samples outside 0<
n < L are zero. For the second problem, we will use a similar operation to time domain sampling
and “sample” the spectrum at discrete intervals. Just asn = t.Ts, we define the spacing between
each discrete frequency asFs/N = 1/(NTs) whereN is the total number of frequency values we
want. Each angular frequency therefore lies at

ωk =
2π
NTs

giving the transform:

X(ejω̂k) =
L

∑
n=0

x[n]e− jω̂kn

If we setL = N (discussed below), and use the above definition ofωk, we can write 10.2.4 in a
more compact usable form:

X[k] =
N−1

∑
n=0

x[n]e− j 2π
N kn (10.31)
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which gives us the standard definition of theDiscrete Fourier Transform or DFT.
The interpretation is the same as for the Fourier transform defined in section 10.1.6; For

each required frequency value, we multiply the signal by a complex exponential waveform of
that frequency, and sum the result over the time period. The result is a complex number which
describes the magnitude and phase at that frequency. The process is repeated until the magnitude
and phase is found for every frequency.

The DFT states that the length of the analysed waveform and the number of resultant fre-
quency values are given byN. This makes intuitive sense: if we only analyse a few samples, we
can only expect a somewhat crude version of the spectrum; by analysing more samples, we have
more information “to go on” and can fill in more detail in the spectrum: that is, the points in the
spectrum (ωk) get closer and closer. AsN→ ∞, we analyse all the waveform values, and the dis-
tance between the frequency points in the spectrum→ 0. This is exactly the case that the DTFT
describes.

Both the DTFT and DFT have inverse transforms:

x[n] =
1
2π

Z π

−π
X(ejω̂).ejω̂ndω̂ (10.32)

x[n] =
1
N

N−1

∑
n=0

x[n]ej 2π
N kn (10.33)

In practice an algorithm called theFast Fourier Transform or FFT is commonly used to
calculate the DFT. This is not anothertypeof transform, merely a fast way of calculating a DFT:
the result for the FFT is exactly the same as for the DFT. The FFT only works for values ofN
which are powers of 2, hence it is common to findN set to 256, 512. If a DFT of a differentN is
required, a time signal of the next highest power of 2 is chosen, and the extra values are set to 0.
So for example, if we have a signal of length 300, we setN = 512, “pad” the extra 212 values with
0, and the calculate a 512 point FFT. The use of the FFT is pervasive in practice, and one often
hears references to “the FFT of the signal” etc. We repeat, interms of the outcome, the FFT and
DFT are exactly the same and hence taking “the FFT of the signal” is no different from “taking
the DFT”. An overview of the FFT can be found in Oppenheim and Schafer [342].

10.2.5 The z-Transform

We now introduce another important transform, thez-transform 3. The z-transform is perhaps the
most useful of all transforms in practical digital signal processing. It is defined as:

X(z) =
∞

∑
n=−∞

x[n]z−n (10.34)

3 what? you can’t be serious -anothertransform!
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This should look familiar - if we usez= ejω̂, we get:

X(ejω̂) =
∞

∑
−∞

x[n]e− jω̂n

which is the discrete-time Fourier transform, Equation 10.30. Just like the DTFT, the z-transform
is a transform which operates on adigital signal but which produces acontinuousfunction.

An important property of the z-transform is its affect on a delay. If we define a signal

y[n] = x[n−nd]

that is, a delayed version ofx[n]. By use of a dummy variablem = n− nd, we can find its z-
transform as follows

Y(z) =
∞

∑
n=−∞

y[n]z−n

=
∞

∑
n=−∞

x[n−nd]z
−n

=
∞

∑
m=−∞

x[m]znd−m

=
∞

∑
m=−∞

x[m]z−mznd

The summation inm is just the z-transform ofx defined inm rather, thann and so we can write:

Y(z) = X(z)znd (10.35)

Hence delaying a signal bynd multiplies its z-transform byznd . This important property of the
z-transform and is discussed further in section 10.3.5.

Why use yet another transform? The reason is that by settingz to ejω̂ we greatly simplify
the DTFT, and this simplification allows us to perform sophisticated operations in analysis and
synthesis with relatively simple mathematical operations. The key to the ease of use of the z-
transform, is that equation 10.34, can be re-written as:

X(z) =
∞

∑
n=−∞

x[n](z−1)n (10.36)

That is, the transform can be written as apolynomialin z−1, so that the techniques of polynomial
solving can be brought to bear.

A final transform, theLaplace Transform, is frequently used in continuous time signal
processing, and is the continuous time version of the z-transform. The z-transform and the Laplace
transform can be thought of as generalisations of the DTFT and Fourier transform respectively.
The Laplace transform is not required in this book, as all oursignal processing is performed on
digital signals. We mention it here for completeness only.
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10.2.6 The frequency domain for digital signals

For continuous signals, we showed that the frequency domainextends to from−∞ to ∞ . However,
for digital signals, we stated that a frequency of half the sampling rate, the Nyquist frequency, was
the highest possible frequency that could be represented bya digital signal. What then is the range
of the frequency domain? As for continuous signals the rangeextends from−∞ to ∞, but nonew
information is found outside the Nyquist range. Rather, thespectrum repeats itself at multiples
of the Nyquist frequency. In other words, the spectrum of a digital signal isperiodic. It is for
this reason that the spectrum of digital signals, calculated from the DTFT is described asX(ejωt),
rather thatX( jω) as is the normal for the Fourier transform. The “period” of the spectrum is
twice the Nyquist frequency, as the spectrum is defined from−FN to +FN. In terms of normalised
frequency, the frequency range is just−π to +π and so the “period” is 2π.

Just as with real continuous signals, real digital signals exhibit conjugate symmetry in the
frequency domain. Hence in a 512 point DFT the first 256 valueswill be conjugate symmetric
with the second 256. For this reason only half a digital spectrum is normally plotted, and this will
have half the number of values used to calculated the DFT.

10.3 PROPERTIES OFTRANSFORMS

At first sight the number of transforms can seem unnecessarily large. (recall that each has an
inverse transform also.) Why do we need so many? The differences are simply attributable to us
wanting to use both continuous and discrete representations for time and frequency, and to make
analysis easier (in the case of the z-transform and Laplace transform). The differences between
them can be clearly shown in the following table:

Discrete Time Continuous time
Discrete Frequency Discrete Fourier Transform (DFT) Fourier analysis, periodic waveform
Continuous Frequency Discrete Fourier Transform (DTFT)Fourier Transform
Continuous variable z-transform Laplace Transform

We now describe various general properties of the transforms we have introduced. For
demonstration purposes, we will describe these using the Fourier transform, but in general the
following hold for all our transforms.

10.3.1 Linearity

All the transforms arelinear. If we have an inputx(t) = αs1(t)+βs2(t), thenX( jω) = αX1( jω)+
βX2( jω). The proof of this for the Fourier transform is:



Section 10.3. Properties of Transforms 289

X( jω) =
Z ∞

−∞
(αx1(t)+ βx2(t))e

− jωt

= α
Z ∞

−∞
x1(t)e

− jωt + β
Z ∞

−∞
x2(t)e

− jωt

= αX1( jω)+ βX2( jω) (10.37)

10.3.2 Time and Frequency Duality

The Fourier transform and inverse Fourier transform have very similar forms. If we have a function
g(.) and define a signal asg(t) then its Fourier transform will beG( jω) = F {g(t)} (here we use
the notationF to denote the operation of the Fourier Transform). If we define the spectrum in
terms of our function asg(ω) and take the inverse Fourier transform, we getG(t) = 2πF {g(ω)}.
It should be clear that the form is the same apart from the 2π term, which is required because of
our use of angular frequency.

g(t)
F−→ G(w) (10.38)

g(ω)
I F←−− G(t) (10.39)

Figure 10.12 demonstrates this property.

10.3.3 Scaling

We have already described the Fourier transform of a pulse ofdifferent durations in section 10.1.6.
The shorter duration pulse has a spectrum that is more spreadout, and the longer duration pulse
has a more contracted spectrum. This is known as thescaling property, which states that:com-
pressing a signal will stretch its Fourier transform and vice versa. This can be formally stated
as:

x(at)
F−→ 1
|a|X( j(w/a)) (10.40)

10.3.4 Impulse Properties

From the scaling property, we know that as the duration of thepulse approaches zero, the spectrum
spreads out more and more. In the limit, we reach theunit impulse, which has zero width. This
is a particularly important signal. For digital signals, this is simply defined as a signal,δ[n], which
has a value 1 at time 0 and a value 0 elsewhere. For continuous-time signals, the definition is a
little trickier, but is described as a signal which has values of zero everywhere apart at time 0 (i.e.
zero width), and at that time it is described by an integral which defines itsarea(not height) as 1:

δ(t) = 0 for t 6= 0 (10.41)
Z ∞

−∞
δ(t)dt = 1 (10.42)
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As expected from the scaling property, the Fourier transform of an impulse is a function that
is “infinitely stretched”, that is, the Fourier Transform is1 at all frequencies. Using the duality
principle, a signalx(t) = 1 for all t will have a Fourier transform ofδ(ω), that is, an impulse at
time ω = 0. This is to be expected - a constant signal (a d.c. signal in electrical terms) has no
variation and hence no information at frequencies other than 0.

δ(t)
F−→ 1 (10.43)

1
F−→ δ(ω) (10.44)

10.3.5 Time delay

A signalx(t) that is delayed by timetd is expressed asx(t− td). If we denote the Fourier transform
of x(t) asX( jω) and the Fourier transform ofx(t − td) asXd( jω), we see that from the Fourier
transform definition thatXd( jω) is:

Xd( jω) =

Z ∞

−∞
x(t− td)e

− jωtdt (10.45)

To simplify the integration, we use a dummy variablev and make the substitutionv = t− td:

Xd( jω) =
Z ∞

−∞
x(v)e− jω(v+td)dv

= e− jωtd
Z ∞

−∞
x(v)e− jωvdv

Xd( jω) = e− jωtdX( jω)

So delaying a signal bytd seconds is equivalent to multiplying its Fourier transformby e− jωtd . If
we apply this to a unit impulse,x(t− td) = δ(t− td), we get:

Xd( jω) =

Z ∞

−∞
δ(t− td)e

− jωtdt

= e− jωtd
Z ∞

−∞
δ(v)e− jωvdv

and from the impulse property, we know the Fourier transformof of δ(t) is 1, leaving:

Xd( jω) = e− jωtd (10.46)

At first sight, this may seem strange as the Fourier Transformfor a shifted impulse seems very
different for a normal impulse which simply had a Fourier Transform of 1. Recall however, that
the magnitude ofe− jωtd , will be 1, and so the magnitude spectrum will be the same as the delta
function. The phase ofe− jωtd is simply a linear function oftd - this is as we should expect, the
longer the delaytd the more the phase spectrum will be shifted. It should be noted that the above
result is the Fourier transform result of the z-transform delay derived in equation 10.35.
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10.3.6 Frequency shift

From the duality principle, it then follows that if we have a signal x(t) = ejω0t (i.e. a sinusoid),
the Fourier transform will be 2πδ(ω−ω0), that is a single impulse at the frequencyω0. This is
entirely to be expected - the frequency domain impulse can beinterpreted as a harmonic and is
consistent with the Fourier analysis result.

More generally, if we multiply a signal bye jω0t we cause afrequency shift of ω0 in the
Fourier transform:

x(t)ejω0t ← X( j(ω−ω0)) (10.47)

Shift in the frequency domain corresponds tomodulation in the time domain.

10.3.7 Convolution

Convolution is defined as the overlap between two functions when one is passed over the other,
and is given by:

f (t) = g(t)⊗h(t) =

Z

h(τ)g(t− τ)dτ (10.48)

If we take the Fourier transform of this, we get:

F( jω) = F
{Z ∞

τ=−∞
h(τ)g(t− τ)dτ

}

=
Z ∞

t=−∞

(Z ∞

τ=−∞
h(τ)g(t− τ)

)

e− jωtdt

=

Z ∞

τ=−∞
h(τ)dτ

Z ∞

t=−∞
g(t− τ)e− jωtdt (10.49)

from the time-delay property (equation 10.3.5) we know that:
Z ∞

τ=−∞
g(t− τ)e− jωt = e− jωτG( jω)

and substituting this into 10.49 gives

F( jω) =
Z ∞

τ=−∞
h(τ)e− jωτG( jω)

The
R

h(τ)e− jωτ term is simply the Fourier transform ofh(t) defined in terms ofτ rather thant, so
we can state:

F(ω) = G(ω)H(ω) (10.50)

Hence,convolution in the time domain corresponds to multiplication in the frequency do-
main. It can also be proved that multiplication in the time domaincorresponds to convolution in
the frequency domain.
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10.3.8 Analytical and Numerical Analysis

The main practical difference between the transforms is whether an analytical or numerical method
is used in the calculation. For transforms and inverse transforms that contain integrals, it should be
clear that we must be able to find the analytical form of integral. This can be a blessing in that we
can use analytical techniques to find and succinctly describe the transforms of some signals, but
this can also be a difficulty, because first we have to be able torepresent the signal as an analytic
function, and second we have to be able to find its integral. When dealing with arbitrary signals,
say from a recording, it is nearly certain that we will not know the form of the signal, and so a
numerical method must be used.

10.3.9 Stochastic Signals

All the transforms we have examined either integrate or sum over an infinite sequence. This will
only give a meaningful result if the sum of the signal over that range is finite; and it can easily
be shown that this is the case for all periodic and many non-periodic signals. There are however
signals for which this is not so, and in such cases we say that the Fourier (or other transform) does
not exist for these signals. One important class of such signals arestochastic signals, which are
signals generated by some random process. The “noisy” signals (for example found in fricatives)
that we have been mentioning up until now are such signals.

In trying to characterise these signals we face two problems. Firstly, we cannot exactly
describe them in the time domain as the very nature of the random process means that there is no
strict pattern in the samples. Secondly, as the transforms we have introduced can not be calculated,
we can not express these signals directly in the frequency domain either. We get round these issues
by focusing onaverageswithin the signal, and specifically we use a measure of theself similarity
of a signal called itsautocorrelation function. For a signalx[n], this is defined as

R( j) =
∞

∑
n=−∞

x[n]x[n− j] (10.51)

which is the expected value of the product of a stochastic signal with a time shifted version of
itself. This functiondoeshave a Fourier transform, and this gives thepower spectral densityof
the signal.

10.4 DIGITAL FILTERS

A filter is a mathematically definedsystemfor modifying signals. In signal processing filters are
put to many uses; as their name might suggest they can “filter out” some unwanted portion of a
signal. In speech synthesis, we are interested in them mainly because of the acoustic theory of
speech production, (section 11.1), which states that speech production is a process by which a



Section 10.4. Digital Filters 293

glottal sourceis modified by a vocal tractfilter. This section explains the fundamentals of filters
and gives insight into how they can be used as a basis for modelling the vocal tract.Digital filters
are of course filters which operate on digital signals. Here,we describe a specific but powerful
kind of filter, called thelinear time invariant (LTI ) filter.

Using the notationx[n] 7→ y[n] to describe the operation of the filter (“7→” is read “maps to”),
we state the time invariance property as:

x[n−n0] 7→ y[n−n0] for any n0 (10.52)

which states that the system behaviour is not dependent on time. A linear systemhas the property
of scaling, such that ifx[n] 7→ y[n] then

αx[n] 7→ αy[n]

andsuperposition, such that ifx1[n] 7→ y1[n] andx2[n] 7→ y2[n] then:

x[n] = x1[n]+x2[n] 7→ y[n] = y1[n]+y2[n]

These combine to form thelinearity principle:

x[n] = αx1[n]+ βx2[n] 7→ y[n] = αy1[n]+ βy2[n] (10.53)

The linearity property combines with the principle of Fourier synthesis - as the filter linearly
combines the components in a waveform, we can construct and analyse a filter for components
separately and not have to worry about their interactions.

10.4.1 Difference Equations

Digital LTI Filters are often described in terms of their time domaindifference equation, which
relates input samples to output samples. Thefinite impulse responseor FIR filter has the differ-
ence equation:

y[n] =
M

∑
k=0

bkx[n−k] (10.54)

The infinite impulse responseor IIR filter has the difference equation:

y[n] =
M

∑
k=0

bkx[n−k]+
N

∑
l=1

al y[n− l ] (10.55)

As well as operating on the input, the IIR filter operates on previous values of the output and for
this reason these filters are sometimes referred to asfeedbacksystems orrecursive filters. The
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Figure 10.13 Operation of an FIR filter on an example, finite waveform

FIR is a special case of an IIR filter, formed when the coefficients{al} are set to zero. (Note that
the{al} coefficients do not have a value for 0 as the output fory[n] must be calculated before it
can be used on the right hand side of the equation.)

Consider a simple FIR filter withM = 3 andbk = {3,−1,2,1}. As M = 3, this is known as
a third order filter. From the FIR definition equation, we can see that this will modify any input
sequencex as follows:

y[n] = 3x[n]−x[n−1]+2x[n−2]+x[n−3] (10.56)

Figure 10.13 shows an example signalx = {0,1,2,1,0,−1,−2,−1,0,0} and the output of the
filter for this example signal

10.4.2 The impulse response

While the above clearly showed how our filter created an output signaly[n] from our given in-
put signalx[n], it isn’t immediately clear how the filter will modify other,different input signals.
Rather than having to examine the output with respect to a wide range of different input signals,
it would be useful to have a characterisation of the effect ofthe filter that is independent of the
specific form of the input. Such a characterisation is calledtheresponseof the filter, and a particu-
larly useful response is provided by using aunit impulse as input. The output is then theimpulse
response, denotedh[n].

A unit impulse,δ, is a special function which has value 1 atn = 0, and 0 elsewhere:

δ[n] =
{ 1 n = 0

0 n 6= 0
(10.57)
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Figure 10.14 Example impulse responses for FIR and IIR filters. Note whilethe number of coef-
ficients in the IIR filter is actually less than for the FIR filter, the response will continue indefinitely
(only values up to 30 samples are shown)

The output of the example FIR filter for an impulse is given in figure 10.14a, which shows that
the impulse response is simply the coefficients in the filter.Because of this, the duration of the
impulse will always be the order of the filter. As the order is finite, the impulse response is finite
which gives rise to the name of the filter.

Consider now an example first order IIR filter, witha1 = −0.8, andb[0] = 1. Its difference
equation is therefore:

y[n] = x[n]−0.8y[n−1] (10.58)

If we give this filter the unit impulse as an input, then we can calculate the output for anyn
after 0. The output is shown in Figure 10.14b. First of all we observe that the output is not of
a fixed duration: in fact it is infinite as the name of the filter implies. Secondly we observe that
the response takes the form of a decaying exponential. The rate of decay is governed by the filter
coefficient,a1. (Note that ifa1 > 1 the output will grow exponentially: this is general undesirable
and such filters are calledunstable.)

Consider the impulse response of the second order IIR filtera1 = −1.8,a2 = 1, shown in
figure 10.15a. Just as in the first order case, this filter has aninfinite response, but this time takes
the form of a sinusoid. This shows the power of the IIR filter - with only a few terms it can
produce a quite complicated response. The filtera1 = −1.78,a2 = 0.9, has its impulse response
shown in Figure 10.15b. We can see that it is a decaying sinusoid; we have in effect combined the
characteristics of examples 10.14b and 10.15a. The key point to note is that in all cases, the input
is the same, ie a unit impulse. The characteristics of the output are governed solely by the filter -
after all the input has no periodicity or decay factor built in. If we choose a slightly different set
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Figure 10.15 Impulse response for 2 IIR filters, showing a sinusoid and damped sinusoid response.

of coefficients, we can create an output with a different period and decay factor.
Different filters can produce a wide range of impulse responses; the decaying sinusoid pat-

terns here only come from a specific type of second order IIR filter. In general though, the more
terms in the filter, the more complicated the impulse response will be. The impulse response is
important for a number of reasons. Firstly, it provides us with a simple way of examining the
characteristics of the filter. Because the input only lasts for a single sample, the output is not “clut-
tered” with the further interference from subsequent inputsamples. Impressionistically, exciting
the filter with an impulse response can be thought of as “giving the filter a nudge and seeing what
happens”. Secondly, and more importantly, we can use the principle of linearity andtime invari-
anceto describe the responses of more general signals by using the impulse response, explained
next.

10.4.3 Filter convolution sum

The response for a non-unit impulse is simply the unit impulse response scaled. So using the
linearity principle, we can state that:

3δ[n] 7→ 3h[n]

As the unit impulse is simply a single sample, a full input sequencex[n], can be characterised by a
sequence of scaled unit impulses:

x[n] = ∑w[k]δ[n−k]

What are the values ofw? As the delta function will set everything outsiden−k to 0, it should be
clear thatw[n] = x[n] for a givenn.Therefore, we can state:

x[n] =
K

∑
k=0

x[k]δ[n−k] (10.59)
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This may seem a rather trivial result, but it shows that a signal can be fully described by a set of
appropriately scaled impulse responses. The time invariance property of LTI systems tells us that
a shifted input will give a shifted response. For the impulsefunction, the following is therefore
true:

δ[n] 7→ h[n]
δ[n−1] 7→ h[n−1]
δ[n−2] 7→ h[n−2]
δ[n−k] 7→ h[n−k] for any integerk

The linear property states thatαδ[n] 7→ αh[n] for anyα and so the following is also true:

x[0]δ[n] 7→ x[0]h[n]
x[1]δ[n−1] 7→ x[1]h[n−1]
x[2]δ[n−2] 7→ x[2]h[n−2]
x[k]δ[n−k] 7→ x[k]h[n−k] for any integerk

We can use these two properties on equation 10.59 to find the output of the filter

∑
k

x[k]δ[n−k] 7→∑
k

x[k]h[n−k]

which gives us:

y[n] = ∑
k

x[k]h[n−k] (10.60)

which is known as theconvolution sum. It shows that we can calculate the output for a filter for
any input, provided we know the impulse responseh[n].

10.4.4 Filter transfer function

We will now examine the frequency domain description orfrequency responseof the LTI filter
by means of the z-transform. The IIR difference equation (10.55), expanded to a few terms, is:

y[n] = b0x[n]+b1x[n−1]+ ...+bMx[n−M]+a1y[n−1]+ ...+aNy[n−N]

By using the notationZ {.} to denote the z-transform, we can take the z-transform of both sides as
follows:

Y(z) = Z {b0x[n]+b1x[n−1]+ ...+bMx[n−M]+a1y[n−1]+ ...+aNy[n−N]}

The coefficients are not affected by the z-transform, so using the linearity of the z-transform, this
simplifies to:

Y(z)= b0Z {x[n]}+b1Z {x[n−1]}+ ...+bn−MZ {x[n−M]}+a1Z {y[n−1]}+ ...+aNZ {y[n−N]}}
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The z-transform time delay property (equations 10.35 and 10.46) states thatZ {x[n−k]}= X(z)z−k

and so our equation becomes:

Y(z) = b0X(z)+b1X(z)z−1 + ...+bn−MX(z)zM +a1Y(z)z−1 + ...+aNY(z)zN

If we group theY(z) terms on one side, and factor the commonY[z] andX[z], we get

Y(z) =
b0 +b1z−1+ ...+bMzM

1−a1z−1− ...−aNzN X(z)

The term is known as thetransfer function of the filter

H(z) =
Y(z)
X(z)

=
b0 +b1z−1 + ...+bMzM

1−a1z−1− ...−aNzN (10.61)

=

M
∑

k=0
bk

1−
L
∑

l=1
al

(10.62)

and fully defines the characteristics of the filter in the z-domain. From this, the frequency domain
characteristics of the filter can easily be found (explainedbelow).

10.4.5 The transfer function and the impulse response

We have previously shown that the impulse response, which completely characterises the filter,
allows us to calculate the time domain output for any input bymeans of the convolution sum:

y[n] =
∞

∑
k=−∞

h[k]x[n−k] (10.63)

Section 10.3 showed how to derive the Fourier transform for aconvolution and we can apply this
to a digital signal by using the z-transform in the same way.

Y(z) = Z
{ ∞

∑
k=−∞

h[k]x[n−k]
}

=
∞

∑
k=−∞

h[k]
∞

∑
n=−∞

x[n−k]z−n

=
∞

∑
k=−∞

h[k]z−kX(z) (10.64)

The∑h[k]z−k term is simply the z-transform ofh[n] defined in terms ofk rather thann, so 10.64
simplifies to

Y(z) = H(z)X(z) (10.65)
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which is the same result as equation 10.62. This shows thatthe transfer function H(z) is the
z-transform of the impulse responseh[n]. This gives us the following two important properties:

1. a LTI filter is completely characterised by its impulse response,h[n] in the time domain.
The z-transform of the impulse response is the transfer function, H(z), which completely
characterises the filter in the z-domain.

2. The transfer function is a ratio of two polynomials, with the same coefficients as used in the
difference equation.

10.5 DIGITAL FILTER ANALYSIS AND DESIGN

Section 10.4 fully described the relationship between the time domain difference equations and
the z-domain transfer function of a LTI filter. For first orderfilters, the coefficients are directly
interpretable, for example as the rate of decay in an exponential. For higher order filters this
becomes more difficult, and while the coefficients{al} and{bk} fully describe the filter, they are
somewhat hard to interpret (for example, it was not obvious how the coefficients produced the
waveforms in Figure 10.15). We can however usepolynomial analysisto produce a more easily
interpretable form of the transfer function.

10.5.1 Polynomial analysis: poles and zeros

Consider a simple quadratic equation defined in terms of a real variablex:

f (x) = 2x2−6x+1

This equation can befactorised into

f (x) = G(x−q1)(x−q2)

and then theroots q1,q2 of the quadratic can be found by settingf (x) to 0 and solving forx (in
this case the roots arex = 0.38 andx = 2.62). G is thegain, which simply scales the function.

We can plot the polynomial as shown in Figure 10.16a. The roots of this expression (the
points at whichf (x) = 0) are marked on the graph. Although the roots only mark two points, they
do in fact describe the general curve. Figure 10.16b shows the effect of varying the gain - the
curve can become steeper or shallower, or even inverted if the gain is set to a negative number, but
in all cases the general shape of the curve is the same. Because settingx to one of the roots results
in f (x) = 0, we call these rootszeros. Now consider the same polynomial used as a denominator
expression, where by convention we keep the gain as a numerator term:

f (x) =
1

2x2−6x+1
=

G
′

(x− p1)(x− p2)
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(b) plot of g× (2x2−6x+ 1) for different values
of g

Figure 10.16 Plot of polynomial. The points where the curve intersects the x-axis are called “zeros”
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(b) plot of |1/(2x2−6x+1)|

Figure 10.17 Plot of function with a polynomial as the denominator. The points where the function
→ ∞ are called “poles”.

The plot of this is shown in Figure 10.17a. The shape of this curve is very different, but is again
completely characterised by the roots plus a gain factor. This time values at the roots cause the
function to “blow up”,x→ p1, f (x)→±∞. Such roots are calledpolesas they create a “pole-like”
effect in the absolute (magnitude) version of the function,shown in 10.17b.

We will now show how polynomial analysis can be applied to thetransfer function. A
polynomial defined in terms the complex variablez takes on just the same form as when defined
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Figure 10.18 z-domain and pole-zero plots for two filters, A and B.

in terms ofx. Thez form is actually less misleading, because in general the roots will be complex
(e.g. f (z) = z2 +z−0.5 has roots 0.5+0.5 j and 0.5−0.5 j.). The transfer function is defined in
terms of negative powers ofz - we can convert a normal polynomial to one in negative powersby
multiplying byz−N. So a 2nd order polynomial is:

H(z) =
1

z2−a1z−a2
=

z−2

1−a1z−1−a2z−2 = G
z−2

(1− p1z−1)(1− p2z−1)

Figure 10.18a shows a 3-dimensional plot of the above transfer function witha1 = 1.0,a2 =
−0.5. The numerator has two roots atz= 0, which form zeros. The roots of the denominator are
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complex (0.5+0.5 j and 0.5−0.5 j) and it can be seen that the poles do not now lie on the x-axis
(which would only happen if they were completely real).

As the poles and zeros completely characterise the filter (apart from the gain), we can dis-
pense with the need to draw 3-dimensional graphs and simply plot where the poles and zeros lie
on the z-plane. This is shown in Figure 10.18c. Figures 10.18b and 10.18d show the 3-d plot and
pole-zero plot for a different 2nd order filter.

This analysis can be extended to any digital LTI filter. As thegeneral form transfer function,
H(z) is defined as the ratio of two polynomials

H(z) =
b0 +b1z−1 + ...+bMz−M

1−a1z−1− ...−aNz−N

this can always be expressed in terms of its factors:

H(z) = g
(1−q1z−1)(1−q2z−1)...(1−qMz−1)

(1− p1z−1)(1− p2z−1)...(1− pNz−1)

from which pole-zero analysis can be performed. Furthermore, a factored filter can be split into
smaller filters:

H(z) = g
1−q1z−1

1− p1z−1
︸ ︷︷ ︸

.
1−q2z−1

1− p2z−1
︸ ︷︷ ︸

...
1−qMz−1

1− pMz−1
︸ ︷︷ ︸

= H1(z)H2(z)...HN(z) (10.66)

which is often a useful step when constructing or analysing complicated filter.

10.5.2 Frequency Interpretation of z-domain transfer function

Recall that we showed the relationship between the z-transform

X(z) =
∞

∑
n=−∞

x[n]z−n

and the discrete-time Fourier transform by settingz= ejω̂:

X(ejω̂) =
∞

∑
−∞

x[n]e− jωn

Given any z-domain expression, we can generate the equivalent frequency domain expression by
simply replacingz with ejω. In section 10.2.6, we explained that the spectrumX(ejω̂) of a digital
signal is periodic with period 2π for normalised frequency. This can be thought of as a function
which sweeps out a circle of radius 1 in the z-domain. The frequency domain is in effect the
particular ‘slice” on the z-domain that this circle describes.
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Figure 10.19 Relationship between the z-domain and the frequency domain. The unit circle drawn
on the z-domain diagram can be unfolded and straightened to produce the frequency response shown
in figure (b). [ MORE: circle has yet to be drawn]

Let us return to the 3-dimensional representation of the magnitude ofH(z), for an example
2nd order filter, as shown in Figure 10.19a. This is as before,but the unit circle is now superim-
posed. The value at the unit circle rises and falls with the shape of the plot, and when we “unfold”
this, we get a 2-dimensional graph of magnitude against frequency as shown in Figure 10.19b. The
phase spectrum can be generated in the same way, that is, by taking the values from the unit circle
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from the z-domain phase function. As previously mentioned,we can dispense with 3-d graphs
because the pole-zero diagram fully characterises the transfer function. The frequency domain
can easily be obtained from the z-domain by use of the poles and zeros.

10.5.3 Filter characteristics

We will now use the above results on pole zero analysis and frequency domain interpretation to
examine the properties of first order and second order filters, and show how these can be extended
to the general case of all digital LTI filters.

Consider again a first order IIR filter:

h[n] = b0x[n]−a1y[n−1]

H(z) =
b1

1−a1z−1

H(ejω) =
b1

1−a1e− jω

Figure 10.20, shows the time domain, z-domain pole zero plotand frequency domain magnitude
spectrum for this filter withb0 = 1 anda1 varying over 0.8,0.7,0.6,0.4. Figure 10.20d shows a
3-d z-domain magnitude plot for a single value,a1 = 0.7.

It is clear that the value of the coefficienta1 completely describes the shape of the three
functions. For a single term polynomial, the root of 1−a1z−1 is simplya1. As the filter coefficient
is real, so will the root, and hence the pole will always line on the real axis in the pole-zero plot.

This type of filter is commonly called aresonator because it accurately models the types
of resonances commonly found in nature. The peak in the the frequency response is known as
a resonancebecause signals at or near that frequency will be amplified bythe filter. For our
purposes, it provides a good model of a single vocal tractformant . Resonances are normally
described by three properties:amplitude - the height of the peak,frequency - where the peak lies
in the spectrum, andbandwidth - a measure of the width or sharpness of the peak.

The radius of the pole,r controls both theamplitude and thebandwidth of the resonance.
As the value ofa1 decreases, its pole moves towards along the real axis towards the origin, and
hence the frequency response has a lower amplitude atω̂ = 0. From the difference equations, we
know that a first order IIR filter witha1 < 1 is simply a decaying exponential. Small values ofa1

correspond to slow decay and narrow bandwidth, large values(still < 1) a steeper decay and wider
bandwidth. This is exactly what we would expect from the Fourier transform scaling property

The standard measure of bandwidth is the3db down point which is the width of the reso-
nance at 1/

√
2 down from the peak. For larger values ofr = |a1|, two useful approximations of

the bandwidth (in normalised frequency) are:

B̂ ≈ −2ln(r)

B̂ ≈ 2(1−r)√
r

0.5 < r < 1.0 (10.67)
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(d) magnitude z-domain transfer function

Figure 10.20 Plots of first order IIR filter, with a=0,8, 0,7, 0,6 and 0.4. Asthe length of decay
increases, the frequency response becomes sharper. Because only a single coefficient is used, there
will be one pole, which will always lie on the real-axis. Asa1→ 1, the impulse response will have with
no decay and the pole will lie 1.0. Because the pole lies on theunit circle, it will lie in the frequency
response, and hence there will be an infinite value for frequency at this point in the spectrum.

The first order filter creates a resonance pattern that already has a similar shape to a speech
formant; the main difference of course is that its resonant frequency is at zero on the frequency
axis. The resonance can easily be shifted fromω̂ = 0 by moving its pole off the real-axis, and this
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Figure 10.21 Plots of first order IIR filter, with the single pole at 0.37+0.58j. As the pole is not
on the real axis, the resonance occurs at a non-zero frequency.

is shown in Figure 10.21. The effect of the pole position on the frequency response can be seen
more clearly by expressing the pole in polar form,p1 = re jθ. The resonant frequency is given by
θ, the angle of the pole, and the bandwidth is controlled as before byr.

The first order resonator as just described has one serious drawback: because its pole is not
on the real-axis, its coefficienta1 will be complex also, which is a violation of the condition that
all the coefficients of the polynomial should be real. This problem can be countered by the use
of complex conjugate pairsof poles. If we have a pole with the desired valuesre jθ, we simply
create a second pole with valuere− jθ. This will ensure the coefficients are always real, and as the
pole has a negative value forθ, its resonance will occur in the negative frequency range, leaving
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(b) frequency response

Figure 10.22 Plots of second order IIR filter for a series of poles. All havethe same angle, but
differ in distance from the unit circle. The poles in the pole-zero diagram are conjugate symmetric,
meaning they are symmetric in the real-axis. Because of thisthe frequency response will have peaks
at the same positive and negative values

a single pole in the positive range. If we have two poles, we naturally now have a second order
filter:

h[n] = b0x[n]−a1y[n−1]−a2y[n−2]

H(z) =
b1

1−a1z−1−a2z−2

H(z) =
1

(1− p1z1)(1− p2z1)

H(ejω) =
b1

1−a1e− jω−a2e−2 jω

The full frequency response can be seen more clearly by expressing the poles in polar form:

p1 = re jθ

p2 = p∗1 = re− jθ
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Using this we can write the transfer function and frequency response as:

H(z) =
1

(1− re jθz−1)(1− re− jθz−1)

=
1

1−2rcos(θ)z−1 + r2z−2

H(ejω) =
1

1−2rcos(θ)e− jω + r2e− j2w

The following table gives four sets of example poles and coefficients for this filter, and the pole-
zero plot and frequency responses for these are shown in Figure 10.22.

r θ p1 p2 a1 a2

0.9 1.0 0.48 + 0.75j 0.48 - 0.75j 0.97 -0.81
0.8 1.0 0.43 + 0.67j 0.43 - 0.67j 0.86 -0.64
0.7 1.0 0.38 + 0.59j 0.38 - 0.59j 0.75 -0.48
0.6 1.0 0.32 + 0.51j 0.32 - 0.51j 0.65 -0.36

From the table and the pole-zero plot, the complex conjugateproperty of the poles can clearly
be seen. This property gives rise to the symmetry in the frequency domain about the y-axis. It
should also be clear that the relationship between the polesand coefficients is less obvious. These
example responses were defined by keeping the angleθ constant, while varying the distance of the
pole from the origin,r. It can be seen that asr approaches 1, and the position of the pole nears the
unit circle, the frequency response becomes sharper. Exactly the same effect was observed with
the first order filter. Moving the poles off the real-axis has the effect of moving the peaks away
from the origin in the frequency response. For larger valuesof r (> 0.5) the resonant frequency
is approximated byθ, as for the first order complex pole. For smaller values, the approximation
breaks down because theskirts of each pole (that is, the rol-off area on either side of the actual
resonance) interact and cause a shifting of frequency.

Figure 10.23 and the table below show the effect of keepingr constant while varying the
angleθ. As we might expect, the peaks now all have similar shape, buttheir location in the
frequency response is different.

r θ p1 p2 a1 a2

0.8 0.75 0.58+0.54j 0.58-0.54j 1.17, -0.64
0.8 1.0 0.43+0.67j 0.43-0.67j 0.86 -0.64
0.8 1.25 0.25+0.76j 0.25-0.76j 0.50 -0.64
0.8 1.5 0.056+0.78j 0.05-0.78j 0.11 -0.64
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Figure 10.23 Plots of second order IIR filter for a series of poles with the same radius but different
angles. While position of the peaks varies with the angle of the poles. The bandwidth of the peaks is
constant, but the amplitudes differ because as the poles near the frequency axis their skirts affect each
other, giving each peak a lift.
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(b) frequency response

Figure 10.24 Plots of second order IIR filter with poles and zeros for different pole positions.
Figure (a) has a zero on the unit circle on the real axis. Figure (b) has a zero on the unit circle at the
imaginary axis.

In general it is the poles which define the most important characteristics of a resonator,
namely resonance amplitude, frequency and bandwidth. Zeros do have a role to play and can be
used to achieve other effects in the spectrum. Figure 10.24 shows the affect of using a termb1 = 1,
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which will place a zero at the origin, andb1 = −1 which will place a zero at the ends limit of the
spectrum. Extra zeros can be used to generate notches oranti-resonancesin the spectrum.

We know that the vocal tract has multiple formants. Rather than developing more and more
complicated models to relate formant parameters to transfer functions directly, we can instead
make use of the factorisation of the polynomial to simplify the problem. Recall from equation
10.66 that any transfer function polynomial can be broken down into its factors. We can therefore
build a transfer function of any order by combining simple first and second order filters:

H(z) = H1.H2...HN (10.68)

This greatly simplifies the construction of a complicated filter as we can make simple resonators
in isolation using pole-zero analysis to set their parameters, and afterwards combine them by
multiplication. It should be noted that poles which are close together will interact, and hence
the final resonances of a system can not always be predicted from the constituent resonators.
Nevertheless, this provides a powerful model for building an arbitrarily complicated filter.

10.5.4 Putting it all together

We will now demonstrate some of the practical properties of the LTI filter. the previous section
showed how we could build a model of a single formant. We will now extend this to generate
a simple three formant model of a vowel. In discussing digital filters, we have mostly used nor-
malised angular frequencŷω. Recall that normal frequency (expressed in Hertz) can be converted
to normalised angular frequency by multiplication by 2π/Fs, whereFs is the sampling rate. This
gives the following formulas for estimating the pole radiusand angle for a single formant of peak
frequencyf and bandwidthB.

θ =
2πF
Fs

(10.69)

r = e−2πB/Fs (10.70)

We know from acoustic phonetics that typical formant valuesfor an /ih/ vowel are 300Hz, 2200Hz,
and 3000Hz. Formant bandwidths are harder to measure accurately, but less us assume a value
of 250Hz for all three formants. Assuming a sampling frequency of Fs = 16000Hz, the following
table shows how to calculate the poles from the formant frequencies and bandwidths.

Formant Frequency (Hz)Bandwidth (Hz) r θ (normalised angular frequency) pole
F1 300 250 0.95 0.12 0.963 + 0.116j
F2 2200 250 0.95 0.86 0.619 + 0.719j
F3 3000 250 0.95 1.17 0.370 + 0.874j
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Figure 10.25 Three formant, 6 pole model of /ih/ vowel

We construct a second order IIR filter for each formant,Fn:

Hn(z) =
1

(1− pnz−1)(1− p∗nz−1)

wherepn is the pole andp∗n is complex conjugate of the pole for the formantn. We create the
complete transfer functionH/ih/ for the /ih/ vowel by simply multiplying each formant’s transfer
function:

H/ih/(z) = H1(z)H3(z)H3(z)

=
1

(1− p1z−1)(1− p∗1z−1)(1− p2z−1)(1− p∗2z−1)(1− p3z−1)(1− p∗3z−1)

Figure 10.25 shows the pole-zero plot and frequency response of the transfer function. From the
plot, we can see that the formant frequencies do indeed appear at the approximately the desired
locations.

By definition, H gives the transfer function and frequency response for a unit impulse. In
reality of course, the vocal tract input for vowels is the quasi-periodic glottal waveform. For
demonstration purposes, we will examine the effect of the /ih/ filter on a square wave, which we
will use as a (very) approximate glottal source. We can generate the output waveformsy[n] by
using the difference equation, and find the frequency response of this vowel fromH(ejω). The
input and output in the time domain and frequency domain are shown in figure 10.26. If the
transfer function does indeed accurately describe the frequency behaviour of the filter, we should
expect the spectra ofy[n], calculated by DFT to matchH(ejω)X(ejω). We can see from figure
10.26 that indeed it does.
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(c) frequency responseH(ejω) for the filter
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(e) DFT of output

Figure 10.26 Operation of simulated /ih/ vowel filter on square wave. Figure (b) shows the time
domain output for the square wave input (a). While the shape of the output is different, it has exactly
the same period as the input. Figure (d) is the magnitude spectrum of the square wave. Figure (e) is
the magnitude spectrum of the output, calculated by DFT. Theharmonics are at the same intervals as
the input spectrum, but each has had its amplitude changed. Figure (e) demonstrates that the effect of
the filter is to multiply the input spectrum by the frequency response, Figure (c).
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Filtering a periodic signal demonstrates an important point of all LTI filters. While they am-
plify and change the phase of components of an input signal, they do not change the fundamental
period of the signal itself. In figure 10.26, it is clear that the output waveform has the same period
as the input, and the harmonics have the same spacing in the input and output. Again, this clearly
models speech behaviour - if we generate a voiced sound with our glottis, we can move our mouth
into a number of configurations, each of which will produce a different sound, but in all cases the
fundamental frequency of the sound is unchanged.

10.6 SUMMARY

Periodic signals

• A complex exponential,ejωt describes a sinusoidal waveform

• A harmonic is any integer multiple of the fundamental frequency of a periodic waveform.

• Any periodic waveform can be made from a sum of suitably scaled and phase shifted sinu-
soids. This is the Fourier series.

• Fourier analysis can be used to find the amplitudes and phasesof the component harmonics
in a periodic waveform.

Frequency domain

• A representation in the frequency domain is called a spectrum

• Spectra are complex, and are usually represented by the magnitude spectrum and phase
spectrum.

• The ear is relatively insensitive to phase, and so the magnitude spectrum is normally suffi-
cient to characterise the frequency domain representationof a signal.

• For all real signals, the spectrum is conjugate symmetric.

Digital signals

• A digital signal can be obtained from a continuous signal by sampling at even intervals,
given by the sampling period.

• The sampling rate is the reciprocal of the sampling period.

• A digital signal has an upper bound on the frequencies it can represent. This is called the
Nyquist frequency and is exactly half the sample rate.

• Use of normalised frequency,ω̂ = ω/Fs, avoids having to keep track of the sampling rate in
digital signal processing expressions.

• Spectra obtained from digital signals are periodic, with normalised period 2π.
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Transforms

• The Fourier transform converts a continuous waveform into acontinuous spectrum:

X( jω) =
Z ∞

−∞
x(t)e− jωdt

• The discrete-time Fourier transform converts a digital waveform into a continuous spectrum:

X(ejω̂) =
∞

∑
−∞

x[n]e− jω̂n

• The discrete Fourier transform converts a digital waveforminto a discrete spectrum:

X[k] =
N−1

∑
n=0

x[n]e− j 2π
N kn

• The z-transform converts a digital waveform into a continuous z-domain representation:

X(z) =
∞

∑
n=−∞

x[n]z−n

• All transforms have the properties of linearity, scaling, time delay, frequency shift and con-
volution.

Digital filters

• Digital, time-invariant linear filters operate on an input signal x[n] and produce an output
signaly[n].

• A filter is fully defined by two sets of real coefficients{al} and{bk}.
• The operation of the filter in the time domain is given by the difference equation.

y[n] =
M

∑
k=0

bkx[n−k]+
N

∑
l=1

al y[n− l ] (10.71)

• The time domain characteristics of a filter are fully captured by the responseh[n] to a unit
impulseδ[n].

• The operation of the filter in the z-domain is given by the transfer function.

H(z) =
b0 +b1z−1 + ...+bMz−M

1−a1z−1− ...−aNz−N

• The transfer functionH(z) is the z-transform of the impulse responseh[n].
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• The frequency response of the filter is given by settingz= ejω which gives:

H(e− jω̂) =
b0 +b1e− jω̂ + ...+bMe− jMω̂

1−a1e− jω̂− ...−aNe− jNω̂

• The z-domain transfer function can be factored into two polynomials, the roots of which are
called poles and zeros

H(z) = g
(1−q1z−1)(1−q2z−1)...(1−qMz−1)

(1− p1z−1)(1− p2z−1)...(1− pNz−1)

• Poles have an easy to understand interpretation, and in manycases, formant frequency and
bandwidth can be directly related to pole values. By suitable choice of pole, a frequency
response with appropriate resonances can usually be constructed.

• Complicated filters can by created by combining simpler filters.

• Filters change the amplitude and phase of the components in the input. They do not change
the fundamental period or fundamental frequency.



11
ACOUSTIC MODELS OF
SPEECH PRODUCTION

The speech production process was qualitatively describedin Chapter 7. There we showed that
speech is produced by a source, such as the glottis, which is subsequently modified by the vocal
tract acting as a filter. In this chapter, we turn our attention to developing a more formal quantita-
tive model of speech production, using the techniques of signals and filters described in Chapter
10.

11.1 ACOUSTICTHEORY OFSPEECHPRODUCTION

Such models often come under the heading of theAcoustic Theory of Speech Production, which
refers both to the general field of research in mathematical speech production models, and to the
book of that title by Fant [158]. While considerable previous work in this field had been done prior
to its publication, this book was the first to bring together various strands of work and describe
the whole process in a unified manner. Furthermore, Fant backed his study up with extensive
empirical studies with x-rays and mechanical models to testand verify the speech production
models being proposed. Since then, many refinements have been made to the model, as researchers
have investigated trying to improve the accuracy and practicalities of these models. Here we focus
the single most widely accepted model, but conclude the chapter with a discussion on variations
on this.

As with any modelling process, we have to reach a compromise between a model which
accurately describes the phenomena in question, and one which is simple, effective and suited
to practical needs. If we tried to capture every aspect of thevocal organs directly, we would
have to account for every muscle movement, articulator shape and tissue absorption characteristic
directly, and then determine how each of these affected how speech production. This would be a
huge undertaking, and even if an accurate description of allthese factors could be determined, the
result may be too complicated for useful analysis. We therefore have to make quite a number of
simplifying assumptions in order to obtain a usable model.

316
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(a) mid-sagittal drawing of vocal organs (b) Model of vocal organs with dis-
crete components identified

Figure 11.1 Diagram and model of vocal organs.

11.1.1 Components in the model

Our first task is to build a model where the complex vocal apparatus is broken down into a small
number of independent components. One way of doing this is shown in Figure 11.1b, where
we have modelled the lungs, glottis, pharynx cavity, mouth cavity, nasal cavity, nostrils and lips
as a set of discrete, connected systems. If we make the assumption that the entire system is
linear (in the sense described in Section 10.4) we can then produce a model for each component
separately, and determine the behaviour of the overall system from the appropriate combination of
the components. While of course the shape of the vocal tract will be continuously varying in time
when speaking, if we choose a sufficiently short time frame, we can consider the operation of the
components to be constant over that short period time. This,coupled with the linear assumption
then allows us to use the theory of linear time invariant (LTI) filters (Section 10.4) throughout.
Hence we describe the pharynx cavity, mouth cavity and lip radiation as LTI filters, and so the
speech production process can be stated as the operation of aseries of z-domain transfer functions
on the input.
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mass

Figure 11.2 Simple mass/spring oscillator. If the mass is displaced from its original, at rest posi-
tion, it will indefinitely oscillate horizontally.

For example, in the case of vowels, speech is produced by the glottal source waveform
travelling through the pharynx, and as the nasal cavity is shut off, the waveform progresses through
the oral cavity and is radiated into the open air via the lips.Hence as filters connected in series are
simply multiplied in the z-domain, we can write the system equation for vowels as:

Y(z) = U(z)P(z)O(z)R(z) (11.1)

Where U(z) is the glottal source, with P(z), O(z) and R(z) representing the transfer functions of the
pharynx, the oral cavity and the lips respectively. AsP(z), O(z) linearly combine, it is normal to
define a singlevocal tract transfer function V(z) = P(z)O(z), such that Equation 11.1 is written

Y(z) = U(z)V(z)R(z) (11.2)

which can be represented in the (discrete) time domain as:

y[n] = u[n]⊗v[n]⊗ r[n] (11.3)

The configuration of the vocal tract governs which vowel sound is produced, and by studying
this we can again an understanding of how the physical properties of air movement relate to the
transfer function, and sounds produced. In a similar fashion, transfer functions can be determined
for the various types of consonants. To determine the form these transfer functions take, we have
to investigate the physics of sound, and this is dealt with next.

11.2 THE PHYSICS OF SOUND

11.2.1 Resonant systems

We have informally observed that the vocal tract filter acts as a resonator; that is, it amplifies
certain frequencies and attenuates others. How does this behaviour arise?

The resonant nature of systems is often demonstrated by considering the motion of a mass
and spring as shown in Figure 11.2. Imagine this system is setin motion by displacing the mass to
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spring

damper

mass

Figure 11.3 Mass/spring/damped system. The mass and spring combine as before to create oscil-
lation, but the damper continually dissipates energy when the system is in motion, and will eventually
cause the system to stop.

the right and then letting go. The extended spring will try toreturn to its original position and in
doing so will set the mass in motion. Initially, the speed of movement will be slow as the inertia
of the mass must be overcome. As the spring reaches its original position, it will no longer exert
any force, but as the mass is now moving, it will continue to move and pass the original position,
moving to the left. As it does so, the spring will again be displaced from its original position, and
the more this is done, the stronger the force will become, until eventually the mass stops and the
spring pulls the mass towards the at rest position again. From Newton’s laws we also know that
the system will continue moving until acted upon by an external force.

The frequency at which the system oscillates is determined by the inertia of the mass and
thecomplianceof the spring;

resonant frequency=
1
2π

√

k
m

Hence a heavier mass will mean a slower oscillation and a stiffer spring will mean a quicker
oscillation. The important point is that the system has a single resonant frequency determined by
the physical properties of the mass and spring.

The above equates to a source filter system where a single impulse has been given to the sys-
tem; we saw in Chapter 10 that the impulse response from a system is a good way to characterise
the system itself independent of the input. Now let us consider the case where a periodicforcing
function is exerted on the mass, shown in Figure 11.3. Assuming the force is of sufficient strength,
the mass will move with the periodicity of the driving (source) force. Again, this is what we would
expect from Chapter 10, where we showed that the source and not the filter largely determines the
output frequency of a system. Imagine now that we send sources of different frequencies into the
system. We will find that at frequencies near to the resonant frequency the size of the oscillations
will increase. In fact, at the resonant frequency itself, the oscillations will get larger and larger,
and if no other factors are involve, will eventually become so large as to break the system1 Hence

1 This is what happens when things “shake themselves apart”, most famously the Tacoma Narrows bridge.
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damper

mass

spring

forcing function

Figure 11.4 Mass/spring/damped system driven by an external force. Here a periodic force is
applied, and this will determine the frequency at which the system oscillates. As the driving frequency
nears the natural resonant frequency (determined by the mass and spring) the size of the oscillations
will increase.

a mass-spring system with a driving force acts as a linear filter fed with a source.
The above is of course somewhat idealised because we know that in general systems don’t

shake themselves apart, and in the unforced case, when a massand spring are set in motion,
eventually the motion will stop. This is due to the third property known asresistance. In the
mechanical world, resistance is opposition to velocity, and is often described as adamping effect
on the system. Normally resistance is caused byfriction in which the energy in the movement
is converted into heat. As in general the heat cannot be converted back into motion energy, the
effect of friction is to causeenergy lossin the system, which will eventually bring the system to
a halt. One of the important features of resistance is that usually its effect on the frequency of
the resonance is negligible; that is, while the amount of resistance will determine how quickly the
oscillations die out, it does not affect the frequency at which those oscillations occur. This is an
important point for our model, as it often allows us to study the frequencies of resonances without
needing to consider the damping effects.

All these affects were shown in our examination of linear filters in Chapter 10. For exam-
ple, Figure 10.15a shows the displacement of the mass against time for the undamped case, while
Figure 10.15b shows the same system with damping. Figures 10.22 and 10.23 show the separa-
tion of frequency and damping effects on a pole-zero plot. There, the angle of the pole or zero
determined the frequency, whereas the radius of the pole determined the damping, with poles on
the unit circle meaning that the damping was zero. In terms ofa frequency response, the damping
manifests itself as amplitude and bandwidth of the resonantpeak, with high amplitude and narrow
bandwidth arising from cases of low damping.

The three factors of inertia (mass), resistance and capacitance (the reciprocal of spring com-
pliance) are collectively known asimpedanceas intuitively, the system “impedes” the motion in
the system.
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fixed
end

Figure 11.5 If the held end of the rope is given a jerk, this creates an impulse, which will travel
along the rope towards the wall.

11.2.2 Travelling waves

The behaviour of the vocal tract is in many ways similar to thebehaviour of the mass/spring/damped
system just described. The input, “forcing function” is theglottal source, which is used to drive the
system (the vocal tract) whose physical properties determine resonant characteristics, which then
modify the input signal so as to amplify some frequencies andattenuate others. One crucial differ-
ence however, is that the mass/spring/damped system is whatis known as alumped parameter
system in that it comprises easily identifiable, discrete components such as the mass and spring.
By contrast, the vocal tract is adistributed system, in which the properties of inertia, capacitance
and resistance are evenly distributed throughout the system. We can formulate the properties of
a distributed system by modelling it as a large number of small connected discrete systems; that
is. Using calculus, we can determine the behaviour of a distributed system by considering the
behaviour of the system as the size of the elements tends to zero. This steps involved in this are
fully described in Rabiner and Schafer [368]; for our purposes though, we will simply take the
results of this analysis and apply it to the problem of the sound propagation in the vocal tract.

Before considering this directly, we will appeal again to anequivalent physical system, as
this will let us examine an aspect of resonant behaviour thatis central to our study, namely that
of travelling waves. Consider first the easy to visualise example of waves travelling in a rope,
in which one end is in a person’s hand and the other is tied to a wall. This is shown in Figures
11.5 and 11.6. If the person introduces some energy in the rope by giving the rope a jerk (i.e. an
impulse), a wave will form at that end and travel down the rope. When the wave reaches the tied
end at the wall, it will be reflected, and will travel backwards towards the person. When it reaches
the held end, the wave will be reflected back again towards thewall and so on, until all the energy
has eventually been lost from the system.

The person can create a forcing function (i.e. source) inputto the system by moving their
hand in a repetitive fashion. In doing so, a series of pulses will form and travel forwards down
the rope towards the wall, and these pulses will create atravelling wave, the frequency of which
is dictated by the hand movement. When this forwards travelling wave is reflected, a backwards
travelling wave will be created. The forward wave and backward wave will interfere - if the two
have a peak at a given point, a large peak will occur, and if onehas a negative peak while the
other has a positive peak then these will cancel out leaving the rope at that point in its neutral
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Figure 11.6 The impulse in the rope travels towards the wall, where is is reflected out of phase
with the original pulse. The reflected pulse travels backwards along the rope.

position. In general, the observed shape of the rope will notform a simple pattern. However at
some frequencies, the reflected wave will exactly reinforcethe forward wave, and the rope will
settle down into a fixed pattern. In such cases, the wave does not look like it is travelling at all,
so this is termed astanding wave. The term is a little misleading because it might be taken to
mean that there is no motion - this is not the case. It merely appears that the waves are not moving.
Standing waves are only created at certain frequencies. At these frequencies, the wave is amplified,
that is the overall displacement in the rope at a peak is greater than the input. Thus the rope acts as
a resonator, amplifying certain frequencies and attenuating others. The frequencies at which the
resonances occur are governed by the length of the rope and the speed of wave travel.

The above demonstrates some of the fundamental properties of travelling waves. First, note
that some of the behaviour is determined by the motion of the hand, while some is determined by
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Figure 11.7 Longitudinal sound wave travelling along a tube. The wave travels by means of com-
pression and rarefaction of the air particles. The displacement of a slice of air particles against position
in the tube is shown below.

the properties of the rope itself. For example, the frequency of the waves is determined purely by
the rate of movement of the hand; the rope itself has no influence on this at all. In contrast, the
rate at which the wave travels along the rope is not influencedby the hand at all; no matter how
quickly or slowly the hand moves, the wave always travels at the same speed, and this speed is
determined by the properties of the rope. This shows why it isappropriate to use the theory of
signals and filters where an initial source (the wave createdby the moving hand) has its behaviour
modified by a filter (the rope). Furthermore, we should also clearly see the parallels between this
and the behaviour of the glottis source and vocal tract filterin speech production.

What then determines the behaviour of the rope? Firstly, we have the physical properties of
the material of the rope; its inherent stiffness, its length, its mass and so on. Secondly, we have
what are known as theboundary conditions, that is, the specifics of how the rope is terminated
at either end. In the above example, one end of the rope was attached to a wall; there are other
possibilities, such as the end of the rope being free - in sucha case reflection also occurs, but in a
different way from the fixed case.

11.2.3 Acoustic waves

The properties of sound waves travelling in atube are very similar to those of waves travelling in
a rope. Instead of the wave travelling by means of moving the rope, a sound wave travels in air by
a process of displacement of the particles of air. In the absence of any particular sound, the air has
certain ambient properties, such as pressure and temperature. The effect of a sound source in the
air causes the particles to move backwards and forwards and in doing so, the wave spreads from
the source. This is shown in Figure 11.7, where a forcing function at one end of the tube causes a
disturbance which travels along the tube, causingcompressions, where the particles come closer
together, andrarefaction where they move further apart. This is similar to the situation with the
rope, in which the wave travels along the rope, but the rope itself is only temporarily displaced;
the rope doesn’t end up travelling with the wave.

One difference is that sound waves arelongitudinal whereas waves in a rope aretransverse.
This means that rather than the particles of sound moving up and down relative to the direction
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of wave motion, they move backwards and forwards along the axis of wave motion. Despite this
significant physical difference, the behaviour can be modelled in exactly the same way. As with
the rope, the specifics of how the wave travels in the air are determined by the physical properties
of the air, and in the case of standing waves by the boundary conditions. The physics of general
sound wave propagation are complicated and form an extensive area of study. For our purposes
however, we only need consider one specific type of sound propagation, that of sound propagation
in a tube. Furthermore, we can assume that the tube has constant cross sectional area along its
length, as this can generalise to cases where the tube variesin area.

An important property of the air is itsspeed of sound, denoted byc. For a given pressure and
temperature, this is constant, and while this can be calculated from more fundamental properties,
it is easily measured empirically. A typical value is that a sound wave travels 340 metres in one
second at room temperature and pressure. By speed of sound wemean the distance travelled
by one part of the wave in unit time. Note the similarity with the rope; as the speed of sound
propagation is constant, it doesn’t matter what the source does, all waves travel at exactly the
same speed.

In sound propagation in general, the signal or wave is manifested asparticle velocity. This
is the pattern of movement of air particles which makes up thesound wave. In tubes however,
the mathematics is considerably simplified if we use a related quantityvolume velocity, which is
just the particle velocity multiplied by the area. As the area of the tube is constant, this doesn’t
complicate our analysis. The air in the tube has an impedanceZ, and the effect of this is to
“impede” the volume velocity. This brings us topressure, which can be thought of as the work
required to move the air particles through a particular impedance. The fundamental equation
linking the three is:

P = ZU (11.4)

Hence for a constant pressure a high impedance will mean a reduced particle velocity, or con-
versely to maintain a constant particle velocity, more pressure will be needed if the impedance
increases. This can easily be visualised; imagine pushing something in a pipe; if the pipe is un-
constricted (nothing “impeding”, low impedance) a small amount of pressure (effort) will move
something down the tube. If the tube is blocked, considerably more effort will be required to move
the object.

Acoustic impedance is formulated in a similar fashion to themechanical impedance de-
scribed in Section 11.2.1. First we haveacoustic inductance, meaning that when a sound wave
passes through the air, the inertia in the air impedes any acceleration of the air particles. Next we
have a property calledacoustic capacitance, which is equivalent to the effect of the spring in the
mechanical system. This arises because th air is compressible, and the capacitance is a measure of
how strongly the air resists this compression. Unlike inertia, this is a property which reacts to dis-
placement, that is, distance moved, rather than acceleration. Finally we haveacoustic resistance,
which dampens the system and is responsible for energy loss.
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u+

u−

Figure 11.8 A uniform tube with forwards travelling wave,u+, and backwards travelling waveu−.

In our uniform tube, the impedance is distributed evenly along the entire length of the tube
rather than existing at a single point, as in a single mass or spring. Hence, the length of the tube is
an important factor and the distributed nature means that determining the resonant characteristics
is somewhat more complicated. As length is a factor a standard measure of impedance in such
systems is call thecharacteristic impedancewhich is the impedance that would occur if the tube
was infinitely long. This is termedZ0 and is given

Z0 = ρc (11.5)

whereρ is the density of the air. In air, the inductance is given by density divided by areaρ/A
and capacitance is given byA/ρc2. For now, we shall assume that the resistance is air is in fact
zero. We do this firstly because it helps simplify the derivation of the full model, but in fact this
is further justified because the friction due to the air itself is relatively minor, and in reality other
resistive factors (such as the contact with the tube walls) provide a greater (and more complicated)
contribution to the overall energy loss. Tubes which have a zero resistance component are termed
lossless tubesfor obvious reasons.

11.2.4 Acoustic reflection

Consider again the properties of properties of waves travelling in a rope. There we saw that at the
termination of the rope, the travelling wave was reflected, and the reflected backwards travelling
wave interfered with the forward wave to determine the behaviour of the complete system. Trav-
elling sound waves move along the tube in a similar way. Depending on the boundary conditions
at the end of the tube, some portion of the acoustic wave is reflected back, and this interferes with
the wave travelling forwards. At specific frequencies, governed by the length of the tube and the
speed of sound, the backwards and forwards waves will reinforce each other and cause resonances.

In such a system, the volume velocity at a given point and timecan be expressed as:

u(x, t) = u+(t−x)−u−(t +x) (11.6)

whereu+(t) is the forward travelling wave, andu−(t) is the backwards travelling wave. This is
shown in Figure 11.8. The minus sign between the terms indicates that the two waves can cancel
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lungs

lipsglottis

Figure 11.9 Vocal tract model composed of sequence of joined uniform tubes.

each other out; when the forward wave meets an equal size volume velocity of the backward wave,
the overall effect is to have no motion.

Equation 11.5 allows us to state an expression for pressure in terms of the forward and
backward volume velocities at a point in space and time in a similar way

p(x, t) =
ρc
A

(

u+(t−x)+u−(t +x)
)

(11.7)

Hereρc/A is the characteristic impedanceZ0 of the tube. Note that in this case, the terms are
additive; an increase in pressure from the forward wave meeting an increase in pressure from the
backward wave results in an even higher combined total pressure. If the area of the tube remains
constant, the wave simply propagates through the tube. If however the area changes, then the
impedance changes, and this causes reflection. The reflections set up standing waves and these
cause resonances. In this way, the impedance patterns of thetube govern the resonant properties
of the model2

11.3 VOWEL TUBE MODEL

In vowel production, the glottal source creates a wave whichpasses through the pharyngeal cavity,
then the oral cavity and finally radiates through the lips. The nasal cavity is blocked off, and so
the pharyngeal cavity and mouth can be combined and modelledas a single tube. This tube varies
in cross sectional area along its length, and it is the ability of a speaker to vary the configuration
of this tube that gives rise to the different vowel sounds. Modelling a continuously varying tube is
complicated, but we can approximate this by considering a series of short uniform tubes connected
in series, shown in Figure 11.9. If the number of tubes is sufficiently large, a continuous tube can
be modelled with arbitrary accuracy using this method (we return to the issue of just how many
tubes are needed in Section 11.3.6).

Recall that we described the overall process of vowel production as one where a signal from
the glottisu[n] travels through and is modified by the vocal tract and lips to produce the speech
waveformy[n]. In the z-domain, this is represented by Equation 11.2:

Y(z) = U(z)V(z)R(z)

2 Note that the above expressions can be derived from a first principles solution of the wave equations and the proper-
ties of air. This is beyond the scope of our study, but severalgood accounts are available [368] [364].
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whereU(z) is the z-transform of the glottal source,V(z) is the vocal tract filter andR(z) is the
radiation effect from the lips. Initially, we wish to findV(z) as the is the part of the expression
that characterises the phonetic nature of the sound. FromV(z) we can find the spectral envelope,
formants and other linguistically useful information. To findV(z), we study the evolution of the
volume velocity signal from the glottis to the lips. We will denote the volume velocity at the lips
UL(z), and to avoid confusion, with denote the volume velocity glottal source asUG(z) rather than
simply asU(z). Hence our expression is

UL(z) = V(z)UG(z) (11.8)

After this, we can determine the final speech signalY(z) by applying the radiation characteristic
R(z) to UL(z). Rather than attempt to findV(z) from the tube properties directly, we will use the
tube model to findUL(z) in terms ofUG(z), and divide these to findV(z).

11.3.1 Discrete time and distance

In practice we wish to use our analysis on digital signals, soour first task is to convert the expres-
sions for volume velocity and pressure in a tube into a digital form, so that we can perform the
analysis independent of sampling rate.

Recall from Section 10.2.1 that we can convert timet to a discrete representation time vari-
ablen by

n = tFs

whereFs is the sampling rate. As is standard in discrete signal processing, we will use normalised
frequency (̂F) and normalised angular frequency (ω̂), which are calculated from frequency (F)
and angular frequency (ω) by

F̂ =
ω̂
2π

=
F
Fs

In addition, it is convenient to normalise our measure of distance from the start of the tube,x, with
respect to the sampling frequency. It also helps simplify the analysis if we normalise this with
respect to the speed of sound. As with time and frequency normalisation, this allows us to derive
general expressions for the system independent of the sampling frequency used and the speed of
sound in the medium. Hence normalised distanced is given by

d =
xFs

c
(11.9)

Using this result we can state the volume velocity and pressure functions, given in Equations
11.6, 11.7 and 11.9, in discrete normalised time and distance as

u[d,n] = u+[n−d]−u−[n+d] (11.10a)

p[d,n] =
ρc
A

[

u+[n−d]−u−[n+d]
]

(11.10b)
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Figure 11.10 Behaviour of forwards and backwards travelling waves at a tube junction.

In the next section we will develop a general expression for the reflection and transmission
of a wave at the junction of two tubes and in in the subsequent sections, show how this result can
be used to determine the behaviour of the whole system.

11.3.2 Junction of two tubes

If we consider a single tubek in our model, from Equations 11.6, 11.7 and 11.9 we can state the
volume velocity and pressure functions in discrete normalised time and distance as

uk[d,n] = u+
k [n−d]−u−k [n+d] (11.11a)

pk[d,n] =
ρc
Ak

[

u+
k [n−d]−u−k [n+d]

]

(11.11b)

Now we consider the junction between a tubek with normalised lengthDk and its neighbouring
tube k + 1, shown in Figure 11.10. As this tube is also uniform, it can also be described by
Equations 11.11a and 11.11b.

Joining two tubes creates a boundary condition at the junction, and it is this junction which
determines how the sound propagates as a whole. In considering behaviour at a junction, we can
use an important principle of physics which states that pressure and volume velocity cannot change
instantaneously anywhere. So despite the sudden change in cross sectional area, the volume veloc-
ity and pressure cannot abruptly change, and it follows fromthis that at the point of the junction
the pressure and volume velocity must be equal. Hence

uk[Dk,n] = uk+1[0,n]

pk[Dk,n] = pk+1[0,n]

Using these boundary conditions we can relate the forwards and backwards volume velocity equa-
tions of tubek and tubek+1 at the junction. That is, at the end (d = Dk) of tubek and the start of
tubek+1 (d = 0)

u+
k [n−Dk]−u−k [n+Dk] = u+

k+1[n]−u−k+1[n] (11.12)
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Figure 11.11 Tube junction showing how wave u+ is made from reflection of U-in tube k+1, and
transmission of u+ from tube k

and likewise with the pressure:

ρc
Ak

[
u+

k [n−Dk]+u−k [n+Dk]
]
=

ρc
Ak+1

[
u+

k+1[n]+u−k+1[n]
]

(11.13a)

1
Ak

[
u+

k [n−Dk]+u−k [n+Dk]
]
=

1
Ak+1

[
u+

k+1[n]+u−k+1[n]
]

(11.13b)

we can substitute these equations into one another and eliminate one of the volume velocity terms.
For example, from Equation 11.12 we know thatu−k [n+ Dk] = u+

k+1[n]− u−k+1[n] + u+
k [n−Dk],

which we can substitute into Equation 11.13b to give an expression foru+
k+1[n]

u+
k+1[n] =

[ 2Ak+1

Ak +Ak+1

]

u+
k [n−Dk]+

[Ak+1−Ak

Ak +Ak+1

]

u−k+1[n] (11.14)

This equation is interesting in that it shows the make up of the forward travelling wave in tube
k+1. As we would expect, this is partly made up of the forward travelling wave from tubek and
partly from some of the backward travelling wave being reflected at the junction. The coefficient
of u+

k in Equation 11.14 is the amount ofu+
k that istransmitted into the next tube,k+ 1, and is

termed thetransmission coefficient. The coefficient ofu−k+1 is the amount ofu−k+1 that isreflected
back into tubek+ 1 at the junction and is termed thereflection coefficient. As they are simply
related, only one is needed to describe the junction and by convention reflection coefficients are
used. The reflection coefficient is often denotedrk (meaning the reflection between tubesk and
k+1) and from 11.14 is given by:

rk =
Ak+1−Ak

Ak +Ak+1
(11.15)

Of particular importance is that fact that the boundary condition is completely described by the
reflection coefficient, and this is only governed by the areasof the tubes; the speed of sound and
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density terms have been eliminated. We shall see that reflection coefficients are a simple and useful
way to define the characteristics between two tubes and we will henceforth use them instead of
tube areas. Using reflection coefficients, we can find expressions that relate the forward wave or
the backward in one tube with the forward and negative waves in the other tube:

u+
k [n−Dk] =

1
1+ rk

u+
k+1[n]+

rk

1+ rk
u−k+1[n] (11.16a)

u−k [n+Dk] =
−rk

1+ rk
u+

k+1[n]+
1

1+ rk
u−k+1[n] (11.16b)

11.3.3 Special cases of junction

The above result can be used to help set boundary conditions for the tube at the lips and the glottis.
To see this, let us consider three special cases resulting from changing areas in the tubes.

Firstly, if two connected tubes have the same cross sectional area we see from 11.15 that
the reflection coefficient is 0 and the transmission coefficient is 1. That is, there is no reflection
and all the wave is transmitted past the boundary. This is entirely what we would expect from
our uniform tube model. Next, let us consider the situation where the tube is completely closed at
one end. A closed termination can be modelled by having the second tube have an infinitely small
area (that is, the size of the junction between the tubes disappears to nothing and hence creates
a solid wall). The effect of this can be found from Equation 11.15. As the area of the second
tube,Ak+1→ 0, the reflection coefficientrk→−1. Now consider a completely open tube. This
can again be modelled with the tube junction model, but this time the area of the second tube is
infinitely big. Hence, from Equation 11.15, asAk+1→ ∞ the reflection coefficientrk→ 1. Hence
both a closed termination and a open termination completelyreflect the wave.

There is a crucial difference between the two situations however and this can be seen from
the sign of the reflection coefficient. In the closed termination case, the tube ends in a solid wall
and the reflection coefficient is -1. From Equation 11.16b we can see that in such a case the
volume velocity will be 0. If we find the equivalent pressure expressions for Equation 11.16b, we
see that the pressure terms add, and hence the pressure at this point is(ρc)/A1. Intuitively, we can
explain this as follows. The solid wall prevents any particle movement and so the volume velocity
at this point must be 0. The pressure however is at its maximum, as the wall stopping the motion
is in effect an infinite impedance, meaning no matter how muchpressure is applied, no movement
will occur. In the open end situation, when the reflection coefficient is 1, we see from Equation
11.16b that the volume velocity is at a maximum and now the pressure is 0. Intuitively, this can
be explained by the fact that now the impedance is 0, and henceno pressure is needed to move the
air particles. Hence the pressurep(L, t) is 0, and the volume velocity is at its maximum.
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Figure 11.12 Two tube model with terminations at the glottis and lips. This system has three
reflection coefficients. In the middle we haver1 the only “real” reflection coefficient, whose value
is given by the area Equation 11.15. The lips and glottis reflection coefficients are artificial values
designed to ensure there are some losses from the system. Note that there is no backwards wave
entering at the lips, and no forwards wave (save the source) entering at the glottis.

11.3.4 Two tube vocal tract model

Here we will consider a model in which we have two connected tubes of different cross sectional
areas. In this formulation, the tubes have areasA1 andA2, and normalised lengthsD1 andD2,
such thatD1 + D2 = D, the total normalised length of the vocal tract. Using the results from
Section 11.3.3, we represent the behaviour at the boundary by the reflection coefficientr1. The
lips and glottis are modelled by two special tubes which havereflection coefficientsrL and rG

respectively. We can set these so as to produce different effects - one configuration is to have
the glottis completely closed and the lips completely open;another is to have values for each
coefficient being slightly less than this value so that some losses occur and so that some sound
propagates from the lips. These lip and glottis tubes are special because we add an extra condition
such that any tube entering these tubes is never reflected back again. Examining a two tube model
in depth gives us a feel for how this system operates as a whole; following this section we will
consider the behaviour of a single tube, the behaviour when we consider losses, and a final model
where we have an arbitrary number of tubes.

Our goal is to find the z-domain transfer function of the system, and we will find this by
dividing the z-domain expressions for output at the lips by the input at the glottis. The best way
to proceed is to define the volume velocity at the lips, use this to find the volume velocity at the
junction between the two proper tubes, and use this to find thevolume velocity at the glottis. To
do this we use Equations 11.16b and 11.16b which relate the volume velocity in one tube to the
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volume velocity in the next. As our end point is a z-domain expression, we will make repeated use
of the z-transforms of equations 11.16b which are

U+
k (z) =

zDk

(1+ rk)
U+

k+1(z)−
rkzDk

(1+ rk)
U−k+1(z) (11.17a)

U−k (z) =
−rkz−Dk

(1+ rk)
U+

k+1(z)+
z−Dk

(1+ rk)
U−k+1(z) (11.17b)

We start by definingUL(z) as the output at the lips. We now feed this into Equations 11.17b
and 11.17b and use the fact that there is no backwards wave (U−L = 0) to set the volume velocities
at junctionk = 2 as:

U+
2 (z) =

zD2

1+ rL
UL(z) (11.18a)

U−2 (z) =
−rLz−D2

1+ rL
UL(z) (11.18b)

By feeding these values into Equation 11.17b again, we can calculate the volume velocitiesU+
1

andU−1 at the junctionk = 1.

U+
1 (z) =

zD1

1+ r1
.U2(z)−

r1zD1

1+ r1
U2(z)

=
zD1.zD2

(1+ r1)(1+ rL)
UL(z)+

r1rLzD1z−D2

(1+ r1)(1+ rL)
UL(z)

U−1 (z) =
−r1z−D1

1+ r1
.U2(z)+

z−D1

1+ r1
U2(z)

=
r1z−D1.zD2

(1+ r1)(1+ rL)
UL(z)−

z−D1z−D2

(1+ r1)(1+ rL)
UL(z)

We have now reached the glottis, modelled by a special tube oflength 0 and reflection coefficient
rG. We take the length of this tube to be 0, and asz0 = 1 then

Ug(z) = =
1

1+ rG
U+

1 (z)− rG

1+ rG
U−1 (z)

To findU+
G we simply repeat the above procedure again. Note that we don’t need to knowU−G as

we are assuming this gets fully absorbed into the lungs.

U+
G (z) =

zD1zD2 + r1rLzD1z−D2 + r1rGz−D1zD2 + rLrGz−D1z−D2

(1+ rG)(1+ r1)(1+ rL)
UL(z)
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Figure 11.13 Uniform tube model of vocal tract where the glottis end is closed and the lips end
open

By rearranging to getUL/UG and by dividing top and bottom byzD1zD2 we get the standard form
of the transfer function as a rational function inz−1:

V(z) =
UL

UG
=

(1+ rG)(1+ r1)(1+ rL)z−(D1+D2)

1+ r1rLz−2D2 + r1rGz−2D1 + rLrGz−2(D1+D2)

The terms containingr in the numerator sum to form the gain,G. The normalised tube lengthsD1
andD2 must sum to the overall lengthD1+D2= D, which gives

V(z) =
UL

UG
=

Gz−D

1+ r1rLz−2(D−D1) + r1rGz−2D1 + rLrGz−2D
(11.19)

Note that the lengths of the tubesD1,D2 must be integers; this is a constraint imposed by the
discrete modelling of the vocal tract. The discrete modelling also dictates the number of poles: for
a higher sampling rate requires more poles and hence the granularity of the tube lengths increases.

11.3.5 Single tube model

A special case of the two tube model is the single tube or uniform tube model where the cross
sectional area is constant along the entire length of the tube. This is a reasonable approximation of
the vocal tract when producing the schwa vowel. IfA1 = A2, then the refection coefficientr1 = 0
and hence Equation 11.19 simplifies to

V(z) =
Gz−D

1+ rLrGz−2D
(11.20)

Recall thatD is the length of the vocal tract in units of the normalised distance that we used
to simplify the equation for discrete time analysis. By use of Equation 11.9, we can determine a
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value for D from empirically measured values. For instance,if we set the length of the vocal tract
as 0.17m (the average for a male), the speed of sound in air as 340ms-1, and choosing a sampling
rate of 10000Hz, Equation 11.9 gives the value ofD as 5. Hence the transfer function becomes

V(z) =
Gz−5

1+ rLrGz−10 (11.21)

that is, an IIR filter with 5 zeros and 10 poles. It can be shown that a polynomial 1+ rLrGz−10 can
be factorised to a set of 10 complex roots, such that in polar terms the radius of each root isrLrG,
and the angle is given by

θn =
π(2n−1)

10
(11.22)

The numerator of the transfer function tells us that the output is delayed by a factor which
is a function of the length of the tube. All these zeros lie at 0, and can be ignored for purposes
of determining the frequency response of the transfer function. The poles are evenly spaced on
the unit circle at intervals ofπ/5. The first is atπ/10 = 0.314, which when converted to a real
frequency value with Equation 10.29, gives 500Hz. Subsequent resonances occur every 1000Hz
after that, i.e. 1500Hz, 2500Hz and so on.

Recall that the losses in the system come from the wave exiting the vocal tract at the glottis
and lips, and the degree to which this is done is controlled bythe special reflection coefficientsrL

and rG. Let us first note, that since these are multiplied, it doesn’t affect the model as to where
the losses actually occur, and in fact in some formulations the losses are taken to occur only at the
glottis or only at the lips. Secondly, recall from Section 11.3.3, that the special case of complete
closure at the glottis would produce a reflection coefficientof 1, and the special condition of
complete openness at the lips would produce a reflection coefficient of -1. This is a situation
where there are no losses at all in the system (unrealistic ofcourse, for the simple fact that no
sound would escape and hence a listener would never hear the speech.) For these special cases the
product isrLrG is 1, which means that the denominator term is

V(z) =
Gz−5

1−z−10

It can be shown that when this is factorised, all the poles arespaced as before, but lie on the unit
circle. This is of course exactly what we would expect from a lossless case.

We can find the frequency response of the vocal tract by setting z = ejω̂. For the special
lossless case then,

V(ejω̂) =
2ej5ω̂

1+ej10ω̂
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Figure 11.14 Magnitude spectrum for uniform tube, showing that the resonances are sharp spikes
(because there is no damping) and that the resonances lie at even intervals along the spectrum.

Making use of the inverse Euler expression, Equation 10.11 can also be written as:

V(ejω̂) =
1

cos(5ω̂)
(11.23)

This frequency response is shown in Figure 11.14, and it can be seen that the formants are very
sharp (no damping) and lie at evenly spaced intervals, as predicted by the transfer function.

11.3.6 Multi-tube vocal tract model

We will now develop a general expression for the transfer function of a tube model for vowels, in
which we have an arbitrary number of tubes connected together.

We saw in Section 11.3.5 that the order of the final transfer function is determined by the
normalised length of the tubeD. This is turn is a function of sampling rate and vocal tract length
and so longer vocal tracts or higher sampling rates will require higher order filters. Staying with
the case of a 0.17m vocal tract with 340ms-1 speed of sound and10000Hz sample rate, we find
we need a 10th order transfer function as shown in the cases ofthe uniform and two tube models.
The difference in the transfer function for these two modelsis simply in the inclusion of the extra
non-zero coefficients in the denominator. Extending this principle, we find that the most powerful
transfer function is one with a non-zero coefficient for every term inz−1. Such a transfer function
can be created by a model with exactly 10 equal length tubes, each of which has lengthDN = 1/2.
Importantly, for the given sample rate, no extra accuracy isachieved by increasing the number of
tubes beyond this value.
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The principle behind finding the N tube transfer function is the same as for the two tube
model - start at the lips and apply Equations 11.18a and 11.18b for each tube in turn. This is tedious
to perform in the manner used for the two tube system, but we can use matrix multiplication to
speed up the process.

Equations 11.17b and 11.17b can be expressed in matrix form as:

Uk = QkUk+1

where

Uk =

[

U+
k (z)

U−k (z)

]

and becauseD = 1/2, then

Qk =

[
z1/2

1+rk

−rkz1/2

1+rk
−rkz−1/2

1+rk

z−1/2

1+rk

]

We can use the special reflection coefficients at the lips and glottis to model the terminating bound-
ary conditions as before. In the matrix formulation, this gives

UN+1 =

[

UL(z)
0

]

=

[

1
0

]

UL(z) (11.24)

for the lips and

UG =
[ 1

1+ rG

1rG

1+ rG

]

U1(z) (11.25)

for the glottis. We can use these boundary conditions to formulate an expression for the transfer
function for an arbitrary number of tubes

1
V(z)

=
UG

UL
=
[ 1

1+ rG

1rG

1+ rG

] N

∏
k=1

Qk

[

1
0

]

which can be solved by iteratively calculating the terms. The result of this will always take the
form:

V(z) =
1+ r0

2

z−N/2
N
∏

k=1
(1+ rk)

1−a1z−1−a2z−2...−aNz−N (11.26)

which as we saw before, is simply a delay in the numerator, followed by an all-pole expression in
the denominator. This is an important result, because it shows that a vocal tract without internal
losses can be accurately modelled by an all-pole filter.3

3 Rabiner and Schafer [368] show that the above can be calculated more easily, and without direct matrix multiplication
if we assume that the glottal impedance is infinite.
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It is possible to simplify the calculation by making the further assumption that glottis is a
completely closed end, with infinite impedance and reflection coefficient 1. If we take

AN(z) =
N

∑
k=1

akz
−k

it is possible to show that in the case thatrg = r0 = 1 that the following equation holds

AN(z) = AN−1(z)+ rkz
−kDk−1(z

−1) (11.27)

That is, the Nth order polynomial inz−1 can be determined from the N-1 order polynomial inz−1,
zand the reflection coefficientrk. If we therefore start atN = 0 and setA0(z) = 1 we can calculate
the value forA1, and then iteratively for allA(z) up toN. This is considerably quicker than carrying
out the matrix multiplications explicitly. The real value in this however, will be shown in Chapter
12, when we consider the relationship between the all-pole tube model and the technique of linear
prediction.

11.3.7 The all pole resonator model

This general result is important as it shows that for any number of tubes, the result is always
an all-pole filter. From Section 10.5.1, we know that this canbe factorised into an expression
containing individual poles, and these can often be interpreted directly as formant resonances.
Here we see we have come full circle; in Section 10.5.3 we showed that a second order IIR filter
could faithfully model the shape of a single formant, in Section 10.5.4 we showed that several of
these could be cascaded to model a number of formants. In thischapter, we saw in Section 11.2.1
that a physical mass/spring/damped system can be modelled by the same Equations, and that a
single mass, spring and damper create a resonance pattern ofexactly the same type as a second
order IIR formant model. In the preceding section, we have just shown that a connected tube
model has an all-pole transfer function, with the number of poles equalling the number of tubes.
From this result, it is clear that an all-pole tube model can faithfully create any formant pattern
if the parameters to the tubes (i.e. the cross sectional areas) are set correctly. Furthermore, the
transfer function for the tube model can be factorised so as to find the poles, and possibly identify
individual formants.

An important point to realise is that the formant patterns that arise from this all-pole model
are a function of the whole model; while the transfer function can be factorised, it isnot appro-
priate to ascribe individual poles or formants to individual tubes in the model. The situation is
more complex than this, and the formant patterns are createdfrom the properties of all the tubes
operating together.
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Figure 11.15 Plot of idealised glottal source, as volume velocity over time. The graph shows the
open phase, where air is flowing through the glottis, the short return phase, where the vocal folds are
snapping shut, and the closed phase, where the glottis is shut, and the volume velocity is zero. The
start of the closed phase is the instant of glottal closure.

11.4 SOURCE AND RADIATION MODELS

11.4.1 Radiation

So far, we have developed a transfer functionV(z) which is defined as the ratio of the volume
velocity of the lips over the volume velocity at the glottis.In practice however, when we mea-
sure sound, we normally in fact measure pressure signals, asthis is what most microphones are
designed to respond to. Most microphones exist in thefar-field , that is at some distance from
the lips, and hence the signal is influenced by aradiation impedance from the lips. This can be
modelled by another transfer function,R(z), which, from Equation 11.4 is defined as

R(z) =
P(z)

UL(z)
(11.28)

Modelling radiation accurately soon becomes very complicated, so for our purposes, we use
a very simple model that has been shown to do a reasonable job at approximating the radiation.
This takes the form of a function which differentiates the signal, and this can be modelled by a
FIR filter with a single zero:

R(z) = 1−αz−1 (11.29)

whereα is a value less than but quite near to 1 (e.g. 0.97). This creates a high frequency boost of
about 6dB per octave.

11.4.2 Glottal source

We qualitatively described in Section 7.1.2 the process of how the glottis produces sound. In
voiced speech, the vocal folds undergo a cycle of movement which gives rise to a periodic source
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sound. At the start of this cycle the vocal folds are closed. Pressure is exerted from the lungs which
causes a build up in pressure beneath the folds until eventually the pressure forces open the folds.
When the folds open, air moves through them and as it does do, the pressure beneath the folds
reduces. Eventually the pressure is low enough so that the tension closes the vocal folds, after
which the cycle repeats. The rate at which this cycle occurs determines the fundamental frequency
of the source, and ranges from about 80Hz to 250Hz for a typical male, and 120Hz to 400Hz for
a typical female or child. A plot of volume velocity against time for the glottal source is shown in
Figure 11.15. Here we see the three main parts of the cycle: the open-phasewhere the glottis is
opening due to the pressure from the lungs, thereturn phase where the glottis is closing due to
the vocal tract tension, and theclosed phase.

Modelling the glottis is a tricky problem in that building a simple model seems relatively
easy, but developing a highly accurate model that mimics glottal behaviour in all circumstances is
extremely difficult and has not in any way been solved. We willreturn to the difficulties in accurate
glottal modelling in Section 13.3.5, but for now we will demonstrate a simple model which at least
gives us a flavour of how this works.

An extensive study into glottal modelling is given in Flanagan [164], which describes various
mass/spring/damped systems. These models can be somewhat difficult to model in discrete time
systems, so instead we adopt models which simply generate a time domain function which has the
properties described above. One such model [376] [368] is given by:

u[n] =







1
2

(
1−cos(πn

N1

)
0≤ n≤ N1

cos(π(n−N1)
2N2

)
N1≤ n≤ N2

0 otherwise

(11.30)

whereN1 marks the end of the open phase andN2 marks the end of the return phase/start of the
closed phase. Another quite widely used model is the Lijencrants-Fant model [159] (sometimes
known as the LF model). This describes the glottal waveform derivative and is given by

u[n] =







0 0≤ n < To

E0eα(n−T0)sin[Ωo(n−T0)] T0≤ n < Te

−E1[eβ(n−Te)−eβ(Tc−Te)] Te≤ n < Tc

(11.31)

whereT0 is the instant of glottal opening,Te is the position of the negative minimum,Tc is the
instant of glottal closure,α, β andΩ control the shape of the function, andE0 andE1 determine
the relative heights of the positive and negative part of thecurve. The LF function and its integral,
which is the normal glottal flow function, is shown in figure 11.16. Quatieri [364] gives a third
model, in whichg(n) is created by two time reversed exponentially decaying sequences:

u[n] = (β−nu[−n])∗ (β−nu[−n]) (11.32)

which have the nice property of having a simple z-transform
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Figure 11.16 Plot Lijencrants-Fant model for glottal flow and derivativeglottal flow for a single
period.

U(z) =
1

(1−βz)2 (11.33)

The most important control element in the glottal source is of course the rate at which the
cycles occur. In Equation 11.30, this is determined by the positions ofN1 andN2; in Equation
11.32 byT0, Te andT0; and in Equation 11.31 this is determined by the impulse function u[n].
In the last case, the glottal volume velocity function can bethought of as a low pass filtering of
an impulse stream. From these expressions and empirical measurements, it is known that this low
pass filter creates a roll off of about -12dB per octave. It is this, combined with the radiation effect,
that gives all speech spectra their characteristic spectral slope.

While Equation 11.32 gives a reasonable approximation of the glottal volume velocity signal,
it does not model the secondary effects of jitter, shimmer and ripple as mentioned in Section 17.
More realism can be added to the glottal signal by the addition of zeros into the transfer function,
giving the expression:

U(z) =

M
∏

k=1
(1−ukz−1)

(1−βz)2 (11.34)

We have definedU(z) as a volume velocity signal, mainly for purposes of developing the
vocal tract transfer function. While in reality, the radiation R(z) occurs after the operation ofV(z),
we aren’t restricted to this interpretation mathematically. As we shall see, it is often useful to
combineU(z) and R(z) into a single expression. The effect of this is to have a system where
the radiation characteristic is applied to the glottal flow waveform before it enters the vocal tract.
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This is equivalent to measuring the pressure waveform at theglottis, and if we adopt the radiation
characteristic of Equation 11.29, the effect of this is to differentiate the glottal flow waveform. We
call this signal theglottal flow derivative, denoted ˙s[n] andṠ(z) and and this is shown along with
the normal glottal flow in Figure 11.16.

The interesting feature of the glottal flow derivative is that it shows that the primary form
of excitation into the vocal tract is a large negative impulse. This is useful in that the output of
the vocal tract immediately after this should approximate well to the true impulse response of the
system.

11.5 MODEL REFINEMENTS

11.5.1 Modelling the nasal Cavity

When the velum is lowered during the production of nasals andnasalised vowels, sound enters
via the velar gap, propagates through the nasal cavity and radiates through the nose. Hence for a
more complete model, we have to add a component for the nasal cavity. This in itself is relatively
straightforward to model; for a start, it is a static articulator, so doesn’t have anywhere near the
complexity of shapes that occur in the oral cavity. By much the same techniques we employed
above, we can construct an all-pole transfer function for the nasal cavity.

The complication arises because of the behaviour of the oralcavity. For the case of vowels,
the sound wave moved from the glottis through the oral cavityand radiated from the lips. In
the case of nasalised vowels, the sound propagates from the glottis and through the pharynx as
before, but at the velum some sound enters the nasal cavity while the remainder propagates through
the mouth. The sound entering through the velum is filtered bythe nasal cavity and radiates
through the nose. The sound continuing through the oral cavity radiates through the lips in the
manner described above. One complication to this is that thesome sound in the oral cavity is
reflected backwards and will enter the velar gap, and likewise some sound in the nasal cavity will
be reflected backwards and will enter the oral cavity. If we however ignore this interaction for
now, the system for nasalised vowels can be modelled as shownin Figure 11.17 with a simple
splitting operation at the velum. Because we now have two filters operating in parallel, it is not
possible to derive a single transfer function for the whole system. Rather we construct a transfer
function for the oral cavity, a different one for the nasal cavity and then simply add the outputs of
both to find the final signal.

The case of nasal consonants is more complicated. As with nasalised vowels, the sound wave
starts at the glottis moves through the pharynx and partly through the mouth. Some sound now
travels through the velum, nasal cavity and radiates through the nose. The remainder continues
travelling through the oral cavity, but instead of being radiated at the lips, now meets a closure at
the lips. Hence a full reflection occurs, and so the sound travels backwards through the mouth, and
some continues down towards the glottis and some enters the nasal cavity and radiates from the
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Figure 11.17 LTI filter models for different types of sound production.
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nose. In addition to this, there are of course the forwards and backwards reflections being caused
all the time by the changing cross sectional areas of the noseand mouth. An equivalent way of
looking at this is that the pharynx, nasal cavity and nose operate for nasals in the same the way
as the pharynx, oral cavity and lips operate for vowels. In addition, there is now aside resonator
of the front of the mouth. In phonetic terms the effect of thisoral side cavity is very important;
as the nasal cavity is static, it is in fact the ability of the tongue to create different oral side cavity
configurations which is responsible for the nasal sounds /m/, /n/ and /ng/ all sounding different.

Acoustically, the effect of the side branch is to “trap” someof the sound, and this creates
anti-resonances. These can be modelled by the inclusion of zeros in the transfer function. As with
the case of nasalised vowels, the parallel nature of the system means we can’t use a single transfer
function; rather we have a system with an all-pole transfer function for the pharynx and back of
the mouth, a splitting operation, an all-pole function for the nose and a pole and zero function for
the oral cavity.

11.5.2 Source positions in the oral cavity

Many consonant sounds, such as fricatives and stops have a sound source located in the oral cavity.
This is created by the tongue nearing another surface (the roof of the mouth, the teeth etc) so as
to cause a tight constriction. In the case of unvoiced obstruents, the glottis is open, and air flows
through it until it reaches the constriction, at which pointturbulence occurs. For voiced obstruents,
the glottis behaves as with vowels, but again this air flow is made turbulent by the constriction. The
difference in placement of the constriction is what gives rise to the difference between the various
fricative and stop sounds of the same voiced. Hence /s/ has analveolar construction whereas /sh/
has a palatal constriction. It is important to realise however that the constrictions themselves do
not generate different sounding sources; it is the fact thatthe constrictions configure the vocal
tract into different shaped cavities through which the source resonates that is responsible for the
eventual difference in the sounds.

The effect of a sound source in the middle of the vocal tract isto split the source such that
some sound travels backwards towards the glottis while the remainder travels forwards towards the
lips. The vocal tract is thus effectively split into a backward and forward cavity. The forward cavity
acts a tube resonator, similar to the case of vowels but with fewer poles as the cavity is considerably
shorter. The backwards cavity also acts as a further resonator. The backwards travelling source
will be reflected by the changes in cross sectional area in theback cavity and at the glottis, creating
a forward travelling wave which will pass through the constriction. Hence the back cavity has an
important role in the determination of the eventual sound. This back cavity acts as a side resonator,
just as with the oral cavity in the case of nasals. The effect is to trap sound and create anti-
resonances. Hence the back cavity should be modelled with zeros as well as poles in its transfer
function.
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11.5.3 Models with Vocal Tract Losses

The tube model described in Section 11.3 is termed “lossless” because no energy losses occur
during the propagation of sound through the tube itself. Anyenergy losses which do occur happen
through the lips and glottis, where the signal travels outwards but is not reflected back. Several
studies have been made into modelling the losses which of course do occur in the tubes themselves.
In terms of the discussion given in Section 11.2.3, this means that the impedance now is just
composed of an inductive and capacitance component, but also has a resistive component.

Rabiner and Schafer [368] give an extensive review of this issue and summarise that there
are three main ways in which losses can occur. First, the passage of the wave will cause the walls
of the vocal tract (e.g. the cheeks) to vibrate. This can be modelled by refinements to the transfer
function. The effect is to raise the formant centre frequencies slightly, dampen the formants and
especially the lower formants; we should expect this as it the mass of the vocal tract walls will
prevent motion at the higher frequencies. The effects of friction and thermal conduction can also
be modelled by adding resistive terms to the transfer function. The overall effect of these is the
opposite of above; the formant centre frequencies are somewhat lowered, and the effects of this
are more pronounced at higher frequencies.

Apart from the overall contribution to damping, these effects tend to cancel each other out,
and so the overall contribution of these resistive terms is quite small. As the degree of loss from
the lips and glottis is considerably higher, these loss terms are often ignored altogether as they add
considerable complication to the model with little gain in modelling accuracy. It should be noted
that it is the particular form of the IIR expression that we derived that gives rise to a lossless tube;
other IIR filter expressions can easily model losses.

11.5.4 Source and radiation effects

Our model of the glottis and lips was extremely simple in thatwe used special reflection coeffi-
cientsrG andrL to generate reflections and losses (for values other that|1|). As we might expect,
in reality the situation is much more complicated. Firstly,there is no such thing as an “ideal
source” where we can simply add volume velocity into a systemwithout any further effect. The
source in fact is always to a greater or lesser degree coupledto the rest of the system, and has to
be modelled if more accuracy is desired. In general this is modelled by having a real impedance
connecting the source to the rest of the system. Again, assuming that sound can just propagate
from the lips and “disappear” with no further effect is quitesimplistic. A more accurate model can
be created by modelling the radiation as a complex impedanceconnected as part of the system.

In this chapter we have concentrated on sound propagation through a tube, and saw that even
this, the simplest of all acoustic systems can be quite complicated. Another entire branch of the
field of acoustics is devoted to sound propagation through three dimensional spaces, and this can
be drawn on to produce a better model of radiation through thelips. As with the other refinements
mentioned in this section, modelling both the source and liplosses with more realistic expressions
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does increase the accuracy of the overall model, but does so at considerable modelling expense.

11.6 DISCUSSION

In developing our model, we have attempted to balance the needs of realism with tractability. The
all-pole vocal tract model that described in Section 11.3 will now be adopted for the remainder of
the book as the model best suited to our purposes. In subsequent chapters, we shall in fact see that
this model has some important properties that make its use particularly attractive.

One of the key jobs in making assumptions in a model is to recognise that such assumptions
have indeed been made. So long as this is done, and these assumptions are borne in mind, we
should not run into too many problems when we rely on the modelto deliver faithful analyses.
With this in mind, we will now note the main assumptions we have made and discuss any potential
problems that might arise because of these. The following list is in approximate increasing order
of severity.

Linear filter Throughout we have assumed that the system operates as a timeinvariant linear
(LTI) filter of the type described in Chapter 10. While it is well known that there are many
non-linear processes present in vocal tract sound propagation, in general the linear model
provides a very good approximation to these.

Time invariance During normal speech, the vocal tract is constantly moving,so long as the rate
of change is very slow compared to the sampling rate, it is quite adequate to model the
system as a sequence of piecewise stationary configurations. In Chapter12, we will discuss
further the issue of quantising the time dimension so as to produce stationary “snapshots” of
speech, but for now let us say that a good approximation to a continuously varying tract is to
generate a new stationary vocal tract configuration about every 10ms.

Straight tube One of the first assumptions we made was that we could model thevocal tract by a
straight tube or sequence of straight tubes. The vocal tractis of course curved; very roughly it
starts as a vertical tube at the glottis, takes a 90 degree turn at the top of the pharynx and then
continues horizontally through the mouth. In fact it is one of the main principles of acoustic
modelling that so long as any bend is not too severe, there is little difference between the
propagation in straight or curved tubes. This can be seen clearly in music, where a modern
trumpet is actually a quite long (10m) tube which has been wrapped many times to make
its playing and carrying more convenient. The bends in the trumpet have little effect on the
overall sound.

Discrete tube modelThe number of tubes determines the granularity at which we model the real,
continuously varying tube. As we saw in Section 11.3.6, the number of tubes is determined
by the sampling rate, and so long as we have the correct numberof tubes for the sampling
rate being used, there will be no loss of accuracy. A rule of thumb is that we use one tube for
every 1kHz sampling rate, so that 10KHZ requires 10 tubes andso on. For a true continuous
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signal (equivalent to an infinite sampling rate) we see that we require an infinite number of
zero length tubes, ie a continuous tube. For all practical purposes, the discrete nature of the
tube has no effect on accuracy.

All pole modelling Only vowel and approximant sounds can be modelled with complete accuracy
by all-pole transfer functions. We will see in Chapter 12 that the decision on whether to
include zeros in the model really depends on the applicationto which the model is put,
and mainly concerns tradeoffs between accuracy and computational tractability. Zeros in
transfer functions can in many cases be modelled by the addition of extra poles. The poles
can provide a basic model of anti-resonances, but can not model zero effects exactly. The
use of poles to model zeros is often justified because the ear is most sensitive to the peak
regions in the spectrum (naturally modelled by poles) and less sensitive to the anti-resonance
regions. Hence using just poles can often generate the required spectral envelope. One
problem however is that as poles are used for purposes other than their natural one (to model
resonances) they become harder to interpret physically, and have knock on effects in say
determining the number of tubes required, as explained above.

Lossless tubeThe real losses in the vocal tract are slight, but as the difference between a pole
being on the unit circle (no loss whatsoever) and slightly within the circle (say at a radius
of 0.95) is quite noticeable, then any loss factors will affect the overall system. That said,
so long as any ignored losses in the vocal tract are compensated for by increased loss at the
lips and glottis, the effect should not be too great. If only the lips and glottis are used for
controlling losses, the effect is that a single damping factor is applied to all the formants, and
hence it is not possible to generate formants with independent bandwidths.

Radiation characteristics The use of a reflection coefficient to model the radiation fromthe lips
is really quite crude. In reality, radiation is very complicated and effected by the exact shape
of the lips and head. In our simple example we effectively modelled the region outside
the lips as an additional tube - for the complete reflection case this is an infinitely wide
tube, that is, the vocal tract opens into a wall that extends infinitely far in all directions.
For the cases of less that total reflection, an additional tube of finite area was used. As a
real head is actually concave with respect to the direction of radiation, rather than convex
in the additional tube case, we see that this in fact is a very crude model. Rabiner and
Schafer, and Flanagan develop more sophisticated expressions for lip radiation [368] [164].
An important radiation effect that we have not touched upon is that the radiation determines
the directional characteristics of the sound propagation.One commonly observed effect is
that high frequencies are more narrowly directed, so that ifa speaker is facing away from the
listener, the high frequencies are not heard - the speech sounds “muffled”.

Source filter separation This is one area where our model starts to break down significantly.
Firstly we saw that modelling the glottis as a completely isolated source is quite unrealistic.
In addition however, there are many physiological effects that make a complete source/filter
separation unrealistic. For example, it is clear that when speaking with a high fundamental
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frequency, the entire set of muscles in the throat and mouth are much tenser than in low
pitched speech.

Glottal source Our model of the source itself is perhaps the crudest and least accurate part of
our model. We know for example that the shape of the volume velocity waveform changes
with frequency - it is not the case that a fixed low pass filter will do. The model described
above also says nothing aboutvocal effort. It is clear that shouting is not just the same
as speaking with a louder source input - the entire characteristic of the glottal source has
changed. Furthermore, the dynamics of glottal signals are very complicated. In particular,
when real glottal signals are studied in the regions where voicing starts and stops, we see
many irregular pitch periods, isolated periods of very short duration, and glottal signals that
seem very noisy. The glottal model described in Section 11.4models none of these affects. A
significant amount of research has been conducted into building more sophisticated models,
and progress has been made. However, many of these more sophisticated models are difficult
to implement and control and hence the simple model explained above is often used. We
shall return to this issue in Section 13.3.5, where we shall see that difficulties in modelling
source characteristics well are in fact the most difficult problem in speech synthesis, to the
extent that they have been one of the main driving factors in determining the path of speech
synthesis in recent years.

11.6.1 Further reading

Many books deal extensively with modelling the vocal tract acoustically, including Flanagan [164],
Rabiner and Schafer [368] and of course Frant [158].

11.6.2 Summary

Model of the Vocal Organs

• The vocal apparatus can be modelled as a set of discrete, interconnected components.

• Each component functions as either a source component, which generates a basic sound, or
a filter component, which modifies this sound.

• The filter components are joined in various configurations (Figure 11.17) to form tubes.

• For vowels, nasals and approximant, the source component isthe glottis. The glottis is
located at the end of the vocal tract tube.

• Radiation occurs at the lips and nose, and this can also be modelled by a filter.

• The filter components are the pharynx, oral cavity and nasal cavity.

• All of the above are modelled as lossless tubes.

• All of the above act as linear time invariant filters.

• Each component tube can be modelled, without loss of accuracy, as a series of connected
shorter uniform tubes. The number of uniform tubes requiredis a function of the required
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length of the main tube and the sampling rate.

Lossless tube models

• The sound wave generated by the source travels along the tubeand in so doing is modified.

• The tubes are assumed lossless, hence all the impedance terms are reactive, meaning that
they only alter the frequency characteristics of the travelling wave, but do not cause energy
losses.

• The main source of this is reflection, which occurs when the tube changes in cross sectional
area.

• A tube which has a closed termination and a tube which has a completely open termination
cause complete reflection. At a closed termination, the pressure is at a maximum and the
volume velocity is zero; at an open termination the pressureis zero and the volume velocity
is at a maximum.

• At other changes in area, some part of the sound is transmitted and some is reflected back-
wards.

• The backwards waves interfere with the forwards waves, so that they reinforce at certain
frequencies. This causes resonances and hence creates formants.

• While each tube in itself is lossless, losses occur in the system because some sound escapes
from the lips and glottis.

Transfer function

• By iterative application of the equations relating volume velocity in one tube to volume
velocity in the next, we can determine a transfer function for the whole tube.

• It is shown (Equation 11.26) that all such models produce a transfer function containing only
poles (i.e. a polynomial expression inz−1 in the denominator).

• We know, from Section 10.5.4, that such transfer functions naturally produce resonance
patterns and hence formants.

• The polynomial expression can be factorised to find the individual poles.

• The values of the coefficients in the denominator polynomialare determined by the set of
reflection coefficients in the tube. There is no simple relationship between the reflection
coefficients and the poles, but they can be calculated if needbe.

• The bandwidths of the resonances are determined by the losses in the system, and as these
only occur at the lips and glottis (or even just the lips or just the glottis), there is only one or
two parameters in the system controlling all of these.

• Modelling nasals and obstruents is more complicated because of the inclusion of side branches
in the model. These “trap” the sound, and are best modelled with filters which also contain
zeros.
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• As nasals and obstruents involved parallel expressions, they can not be expressed as a single
transfer function.



12
ANALYSIS OF SPEECH
SIGNALS

In this chapter we turn to the topic ofspeech analysis, which tackles the problem of deriving rep-
resentations from recordings of real speech signals. This book is of course concerned with speech
synthesis- and at first sight it may seem that the techniques for generating speech “bottom-up” as
described in Chapters 10 and 11 may be sufficient for our purpose. As we shall see however, many
techniques in speech synthesis actually rely on an analysisphase which captures key properties
of real speech and then uses these to generate new speech signals. In addition, the various tech-
niques here enable useful characterisation of real speech phenomena for purposes of visualisation
or statistical analysis. Speech analysis then is the process of converting a speech signal to an alter-
native representation that in some way better represents the information which we are interested
in. We need to perform analysis because waveforms do not usually directly gives us the type of
information we are interested in.

Nearly all speech analysis is concerned with a three key problems. First, we wish to remove
the influence of phase; second, we wish to perform source/filter separation, so that we can study
the spectral envelope of sounds independent of the source that they are spoken with. Finally we
often wish to transform these spectral envelopes and sourcesignals into other representations, that
are coded more efficiently, have certain robustness properties, or which more clearly show the
linguistic information we require.

All speech signals in the real world are continuous signals which describe the pattern of air
pressure variation over time. These signals can be recordedwith a variety of analogue means,
but for computer analysis, we require our signals to bedigitised such that the continuous signal
is converted to a discrete signal. For our needs, we need not go into the details of analogue
sound capture and recording as it is most likely that any reader will either come across signals
that are already digitised, or that they will be able to “record” any acoustic signal directly into a
digitised form by using a standard computer sound card, without the need for any interim analogue
recording step1.

1 Many standard books explain the analogue to digital conversion process, for instance see Rabiner and Schafer [368].

350
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12.1 SHORT TERM SPEECH ANALYSIS

A common starting point in speech analysis is to find the magnitude spectrum from a speech signal.
We want this to be in a discrete form that is easy to calculate and store store in a computer, so we
use the discrete Fourier transform (DFT) as our principle algorithm. In practice the fast Fourier
transform (FFT) implementation is nearly always used due toits speed (see Section 10.2.4).

12.1.1 Windowing

When we speak, the glottis and vocal tract are constantly changing. This is problematic for most of
the techniques we introduced in Chapter 10 as these were designed to work on stationary signals.
We can get around this problem by assuming that the speech signal is in fact stationary if consid-
ered over a sufficiently short period of time. Therefore we model a complete speech waveform as
a series of short termframes of speech, each of which we consider as a stationary time-invariant
system.

A frame of speechx[n] is obtained from the full waveforms[n] by multiplication by awindow
w[n] in the time domain:

x[n] = w[n]s[n] (12.1)

Three common windows are therectangular window, hanning window andhamming window:

rectangular w[n] =

{

1 0≤ n≤ L−1

0 otherwise
(12.2)

hanning w[n] =

{

0.5−0.5cos(2πn
L ) 0≤ n≤ L−1

0 otherwise
(12.3)

hamming w[n] =

{

0.54−0.46cos(2πn
L ) 0≤ n≤ L−1

0 otherwise
(12.4)

Figure 12.1 shows a sinusoid after windowing by the three windows just described. The rectangu-
lar window abruptly cuts off the signal at the window edges, while the hanning tapers the signal so
that the discontinuities are absent. The hamming window is just a raised version of the hanning,
and so has a similar shape accept for a slight discontinuity at the window edge.

While an essential part of speech analysis, the windowing process unfortunately introduces
some unwanted effects in the frequency domain. These are easily demonstrated by calculating the
DFT of the sinusoid. The “true” frequency domain representation for this, calculated in continuous
time with a Fourier transform, is a single delta peak at the frequency of the sinusoid. Figures 12.2
show the DFT and log DFT for the three window types. The DFT of the rectangular window
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Figure 12.1 Effect of windowing in the time domain

shows a spike at the sinusoid frequency, but also shows prominent energy on either side. This
effect is much reduced in the hanning window. In the log version of this, it is clear there there
is a widermain lobe than in the rectangular case - this is the key feature as it means that more
energy is allowed to pass through at this point in comparisonwith the neighbouring frequencies.
The hamming window is very similar to the hanning, but has theadditional advantage that the side
lobes immediately neighbouring the main lobe are more suppressed. Figure 12.3 shows the effect
of the windowing operation on a square wave signal and shows that the harmonics are preserved
far more clearly in the case where the Hamming window is used.

12.1.2 Short term spectral representations

Using windowing followed by a DFT, we can generateshort term spectra from speech wave-
forms. The DFT spectrum is complex and and can be representedby its real and imaginary parts
or its magnitude and phase parts. As explained in section 10.1.5 the ear is not sensitive to phase
information in speech, and so the magnitude spectrum is the most suitable frequency domain rep-
resentation. The ear interprets sound amplitude in an approximately logarithmic fashion - so a
doubling in sound only produces an additive increase in perceived loudness. Because of this, it is
usual to represent amplitude logarithmically, most commonly on the decibel scale. By convention,
we normally look at thelog power spectrum, that is the log of the square of the magnitude spec-
trum. These operations produce a representation of the spectrum which attempts to match human
perception: because phase is not perceived, we use the powerspectrum, and because our response
to signal level is logarithmic we use the log power spectrum.
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Figure 12.2 Effect of windowing in the frequency domain, with magnitudespectra on the left hand
side and log magnitude spectra on the right hand side.

Figures 12.4 and 12.5 show some typical power spectra for voiced and unvoiced speech.
For the voiced sounds, we can clearly see the harmonics as theseries of spikes. They are evenly
spaced, and the fundamental frequency of the the source, theglottis, can be estimated by taking
the reciprocal of the distance between the harmonics. In addition, the formants can clearly be
seen as the more general peaks in the spectrum. The general shape of the spectrum ignoring the
harmonics is often referred to as theenvelope.
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Figure 12.3 Comparison of rectangular and hamming window on a square wave of fundamental
frequency 400Hz and DFT length 512. Both spectra show significant deviation from the ideal of a
single spike for each harmonic, but it is clear that the general pattern is that of a square wave, ie only
odd harmonics which are exponentially decaying. More distortion occurs for the weaker harmonics
as their own energy is swamped by the side lobes of the other harmonics. This effect is much worse
for the rectangular window case for which the higher harmonics are barely discernible.

12.1.3 Frame lengths and shifts

While the spectra of the hamming and hanning windowed sinusoid give a truer frequency repre-
sentation than the rectangular window, the spike has a noticeable width, and is not the ideal delta
function that the continuous Fourier transform predicts. The width of the spike is an inverse func-
tion of window length - as the window lengthens the spike becomes narrower, as demonstrated in
Figure 12.6. This of course is predicted by the scaling property (see Section 10.3.3). While longer
windows give produce a more accurate spectrum, the amount ofspeech required to generate a (say)
2096 length window is such that the frame-based stationary assumption will have been violated,
as the vocal tract shape and glottal period may have changed substantially within this time.

Hence we encounter the problem referred to as thetime-frequency trade-off in speech. The
speech spectrum is constantly varying as we move from sayingone sound to another. In fact it is a
rare case when two consecutive frames of speech share exactly the same frequency characteristics.
From the definition of the DFT we know that to achieve a high frequency resolution we need a
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Figure 12.4 Signal and spectra for /ih/ vowel with N=32
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Figure 12.5 Signal and spectra for /s/ vowel with N=32
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Figure 12.6 Effect of frame length of width of spike

large number of waveform samples. But as the frame length increases, we include speech from
different vocal tract or glottis configurations. For example if our window is very long we might
have several different phonemes in the window, all with completely different characteristics. If on
the other hand, we use a very short window, in which we are sureto be capturing only a single
speech sound, we will only have a few terms from the DFT resulting in too course a representation
of the spectrum. Hence there is a tradeoff. If we require information about the fundamental
frequency of the signal, it is important that the frame length be long enough to include one or
more periods of speech. Figure 12.4 shows waveforms and spectra for a signal for a variety of
window lengths.

In addition to the length of window, we also have to consider how often we should calculate
the spectrum. Theframe shift is defined as the distance between two consecutive frames. Again,
there is no single correct value for this. In some applications (e.g. when calculating a spectrogram,
described below) a very short frame shift (e.g. 1ms) is desirable as we wish to represent every
possible transient effect in the evolution of the spectrum.For other uses, this is considered overkill,
and as spectra take time to calculate and space to store, a longer frame shift of about 10ms is often
used. In general we decide frame shifts based on the rate of evolution of the vocal tract. A
good rule of thumb is that the vocal tract can be considered stationary for the duration of a single
period, and so values in this range are often chosen. Typicalvalues of frame length and frame
shift are about 25ms and 10ms respectively. These can be expressed in numbers of samples by
multiplication by the sample rate being used, and frame lengths are often chosen to be powers of
two (128, 256 etc) because of the use of the FFT.

In speech synthesis, it is common to performpitch-synchronousanalysis, where the frame
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Figure 12.7 Signal and spectra for a vowel with different window lengths. For the shorter frames,
only a course spectrum can be discerned. The harmonics are clearest for 512 length case; above this
the fundamental frequency changes across the window mean that there is no single harmonic spacing.
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Figure 12.8 Wide band spectrogram

Figure 12.9 Narrow band spectrogram

is centred around the pitch period. As pitch is generally changing, this makes the frame shift
variable. Pitch-synchronous analysis has the advantage that each frame represents the output of
the same process, that is, the excitation of the vocal tract with a glottal pulse. In unvoiced sections,
the frame rate is calculated at even intervals. Of course, for pitch-synchronousanalysis to work,
we must know where the pitch periods actually are: this is nota trivial problem and will be
addressed further in section 12.7.2. Note that fixed frame shift analysis is sometimes referred to
aspitch-asynchronousanalysis.

Figure 12.3 shows the waveform and power spectrum for 5 different window lengths. To
some extent, all capture the envelope of the spectrum. For window lengths of less than one period,
it is impossible to resolve the fundamental frequency and sono harmonics are present. As the win-
dow length increases, the harmonics can clearly be seen. At the longest window length, we have
a very good frequency resolution, but because so much time-domain waveform is analysed, the
position of the vocal tract and pitch have changed over the analysis window, leaving the harmonics
and envelope to represent an average over this time rather than a single snapshot.
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12.1.4 The spectrogram

A spectrum only shows the frequency characteristics for a single frame at a single point in time -
often this is referred to as a spectralslice. We often wish to observe the evolution of the spectrum
over time - this can be displayed as aspectrogram. A spectrogram is a 3-dimensional plot as
shown in Figure 12.8. The horizontal axis denotes time, the vertical axis frequency, and the level
of darkness represents amplitude - the darker the plot the higher the amplitude as this point. The
spectrogram is formed by calculating the DFT at successive points along the waveform. For a high
definition spectrogram, the frame shift is normally small, say 1ms.

The choice of window length is important to the appearance ofthe spectrogram - Figure
12.9 shows anarrow band spectrogram which was calculated with a DFT length of 400; Figure
12.8 shows awide band spectrogram calculated with a DFT length of 40. The narrow-band
spectrogram has a detailed spectrum, and so the harmonics can clearly be seen as horizontal stripes
in the voiced sounds. It should be clear that the distance between adjacent stripes for a particular
time value is constant, as we would expect of harmonics. In fact an estimate of the fundamental
frequency can be taken by measuring the inter-harmonic distance. The wide-band spectrogram has
a very short DFT and so the frequency information is course and the harmonics are not discernible.
The formants however, clearly are - these are seen as the widehorizontal stripes. As the window
length is short, the time-resolution is high, and as such several frames are needed to cover a
single period. The effect of this can be seen in the fine vertical streaks: frames which contain a
glottal impulse will be dark, those which do not will be lighter. The distance between successive
dark streaks can be used to gain an estimate of the pitch. As the frames are much longer in
the narrow-band case, it is not possible to discern pitch this way. The narrow-band and wide
band spectrograms clearly demonstrate the time-frequencytradeoff. In general, the wide band
spectrogram is used for finding information about phones, asit shows the formant structure more
clearly.

Most speech analysis computer packages have spectrogram display software, and from these
it is easy to visualise and examine speech. The reader shouldbe made aware however that many
of these packages perform a degree of graphical post-processing, which brings out the salient
features in the spectrogram. This is often achieved by setting a saturation levels below which
specify cut offs beyond which everything is either white or black. It is important to be aware of
these post processing steps because they can give rise to different looking spectrograms, and if
caught unaware, one might mistakenly conclude that two speech signals are more dissimilar than
they really are.

12.1.5 Auditory scales

It is well known that human sensitivity to the frequency scale is not linear; for instance we know
that musical relationships are clearly logarithmic. Studies into the low-level perception of sounds
have resulted in a number ofauditory scaleswhich define a new frequency range that is more in
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Figure 12.10 Filter bank analysis on magnitude spectra

line with the human sensitivity to sounds at different frequencies.
The mel-scalewas the product of experiments with sinusoids in which subjects were re-

quired to divide frequency ranges into sections. From this,a new scale was defined in which
onemel equalled one thousandth of the pitch of a 1KHz tone [415]. Themapping from linear
frequency to this scale is given by:

m= 2595log10(1+ f/700) (12.5)

Further studies based on loudness (i.e. the percept of amplitude) found that a more accurate
representation was one that had a linear response for lower frequencies, becoming logarithmic for
higher frequencies. One popular scale based on this is theBark-scale [522]:

B = 13arctan(0.76f/1000)+3.5arctan(( f/7500)2) (12.6)

A third popular scale is theequivalent rectangular bandwidth or ERB scale, which is
measured from the ability to detect sinusoids in the presence of noise. From this auditory percep-
tion is described in terms of an ”equivalent rectangular bandwidth” (ERB) as a function of centre
frequency [316].

B = 6.23×10−6 f 2 +9.33910−2 f +28.52 (12.7)

12.2 FILTER BANK ANALYSIS

We will now turn to the important problem ofsource-filter separation. In general, we wish to do
this because the two components of the speech signal have quite different and independent linguis-
tic functions. The source controls the pitch, which is the acoustic correlate of intonation, while the
filter controls the spectral envelope and formant positions, which determine which phones are be-
ing produced. There are three popular techniques for performing source-filter separation. First we
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will examinefilter bank analysis in this section, before turning tocepstral analysisand linear
prediction in the next sections.

If we visually examine a short length DFT such as that in Figure 12.4, or in fact any spec-
trogram, we can see the general shape of the spectral envelope. That is, if we “squint” and ignore
the harmonics, in many cases the shape of spectral envelope is discernible independent of the par-
ticular positions of the harmonics. When doing this we are effectively averaging out the influence
of individual harmonics and creating a blurring effect and this is the principle behind filter bank
analysis.

Filter bank analysis is performed by first creating a series of bins each centred on a particular
frequency. Time domain filter-bank analysis can be performed by creating aband passfilter
(either FIR or IIR) which allows frequencies at or near the bin frequency to pass, but attenuates
all other frequencies to zero. After the filtering, the amount of energy is calculated and assigned
to that bin. Once this has been done for every bin, we have a representation of how energy varies
according to frequency. The effect of the filtering operation is to blur the effect of individual
harmonics, such that the final representation is largely that of the vocal tract and not the source.
Alternatively, we can perform filter bank analysis on spectra. Here, we take a magnitude spectra
and multiply it by a windowing function centred on a bin frequency. This has the effect of setting
all energy outside the window to zero, while allowing us to measure the energy inside the window.
This is show in Figure 12.10a. Often the bins are not spaced atequal frequencies, but defined
logarithmically or according to one of the frequency scalesof Section 12.1.5. This is shown in
Figure 12.10b.

Filter bank analysis is a simple and robust technique for finding the spectral envelope, but
it is only a partial solution to source filter separation. First, the amount of “blurring” required
to eliminate the harmonics may be too severe and may eliminate some of the detail we require;
alternatively, and especially with high pitched speech, wecan find that peaks in the envelope fall
between two harmonics and therefore are ignored. Secondly,filter bank analysis only gives us
the spectral envelope derived from the vocal tract transferfunction; it does not give us the source.
For many applications (e.g. ASR) this is not a problem, but inTTS we generally require both
components of the signal, and so other techniques are normally used.

12.3 THE CEPSTRUM

12.3.1 Cepstrum definition

The cepstrum is (most commonly) defined as theinverse DFT of the log magnitude of the DFT
of a signal:

c[n] = F −1{ log| F { x[n] } |
}

(12.8)
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Figure 12.11 Steps involved in calculating the cepstrum. For demonstration purposes, an estimate
of the spectral envelope has been overlaid on the two DFT spectra. The “periodicity” of the harmonics
in the log spectrum can clearly be seen. this gives rise to thespike at point 120 in the cepstrum. The
low values (<30) in the cepstrum describe the envelope. It should be clearthat these low values are
separated from the spike - because of this it is a simple task to separate the source and filter.

whereF is the DFT andF −1 is the inverse DFT. For a windowed frame of speechy[n] the
cepstrum is therefore

c[n] =
N−1

∑
n=0

log
( ∣
∣
∣

N−1

∑
n=0

x[n]e− j 2π
N kn
∣
∣
∣

)

ej 2π
N kn (12.9)

Figure 12.11 shows the process of calculating the DFT, log, and inverse DFT on a single frame of
speech. We will now look at how this operation performs source/filter separation.

12.3.2 Treating the magnitude spectrum as a signal

Consider the magnitude spectrum of a periodic signal, such as that shown in Figure 12.11. As we
have proved and seen in practice, this spectrum will containharmonics at evenly spaced intervals.
Because of the windowing effects, these harmonics will not be delta function spikes, but will be
somewhat more “rounded”. For most signals, the amplitude ofthe harmonics tails off quite quickly
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as frequency increases. We can reduce this effect by compressing the spectrum with respect to
amplitude; this can easily be achieved by calculating the log spectrum. It should be clear in the
many examples of log spectra in this chapter that the relative amplitudes of the harmonics are
much closer in the log spectra than the absolute spectra. Figure 12.5b shows this effect.

Now, forget for a moment what the log spectrum actually represents, and consider it awave-
form instead. In we were told Figure 12.11b was a waveform, we would informally describe this
as some sort of quasi-periodic signal (after it, it has a repeating pattern of harmonics), with a time
evolving “amplitude effect” which makes some “periods” higher than others. It is clear that the
rate at which the “periods” change is much greater than the evolution of the “amplitude effect”.
If we wished to separate these, we would naturally turn to ourstandard tool for analysing the
frequency content of waveforms, namely the Fourier transform. If we calculate the DFT of our
“waveform” we get a new representation, which we will designate thecepstrum. This is shown in
Figure 12.11c. As we would expect, the periodicity of the “waveform” is shown by a large spike
at about position 120. Because we haven’t performed any windowing operations which cause
blurring, we would expect this to be close to a delta function.

Again, as we would expect, because the “periods” were not sinusoidal, this has harmonics
at multiples of the main spike. The “amplitude effect” will be present in the cepstrum also, but as
this is varying much more slowly than the “periods”, it will be in the lower range of the cepstrum.
As the “amplitude effect” is the spectral envelope and the spikes represent the harmonics (ie the
pitch), we see that these operations have produced a representation of the original signal in which
the two components lie at different positions. A simple filter can now separate them.

12.3.3 Cepstral analysis as deconvolution

Recall from Section 11.1 that Equation 11.2 described the speech production process as

y[n] = u[n]⊗v[n]⊗ r[n]

where whereu[n] is the glottal or other source,v[n] is the vocal tract filter andr[n] is the radiation.
In the time domain, these expressions are convolved and so are not easily separable. If we don’t
know the form of the vocal tract filter, we can’t perform any explicit inverse filtering operation to
separate these components.

We can however perform separation as follows. Let us subsumethe radiation filterr[n] into
v[n] to give a single filterv′[n]. We can then write the time domain expression of Equation 11.2 as

y[n] = u[n]⊗v′[n] (12.10)

Taking the Fourier transform of Equation 12.10 gives

Y(ejω) = U(ejω)V ′(ejω)
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Figure 12.12 Series of spectra calculated from cepstra. The 512 point cepstrum has all its values
after a cut off pointK set to 0 and then a 512 point DFT is applied to generate a spectrum. The
figure shows this spectrum for 4 values ofK, 10, 20, 30, 50. (In the figure each has been graphically
separated for clarity, withK = 10 as the bottom spectrum andK = 50 as the top. In reality all lie in the
same amplitude range.) As the number of coefficients increases, so does the level of spectral detail,
until effects of harmonics start appearing. The choice of optimal cut-off point depends on whether
spectral precision or elimination of harmonics is the top priority.

If we now take the log of the magnitude of this we get

log(|Y(ejω)|) = log(|U(ejω|)V ′(|ejω)|)
= log(|U(ejω)|)+ log(|V ′(ejω)|)

in which the source spectrum and filter spectrum are now just added together. We can now return
to the time domain by taking an inverse DFT, giving us

c[n] = cu[n]+cv[n] (12.11)

that is, a time domain representation created by addition ofsource and filter. Unlike Equation
12.10, the source and filter are now added and not convoluted in the time domain.

12.3.4 Cepstral analysis discussion

If we take the DFT of a signal and then take the inverse DFT of that, we of course get back to
where we started. The cepstrum calculation differs in two important respects. First we are only
using the magnitude of the spectrum - in effect we are throwing away the phase information. The
inverse DFT of a magnitude spectrum is already very different from the inverse DFT of a normal
(complex) spectrum. The log operation scales the harmonicswhich emphasises the “periodicity”
of the harmonics. It also ensures that the cepstrum is the sumof the source and filter components
and not their convolution.

The cepstrum is useful as it splits the signal into an envelope, given by the first few coeffi-
cients, and a source, given by the spike. Subsequent analysis usually throws away one of these
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parts: if we are interested in the vocal tract we use only the low coefficients, if we are interested in
the pitch and behaviour of the glottis we study the peak. We can demonstrate this by calculating a
spectrum in which the spike is eliminated - this is done by simply setting a cut off pointK above
which all the cepstral coefficients are set to zero. From this, we can create a log magnitude spec-
trum by applying a DFT on the modified cepstrum. Figure 12.12 shows this for 4 different values
of K. The figure shows that a reasonably accurate spectral envelope can be generated from about
30 coefficients, but the number chosen really depends on the degree of precision required in the
spectrum.

For many cases where the spectral envelope is required, it isadvantageous to keep the low
part of the cepstrum as it is, and not convert it back to a frequency domain spectrum. The low
cepstral coefficients form a very compact representation ofthe envelope, and have the highly de-
sirable statistical modelling property of being independent so that only their means and variances,
and not their covariances, need be stored to provide an accurate statistical distribution. It is for this
reason that cepstral are the feature representation of choice in most speech recognition systems.
Despite this, cepstra are quite difficult to visually interpret, so we often find that while systems use
cepstra internally, we still use spectra when we wish to visually inspect a signal. The higher part
of the cepstrum contains the pitch information, and is oftenused as the basis for pitch detection
algorithms, explained in section 12.7.1

12.4 LINEAR PREDICTION ANALYSIS

Linear Prediction (LP) is another technique for source filter separation, in which we use the
techniques of LTI filters to perform an explicit separation of source and filter. In LP we adopt a
simple system for speech production, where we have an input sourcex[n], which passed through a
linear time invariant filterh[n], to give the output speech signaly[n]. In the time domain this is:

y[n] = x[n]⊗h[n] (12.12)

The convolution makes it difficult to separate the source andfilter in the time domain, but this is
easily achieved if we transform our system to the z-domain

H(z) =
X(z)
Y(z)

(12.13)

In Section 12.12, we showed that the lossless tube model was areasonable approximation for the
vocal tract during the production of a vowel. If we assume fornow thatH(z) can therefore be
represented by an all-pole filter, we can write

Y(z) = X(z)H(z) (12.14)

=
1

1−
P
∑

k=1
akz−k

.X(z) (12.15)
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where{ak} are the filter coefficients. By taking the inverse z-transform2 we see that in the time
domain this becomes:

y[n] =
P

∑
k=1

aky[n−k]+x[n] (12.16)

The importance of this equation is that it states that the value of the signaly at timen can be
determined by a linear function of the previous values ofy, apart from the addition of the current
value of the inputx[n]. Because of this, the technique is known aslinear prediction . In essence,
this states that an output signal is closely approximated bya linear sum of the previous samples:

ỹ[n] =
P

∑
k=1

aky[n−k] (12.17)

and this is identical to the difference Equation 12.16 except for the input term. In linear pred-
ication, the inputx[n] is usually referred to as theerror , and is often writtene[n] to show this.
This may seem a little harsh, but the concept comes from the fact thaty[n] is the actual signal and

˜y[n] is its approximation by the model, the only difference beingthe contribution fromx[n]. As
this accounts for the difference between the predicted and actual signal it is called the error. We
now turn to the issue of how to automatically find the predictor coefficients ofH(z) for a frame of
speech.

12.4.1 Finding the coefficients: the covariance method

The goal of linear prediction is to find the set of coefficients{ak}which generate the smallest error
e[n], over the course of the frame of speech. We will now examine two closely related techniques
for finding theak coefficients based on error minimisation. We can sate equation 12.16 in terms of
the error for a single sample:

e[n] = y[n]−
P

∑
k=1

aky[n−k] (12.18)

2

We can most easily prove this in reverse; if

y[n] =
P

∑
k=1

aky[n−k]+x[n]

then taking the z-transform of both sides results in

Y(z) =
n=∞

∑
n=−∞

( P

∑
k=1

aky[n−k]
)

z−n +E(z)

=
P

∑
k=1

ak

( n=∞

∑
n=−∞

y[n−k]z−n
)

+E(z)

Using the dummy substitutionm= n−k gives

=
P

∑
k=1

ak

( m=∞

∑
m=−∞

y[m]z−mz−k
)

+E(z)

=
P

∑
k=1

akY(z)z−k +E(z)

rearranging theY(z) terms gives the all-pole transfer func-
tion of Equation 12.15.
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We wish to find the values{ak} which minimise the squared error, summed over the frame of
speech. UsingE to denote the sum squared error we can state:

E =
N−1

∑
n=0

e2[n]

=
N−1

∑
n=0

(

y[n]−
P

∑
k=1

aky[n−k]

)2

We can find the minimum ofE by differentiating with respect toeachcoefficientak, and setting
to zero:

δE
δa j

= 0 =
N−1

∑
n=0

(

2
(

y[n]−
P

∑
k=1

aky[n−k]
)

y[n− j]

)

for j = 1,2,3...P

= −2
N−1

∑
n=0

y[n]y[n− j]+2
N−1

∑
n=0

P

∑
k=1

aky[n−k]y[n− j]

which gives

N−1

∑
n=0

y[n− j]y[n] =
P

∑
k=1

ak

N−1

∑
n=0

y[n− j]y[n−k] for j = 1,2,3...P (12.19)

If we defineφ(k, j) as

φ( j,k) =
N−1

∑
n=0

y[n− j]y[n−k] (12.20)

Equations 12.19 can be written more succinctly as:

φ( j,0) =
P

∑
k=1

φ( j,k)ak (12.21)

the full form of which is

φ(1,0) = a1φ(1,1)+a2φ(1,2)+ ...+aPφ(1,P)
φ(2,0) = a1φ(2,1)+a2φ(2,2)+ ...+aPφ(2,P)
φ(3,0) = a1φ(3,1)+a2φ(3,2)+ ...+aPφ(3,P)

...
φ(P,0) = a1φ(P,1)+a2φ(P,2)+ ...+aPφ(P,P)

We can easily calculate all the quantitiesφ(1,0),φ(2,0), and so it should be clear that this is a set
of P equations withP unknown terms, namely theak coefficients. This can be written in matrix
form as
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φ(1,0)
φ(2,0)
φ(3,0)

...
φ(P,0)










=










a1

a2

a3
...

aP



















φ(1,1) φ(1,2) · · · φ(1,P)
φ(2,1) φ(2,2) · · · φ(2,P)
φ(3,1) φ(3,2) · · · φ(3,P)

...
φ(P,1) φ(P,2) · · · φ(P,P)










(12.22)

and expressed as
φa = ψ

We can find the value ofa (that is, the coefficientsak) by solving this equation. This can be
done simply, by solving fora1 in terms of the other coefficients and substituting again, but this is
extremely inefficient. Because the square matrixφ is symmetric a much faster technique known
asCholskey decompositioncan be used [302] [295].

This method is called thecovariance method(for somewhat obscure reasons). It works by
calculating theerror in the region of samples fromn = 0 ton = N−1, but in fact usessamplesin
he regionn =−P to n = N−1 to do so. This is because the method requires a full calculation of
the error at timen = 0, and to do so, it must use some previous samples to do so. The calculation
over many frames can be found by either simply using the main signal itself, and moving the
start positionn to the designated frame start each time; or by creating a separate windowed frame
of speech, of lengthN + P samples, and performing the calculation startingP samples into the
frame. The choice is mainly determined by implementation issues (e.g. a system may have already
performed the windowing operation before we start). No special windowing functions are required
with this method: either we can perform the calculations directly on the main waveform, or a
rectangular window can be used if windowing must be performed.

12.4.2 Autocorrelation Method

A slightly different method know as theautocorrelation method can also be used, and as this
has many practical advantages over the covariance method, it is often the method most used in
practice.

Recall from Section 10.3.9 that the autocorrelation function of a signal is defined as:

R[n] =
∞

∑
m=−∞

y[m]y[n−m] (12.23)

This is similar in form to Equation 12.20, and if we can calculate the autocorrelation, we can
make use of important properties of this signal. To do so, in effect we have to calculate the
squared error from−∞ to ∞. This differs from the covariance method, where we just consider the
speech samples from a specific range. To perform the calculation from−∞ to ∞, we window the
waveform using a hanning, hamming or other window, which hasthe effect of setting all values
outside the range 0<= n < N to 0.
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While we are calculating the error from−∞ to ∞, this will always be 0 before the windowed
area, as all the samples are 0 and hence multiplying them by the filter coefficients will just produce
0. This will also be the case significantly after the window. Importantly however, forP samples
after the window, the error will not be 0 as it will still be influenced by the last few samples at the
end of the region. Hence the calculation of the error from−∞ to ∞ can be rewritten as

φ( j,k) =
∞

∑
−∞

y[n− j]y[n−k]

=
N−1+P

∑
n=0

y[n− j]y[n−k]

which can be rewritten as

φ( j,k) =
N−1−( j−k)

∑
n=0

y[n]y[n+ j−k] (12.24)

As this is a function of one independent variablej−k, rather than the two of 12.24, we can rewrite
it as

φ( j,k) =
N−1−k

∑
n=0

y[n]y[n+k] (12.25)

As the limits of this expression equate to−∞ to ∞, this is the same as the autocorrelation function
12.23, and we can write:

R( j−k) = φ( j,k)

Now we can rewrite the matrix form of 12.21 in terms of the autocorrelation function:

φ( j,0) =
P

∑
k=1

φ( j,k)ak (12.26)

R( j) =
P

∑
k=1

R( j−k)ak (12.27)

This significance of all of this is that the autocorrelation function (of any signal) is even, that is
R( j−k) = R( j +k) = R(| j−k|), and this means that when we now write the matrix in Equation
12.22 in terms ofR:










R(1)
R(2)
R(3)

...
R(P)










=










a1

a2

a3
...

aP



















R(0) R(1) R(2) · · · R(P−1)
R(1) R(0) R(1) · · · R(P−2)
R(2) R(1) R(0) · · · R(P−3)

...
R(P−1) R(P−2) R(P−3) · · · R(0)










(12.28)
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Unlike the square matrix in Equation 12.22, this matrix is symmetric and all the elements in its
diagonals are symmetric. This is known as aToeplitz matrix, and because of the properties just
mentioned, it is significantly easier to invert.

12.4.3 Levinson Durbin Recursion

The matrix given in Equation 12.24 can of course be solved by any matrix inversion technique.
Such techniques can be slow however (usually of the order ofp3 wherep is the dimensionality of
the matrix) and hence faster techniques have been developedto find the values of{ak} from the
autocorrelation functionsR(k). In particular, it can be shown that theLevinson-Durbin recursion
technique can solve Equation 12.28 inp2 time. For our purposes, analysis speed is really not an
issue, and so we will forgo a detailed discussion of this and other related techniques. However,
a brief overview of the technique is interesting in that it sheds light on the relationship between
linear prediction and the all-pole tube model discussed in Chapter 11.

The Levinson-Durbin recursion operates by considering a set of initialisation conditions,
and using these to find the coefficients of a first order polynomial (that is, just a single term in
z−1.) which minimise the mean squared error. From this we find thecoefficients of a second order
polynomial, third order and so on, using the previous polynomial and minimisation of the error,
until we have reached a polynomial of the required filter order P.

The algorithm initialises by setting the error and predictor coefficients of a (contrived) 0
order polynomial as:

a0
0 = 0

E0 = R(0)

Next we define a weighting factor for theith model as:

ki =

R(i)−
i−1
∑
j=1

ai− j
j R(i− j)

Ei−1

using this, we find the predictor coefficients for theith model:

ai
i = ki (12.29)

ai
j = ai−1

j −kia
i−1
i− j 1≤ j ≤ i−1 (12.30)

and from this, we can update the minimum mean squared prediction error for this step as:

Ei = (1−k2
i )E

i−1

These steps are repeated untili = p where we have a polynomial and hence set of predictor coef-
ficients of the required order. We have just seen how the minimisation of error over a window can
be used to estimate the linear prediction coefficients. As these are in fact the filter coefficients that
define the transfer function of the vocal tract, we can use these in a number of ways to generate
other useful representations.
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12.5 SPECTRAL ENVELOPE AND VOCAL TRACT REPRESENTATIONS

The preceding sections showed the basic techniques of source filter separation using first cepstral
then linear prediction analysis. We now turn to the issue of using these techniques to generate a
variety of representations, each of which by some means describes the spectral envelope of the
speech.

12.5.1 Linear prediction spectra

The main motivation in LP analysis is that it provides an automatic and explicit means for sepa-
rating the source and filter components in speech. Recall thebasic equation (11.2) of the vocal
tract,

Y(z) = U(z)V(z)R(z)

HereY(z) is the speech,U(z) is the source,V(z) is the vocal tract andR(z) is the radiation.
Ideally, the transfer functionH(z) found by linear prediction analysis would beV(z), the vocal
tract transfer function. In the course of doing this, we could then findU(z) andR(z). In reality,
in generalH(z) is a close approximation toV(z) but is not exactly the same. The main reason for
this is that LP minimisation criterion means that the algorithm attempts to find the lowest error for
thewholesystem, not just the vocal tract component. In fact,H(z) is properly expressed as

H(z) = G(z)V(z)R(z)

for voiced speech, whereG(z) represents the glottal transfer function, and

H(z) = V(z)R(z)

for unvoiced speech. The distinction between the linear prediction coefficient representingH(z)
instead ofV(z) has most significance for source modelling, and so we will delay a full discussion
of this until Section 12.6. For most purposes, the fact that theseH(z) models more than just
the vocal tract isn’t a big problem, the upshot is that some additional poles are included in the
transfer function, but the effect of these can oftne be ignored, and a good estimate of the vocal
tract envelope can be found by convertingH(z) directly to the frequency domain. If a purer
estimate ofV(z) is required, one of the techniques described in Section 12.6can be used instead.

The transfer functionH(z) that we have been estimating can be converted to the frequency
domain by simply settingz= ejωt (see Section 10.5.2) to giveH(ejωt). Doing this gives us the
spectral envelope of the linear prediction filter, which apart from the extra poles, we can interpret
as the vocal tract spectral envelope. A plot of this LP envelope overlayed on the DFT is shown
in Figure 12.13a. It is quite clear that the LP spectrum is indeed a good estimate of the spectral
envelope.

Figures 12.14 show spectral envelopes for a range of sounds.Here we can see a much noted
“weakness” of LP envelope estimation; which is that the spectrum can appear very “peaky”. This
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from LP analysis of order 4, the top plot order 18.

Figure 12.13 Examples of linear prediction spectra



Section 12.5. Spectral envelope and vocal tract representations 373

arises because in many speech sounds, particularly vowels,the poles lie close to, but not on the
unit circle. At such locations, even a very small differencein their distance from the unit circle can
result in a much sharper formant peaks. For example, for a sampling rate of 10000Hz, a pole with
radius 0.96 will produce a formant bandwidth of 130Hz, whilea pole of 0.98 produces a formant
of bandwidth 65Hz, and so any slight error in determining theradius of the pole can produce a
spectrum with exaggerated formants. This problem does not occur with pole frequencies, and so
the LP envelope can normally be relied upon to find the positions of resonances quite accurately.

Recall that in Chapter 11 we showed the number of tubes required is directly related to the
sampling rate, length of tube and speed of sound (see Section11.3.5) . For a speed of sound of
340ms−1 and vocal tract length of 17cm, we showed that 10 tube sections were required for a
sampling rate of 10000Hz. Assuming these values for the speed of sound and vocal tract length,
we see that we require one tube section per 1000Hz sampling rate. As each tube section gives rise
to one pole, we conclude thatV(z) should be a 10th order all-pole filter for a 10000Hz sampling
rate, 16th order filter for a 16000Hz sampling rate and so on. The source (G(z)) and radiation
(R(z)) filters are considerably simpler, and can be adequately modelled by 4 to 6 additional poles
for both. It is highly advantageous to keep the number of poles even, and so an overall value of
14 poles or 16 poles is normally adopted for a 10000Hz sample rate, and 20 or 22 poles for a
16000Hz sample rate.

Figure 12.13b shows the spectra predicted from linear prediction filters for a range of orders.
It is quite clear that as the order increases, so does the detail in the spectrum. It is interesting to
compare this to Figure 12.12 which shows the same investigation but with cepstra. It is clear that
the cepstral spectra are much more heavily influenced by the harmonics as the order of analysis
increases.

12.5.2 Transfer function poles

As with any filter, we can find the poles by finding the roots of the transfer function polynomial.

12.5.3 Reflection coefficients

Consider again the all-pole transfer function we have been using all along

V(z) =
G

A(z)

whereA(z) is

A(z) = 1−
P

∑
k=1

akz
−k (12.31)

Recall that the key equation in the Levinson-Durbin recursion is the step that relates a predictor
coefficienta j to the quantityk and the previous predictor coefficienta j−1 given in Equation 12.30.



374 Chapter 12. Analysis of Speech Signals

0 1000 2000 3000 4000 5000 6000 7000 8000
−3

−2

−1

0

1

2

3

4

5

Frequency

A
m

pl
itu

de

(a) /ow/

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency

A
m

pl
itu

de

(b) /s/

0 1000 2000 3000 4000 5000 6000 7000 8000
−3

−2

−1

0

1

2

3

4

5

Frequency

A
m

pl
itu

de

(c) /eh/

0 1000 2000 3000 4000 5000 6000 7000 8000
−3

−2

−1

0

1

2

3

4

Frequency

A
m

pl
itu

de

(d) /iy/

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1

0

1

2

3

4

5

Frequency

A
m

pl
itu

de

(e) /ae/

0 1000 2000 3000 4000 5000 6000 7000 8000
−3

−2

−1

0

1

2

3

4

5

Frequency

A
m

pl
itu

de

(f) /ae/

Figure 12.14 Examples of spectra calculated from LP coefficients for a range of different sounds.
Note how all the spectra are absent from any harmonic influence, and that all seem to describe the
spectral envelope of the speech. Note the characteristic formant patterns and roll-off for all vowels,
and compare this with the spectra for /s/. The same vowel is present in both examples (e) and (f). Note
that while the formant positions occur in the same positionsin both, the amplitudes and bandwidths
are quite different, especially in the fourth formant, which is barely noticeable in example (e).
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ai
i = ai−1

j −k2ai−1
i− j (12.32)

Let us now examine what happens when we substitute Equation 12.31 into equation 12.32.
For demonstration we shall choose the case for a third order filter, in which case we have three
expressions:

a3
3 = k3

a3
2 = a2

2−k3a2
1

a3
1 = a2

1−k3a2
2

The expansion ofA3(z) is

A3(z) = 1−a3
1z−1−a3

2z−2−a3
3z−3 (12.33)

and if we substitute equations for 12.31 into this we get

A3(z) = 1− [a2
1−k3a2

2]z
−1− [a2

2−k3a2
1]z
−2−k3z−3

= 1−a2
1z−1−a2

2z−2 +k3a2
2z−1 +k3a2

1z−2−k3z−3

The first terms, 1−a2
1z−1−a2

2z−2, are of course just the expansion of the second order filterA2(z)

A3(z) = A2(z)−k3[a
2
2z−1 +a2

1z−2 +z−3] (12.34)

The other terms are similar to the polynomial expansion, except that the coefficients are in the
reverse order to normal. If we multiply each term byz3 we can express these terms as a polynomial
in z rather thanz−1 which gives:

A3(z) = A2(z)−k3z−3[a2
2z2 +a2

1z+1]

A3(z) = A2(z)−k3z−3A2(z−1) (12.35)

In a similar fashion, the above relation can shown for any order of filter.
The significance of all this can be seen if we compare Equation12.35 with Equation 11.27.

Recall that Equation 11.27 was used to find the transfer function for the tube model from the
reflection coefficients, in the special case where losses only occurred at the lips. The equations are
in fact identical if we setrk =−ki. This means that as a by product of Levinson-Durbin recursion,
we can in fact easily determine the reflection coefficients which would give rise to the tube model
having the same transfer function to that of the LP model. This is a particularly nice result; not
only have we shown that the tube model is all-pole and that theLP model is all pole; we have
now in fact shown that the two models are in fact equivalent and hence we can find the various
parameters of the tube directly from LP analysis.

Reflection coefficients are a popular choice of LP representation because they are easily
found, they are robust to quantisation error and can in fact be used directly without having to
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be converted into predictor coefficients (see Rabiner and Schafer [368] for how this is done).
Furthermore, and perhaps most significantly for our purposes, they have a physical interpretation,
which means that they are amenable to interpolation. For example, if we had two different vocal
tract configurations and wished to generate a set of vocal tract configurations between these, we
could do by interpolating the reflection coefficients, in theknowledge that by doing so we are
creating a set of reasonable vocal tract shapes. This process could not be done with the predictor
coefficients themselves, as this would very likely lead to unnatural or unstable filters.

12.5.4 Log area ratios

Recall from our tube model, that the reflection coefficients were originally defined in terms of
the ratio of the areas between two adjacent tubes. Equation 11.15 stated that the amount of the
forward travelling wave that was reflected back into the tubewas given as:

rk =
Ak+1−Ak
Ak+1 +Ak

Rearranging this gives:
Ak

Ak+1
=

1− rk

1+ rk
(12.36)

Hence it is possible to find the ratio of two adjoining tubes from the reflection coefficients. It is
not however possible to find the absolute values of the areas of the tubes (this is independent, just
as the gain is independent of the filter coefficients). A common way of representing 12.36 is in
terms oflog area ratios, which are defined as:

gk = ln
( Ak

Ak+1

)

=
(1− rk

1+ rk

)

(12.37)

log area ratios come in useful in a variety of ways, for example as a means of smoothing across
joins in a manner that reflects physical reality.

12.5.5 Line spectrum frequencies

Recall from the tube model of Section 11.3 that losses in the model are only caused by wave
propagation from the ends of the tube; no losses occur withinthe tube itself. Recall also from
section 11.5.3 that the resistance factors which cause the losses have virtually no effect on the
location of the resonant peaks. In using the Levinson-Durbin solution to the LP equations, we
have simplified the loss situation further by assuming that losses only occur from one end of the
tube.Line spectrum frequencies (LSFs)are found from an adaption of the tube model where we
eliminate the losses from the glottis. This can be thought ofas a process of creating a perfectly
lossless tube and calculating its transfer function. Because the resistive factors have a minor impact
of the locations of the formants in the frequency domain, this modelling assumption helps us find
good estimates for the formant positions.
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Figure 12.15 An example speech wave of /... ii th .../

If the tube is completely lossless, all the poles will lie on the unit circle, the formants will not
be damped and hence have infinite amplitude. The spectrum of this will therefore be extremely
“spiky” and it is this property that gives rise to the name, inthat the spectrum appears as a pattern
of lines rather than a smooth function.

We start the LSF analysis by constructing two new transfer functions for the lossless tube.
We do this by adding a new additional tube at the glottis, which reflects the backwards travelling
wave (whose escape would otherwise cause the loss) into the tube again. As explained in Section
11.3.3 , this can be achieved by either having a completely closed or completely open termination.
In the closed case, the impedance is infinite, which can be modelled by a reflection coefficient
value 1, by contrast the open case can be modelled by a coefficient value -1.

Recall that we showed in section 12.5.3 that the operation ofthe Levinson-Durbin calculation
was in fact equivalent to the determination of the transfer function for the tube model from its
reflection coefficients. In both cases, we made use of an expression where we can formulate a new
transfer function of orderP+1, from an existing transfer function of orderP and a new reflection
coefficientrp+1:

Ap+1(z) = Ap(z)+ rp+1zP+1A(z−1)

We can therefore use this to construct the transfer functionfor the LSF problem, where we wish to
simulate a completely lossless system by addition of one extra tube and reflection coefficient. We
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do this for both the open and closed case, which gives us two new transfer functions, by convention
calledP(z) andQ(z):

P(z) = Ap(z)−zP+1A(z−1) (12.38)

Q(z) = Ap(z)+zP+1A(z−1) (12.39)

As with any polynomial, these can be factorised to find the roots, but when we do so in this
case, we find that because the system is lossless then all the roots lie on the unit circle. If we
solve forP(z) andQ(z) we find that the roots are interleaved on the unit circle. In essence, the
LSF representation converts the linear prediction parameters from a set ofP/2 pairs of complex
conjugate poles which contain frequency and bandwidth information, into a set ofP/2 pairs of fre-
quencies, one of which represents the closed termination and the other the open termination. Note
that while the LSF tube is lossless, the loss information in the original LP model is still present.
In the process of generatingA(z) back fromP(z) andQ(z), the extra±1 reflection coefficient is
removed and hence the loss and the bandwidths can be fully recovered.

The LSF representation is attractive for our purposes because it is in the frequency domain
and hence amenable to many types of analysis. This is true of the original linear prediction poles
as well of course, we can convert these to a set of frequenciesby taking their angle from the pole-
zero plot. The LSFs have shown to be superior however in that they can be robustly estimated
and interpolated, whereas the original pole frequencies can be quite sensitive to noise and quan-
tisation. A final property of the LSFs is that when two occur close together, the overall value of
the transfer functionH(z) = 1/a(z) is high. This implies that the original poles responsible for
these frequencies form a formant, and are not simply poles “making up the shape” of the spectral
envelope.

12.5.6 Linear prediction cepstrum

The cepstral representation has benefits beside its implicit separation of the source and filter. One
often cited property is that the components of a cepstral vector are to a large extent uncorrelated,
which means that accurate statistical models of such vectors can be built using only means and
variances and so covariance terms are not needed (see Section 15.1.3). Because of this and other
properties, it is often desirable to transform the LP coefficients into cepstral coefficients. Assuming
that we wish to generate a cepstrum of the same order as the LP filter, this can be performed by
the following recursion:

ck =







ln(G) k = 0

ak + 1
k

k−1
∑

i=1
iciak−1 1 < k≤ p

(12.40)
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12.5.7 Mel-scaled cepstrum

A very popular representation in speech recognition is themel-frequency cepstral coefficientor
MFCC . This is one of the few popular represenations that does not use linear prediction. This
is formed by first performing a DFT on a frame of speech, then performing a filter bank analysis
(see Section 12.2) in which the frequency bin locations are defined to lie on the mel-scale. This
is set up to give say 20-30 coefficients. These are then transformed to the cepstral domain by the
discrete cosine transform(we use this rather than the DFT as we only require the real part to be
calculated):

ci =

√

2
N

N

∑
j=1

mj cos

(
πi
N

( j−0.5)

)

(12.41)

It is common to ignore the higher cepstral coefficients, and often in ASR only the bottom 12
MFCCs are used. This representation is very popular in ASR asit firstly has the basic desirable
properties that the coefficients are largely independent, allowing probability densities to be mod-
elled with diagonal covariance matrices (see Section 15.1.3). Secondly, the mel-scaling has been
shown to offer better discrimination between phones, whichis an obvious help in recognition.

12.5.8 Perceptual linear prediction

It is possible to perform a similar operation with LP coefficients. In the normal calculation of
these, spectral representations aren’t used and so scalingthe frequency domain (as in the case
of mel-scaled cepstrum) isn’t possible. Recall however that in the autocorrelation technique of
LP, that we used the set of autocorrelation functions to find the predictor coefficients. In Section
10.3.9 we showed that the power spectrum is in fact the Fourier transform of the autocorrelation
function, and hence the autocorrelation function can be found from the inverse transform of the
power spectrum.

So instead of calculating the autocorrelation function in the time domain, we can calculate
it by first finding the DFT of a frame, squaring it, and then performing an inverse DFT. In this
operation it is possible to scale the spectrum as described above. The final LP coefficients will
therefore be scaled with respect to the Mel or Bark scale, such that more poles are used for lower
frequencies than higher ones.

12.5.9 Formant tracking

The above representations are all what can be termed as “bottom-up” representations in that they
are all found from the original speech frame by means of a mathematical function or process. We
can also consider other representations where we move away from these techniques and move
towards representations which we believe more accurately represent the properties of the signal
that are most perceptually important. In Chapter 7, we showed that formants are considered one of
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Figure 12.16 Example spectrogram with formants superimposed, as calculated by a formant track-
ing algorithm.

the most important representations in traditional phonetics, but in addition they are used in formant
synthesis, explained later in Section 13.2, and they have also been used as cost functions in unit
selection, as explained in Section 16.

In traditional algorithms, which operated by a mixture of signal processing and rules, a three
stage approach is generally followed. First the speech is pre-processed, for example to downsam-
ple the speech to the frequency range where the formants occur; second candidate formants are
found, and finally a heuristic step is applied. that determines the formants from the most likely
candidates. As we have just seen, in many cases the poles which result from LP analysis can be
considered to give rise to formants, and so it is natural thatmany formant tracking algorithms use
LP poles as their initial candidates. An alternative is to find peaks in either the DFT or LP spec-
trum and assign these as candidates. Yet another technique is that ofmultiple centroid analysis,
based on the properties which define the overall shape of the spectrum [116]. Often the algorithms
fix the number of formants to be found (usually three), and thepost processing stage uses dynamic
time warping to find the best formant paths (formant tracks) across the course of the utterance.

More recently, statistical processing has been brought to bear on this problem. In essence,
formant tracking is no different from any statistical problem in which we have evidence extracted
from features, and constraints determined from a knowledgeof the problem. Given such an ap-
proach, it is possible to put this in statistical terms in which the candidates form a likelihood,
and the known dynamics of the formants (e.g. their number andhow much they can move from
frame to frame) can form a prior. With this, a Viterbi search can be performed which finds the
most likely formants for a sentence in a single step. Algorithms of this kind make use of Hidden
Markov Models [4], nonlinear prediction algorithms [129],and graphical models [297]. These
statistical algorithms are significantly more accurate androbust than their heuristic counterparts.

In the early days of speech research, formants held the centre stage asthe representation
for speech. Today however, it is extremely rare to find formants used in speech recognition,
synthesis or other systems. This is partly because robust formant trackers have always proved
hard to develop, and so researchers moved towards cepstra and LP representations that could be
robustly found from speech, even if their form didn’t explicitly show the type of information that
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was thought most important. Furthermore, formants are really only a powerful representation for
vowel sounds; they are not particularly good discriminators of most consonants. Hence even if
a perfect formant tracker was available, other types of representations would be needed for some
consonant sounds.

12.6 SOURCE REPRESENTATIONS

We now turn to the topic of finding and analysing the source signal from the speech waveform. Of
course linear prediction attempts to do just this, but just as the LP transfer function doesn’t always
equate to the vocal tract transfer function, neither doesx[n] equate to the source signal. This is
basically because in LP analysisH(z) over-extends itself due to the minimisation criteria, and so
subsumes some of the characteristics of the true glottal source. With a little effort however, we
can in fact extract a good representation of the source by a number of techniques which we will
now examine. As with all our other modelling problems, we have a range of trade-offs between
modelling complexity and ease of use, and we will examine a few of these now.

12.6.1 Residual signals

In the LP formulation of Equation 12.16

y[n] =
P

∑
k=1

aky[n−k]+x[n]

we termedx[n] the error signal, because it is the difference between the predicted and actual
signal. Hence for a single frame of speech, if we perform LP analysis and note the values ofx[n]
we will have a complete error signal for that frame. Alternatively, we can find this by a process of
inverse filtering. From simple rearrangement of Equation 12.16, we can express x[n] as follows:

x[n] = y[n]−
P

∑
k=1

aky[n−k]

=
P

∑
k=0

aky[n−k] where a0 = 1

Here we have expressedx[n] purely in terms of the coefficients{ak} and the current and previous
values ofy[n]: if we compare this to equation 10.54, we see that this is justa standard FIR filter.
Hence if we have the speech signal and the coefficients for a single frame, we can findx[n] by a
standard FIR filter operation. Apart from a gain normalisation, this will be identical to the error
signalx[n]. The inverse filtering technique is useful because often we are required to find the error
signal after the LP analysis has been performed, or for cases(explained below) where we wish to
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find the residual for a different interval than that used for analysis. If the residual signal is then fed
through the normal LP (IIR) filter, the original speech is reconstructed. This process is shown in
Figure 12.17.

If we apply the inverse filtering technique to each frame in the entire speech waveform, we
create a sequence of residual signals, one for each frame. A single residual waveform for the
whole utterance can be made from these residual frames; but as the details of this are somewhat
subtle, a description of this is left until section 12.6.5.

How do we now find the glottal source signal from the residualx[n]? Recall that in the
z-domain, the main filter expression is

Y(z) = U(z)V(z)R(z)

whereY(z) is the speech output,U(z) is the source,V(Z) is the vocal tract andR(z) the radiation.
Recall from section 11.4, that we can model this source in twomain ways. Firstly, we can model
it explicitly as a time domain function, which has a number ofparameters determining the length
of the opening phase, the length of the closed phase and so on.The Lijencrants-Fant (LF) [159]
model of this is shown in Figure 11.16. Alternatively, we canmodel it as a sequence of impulses
which are passed through a glottal filterG(z). From experimentation and explicit modelling, we
know that this glottal filter will contain poles and zeros, but will be of considerably lower order
than the vocal tract filter. Here we will examine the filter model, as a proper understanding of this
helps in the determination of the equivalent parameters forthe time domain model. UsingI(z) to
represent the impulse sequence, we can therefore expressU(z) as:

U(z) = G(Z)I(z) (12.42)

U(z) =

M
∏

k=0
bG

k z−k

1−
N
∏
l=1

aG
l z−l

I(z) (12.43)

where{bG
k } and{aG

l } represent the coefficients of the glottal filterG(z). Recall from section 11.4
that the radiation can be approximated as a differentiator,which can be expressed as a single zero
FIR filter. Because the filter coefficients of theG(z)V(z)R(z) will combine, the result will be that
the numerator will have the zeros of the glottal source and radiation, while on the denominator,
the poles of the glottal filter will combine with the poles of the vocal tract. The problem is that
the result of LP analysis will give us a single expressionH(z) for the glottal and vocal tract poles,
without being able to show which poles belong to which filter.Furthermore, the fact that we are
attempting to model a system with poles and zeros with an all-pole analysis further complicates
the matter. To perform more explicit source/filter separation, we need to find a way of cancelling
the effect of the zeros and separating the poles into their component filters.
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(a) One windowed frame of voiced speech
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(b) The residual for the frame of speech, calculated with an inverse filter
of the predictor coefficients. Note that the error is highesta) at the start of
the frame, where there are no proper previous values on whichto base the
predication, and b) at the instant of glottal closure. The prediction error is
highest at this point because it is here that the glottal derivative flow is at
its highest.
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(c) Reconstructed waveform, created by passed the residualthrough filter.
This is virtually identical to the original speech

Figure 12.17 Comparison of residual with original and reconstructed waveforms.
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Figure 12.18 Model of glottal flow, model of glottal flow derivative, and real speech waveform
over time

.

12.6.2 Closed-phase analysis

Figure 12.18 shows a diagram of a glottal flow input, the glottal flow derivative and the output
speech. From this, we see that during each pitch period thereis an interval when the glottal flow
is zero because the glottis is shut. As there is no contribution from the glottis here, if we estimate
H(z) over this interval, we will be able to equate this to a combined V(z) andR(z) expression,
free of influence from G(z). Calculation of the LP coefficients over this interval is known as
closed-phase analysis.

To perform closed phase analysis properly, we need to determine when the glottis shuts;
these points are called theinstants of glottal closureand can be found automatically by the epoch
detection algorithms described below in Section 12.7.1. A further benefit to performing closed
phase analysis is that during these intervals, the closed glottis obeys the model assumptions of
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being completely reflective and having an infinite impedance; by contrast, during the open phase
there are losses at the glottis, but worse there will definitely be interaction with the sub-glottal
system (that is, the assumption made in section 11.3.3 wherewe assume that no signal is reflected
back from the lungs will not hold).

So given that G(z) has negligible effect during the closed phase, all we need now do is remove
the effect ofR(z) to findV(z). From experimentation and knowledge of radiation properties, we
can approximateR(z) as a differentiator of the signal. This can be modelled by a first order FIR
filter of the form:

y[n] = x[n]−αx[n−1]

Hence the effect of this can be removed by multiplying the signal with the inverse equivalent of
this, which is an IIR filter, acting as an integrator:

x[n] = y[n]+ αx[n−1]

For reasons of stability, it is best to haveα slightly less than the “true” integrating/differentiating
value of 1; values in the range 0.95 to 0.99 are often used. This process is known aspre-emphasis.

Now we have a reasonably accurate expression for the vocal tract transfer function, we can
inverse filter the speech to find the glottal flow signal. The trick here is to inverse filter the signal
over awholepitch period (or longer) rather than just the interval over which the LP coefficients
were calculated. By doing this, we inverse filter over the region where the glottis is open, and from
this we can find the form of the input, glottal signal. This process is shown in Figure 12.19, along
with the shapes of the glottal flow and glottal flow derivativefrom the Lijencrants-Fant model.
The figure clearly shows that the glottal flow derivative is highly similar to the residual signal,
especially with regard to the large negative spike at the instant of glottal closure. The figure also
shows that the assumptions made about the impulse excitation in the basic LP model are also quite
justified; the excitation in the closed phase comes from the large negative going spike in the glottal
derivative signal can be approximated by an impulse quite easily.

In many cases, especially in female or other high pitched speech, the length of the closed
phase can be very small, perhaps only 20 or 30 samples. In the autocorrelation method, the initial
samples of the residual are dominated by the errors caused bycalculating the residual from the
zero signal before the window. The high (and erratic) error in the residual can be seen in the first
few samples of the residual in Figure 12.17b. For short analysis windows this can lead to a residual
dominated by these terms, and for this reason, covariance analysis is most commonly adopted for
closed phase analysis.

It should be noted that in many real-life cases, the pre-emphasis term is not applied, and
hence the calculated residual is in fact a representation ofthe glottal flow derivative. This is the
case for most speech synthesis purposes, and henceforth we will assume that all residuals are
calculated in this way, unless otherwise stated.
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12.6.3 Open-phase analysis

It is not always possible or desirable to used closed-phase analysis. Sometimes other constraints
in an application mean a fixed frame spacing is required, and sometimes it is simply not possible
to find the instant of glottal closure with any degree of accuracy. What then happens if the LP
analysis is performed over an arbitrary section of speech? The main upshot of this is that the LP
analysis will attempt to model the effect of the zeros in the glottal transfer function, and in doing
so include the effect of the zeros in its poles.

From the basic Maclaurin expansion of

∞

∑
n=0

xn = 1+x+x2+x3 + .... =
1

1−x
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we can show that
∞

∑
n=0

bnz−1 =
z

z−b
=

1
1−bz1

inverting this, we get:
1

∞
∑

n=0
bnz−1

= 1−bz1

which shows that a single zero can be exactly modelled by an infinite number of poles. It can be
shown that so long as the number of poles≫ than the number of zeros, a reasonable approximation
of the effect of zeros can in fact be modelled by the poles. In doing do however, we are in effect
modelling these zeros withall the poles in the transfer function, and so the poles will all be at
slightly different locations than in the case of closed-phase analysis. Luckily, this doesn’t seem
to have too great an influence on the frequency response of theLP transfer function, but it does
have a knock on effect when the LP filter is used to find the residual. As we have modelled the
glottal zeros with poles, the residual now does not closely resemble the glottal derivative, rather it
is significantly “noisier”, and “spikier”. This means, thatfirst, the spectrum of the residual will be
flat, and that secondly the main excitation will be in the formof isolated impulses rather than the
shape of the glottal derivative function of closed phase analysis. This can be seen by comparing
the open phase residual of Figure 12.17 with the closed-phase residual of 12.19. In general, fixed
frame LP analysis is the norm, and so the open phase residual signals such as that shown in Figure
12.17 are most commonly observed. Note that this ability to model zeros with poles also allows
us to provide a means to represent vocal tract transfer functions for nasals and obstruents with
all-pole functions. While the accuracy of these all-pole expressions is not as high as for vowels,
the convenience in being able to use a single method and expression for all speech sounds usually
outweighs any issues arising from the inability to model vocal tract zeros properly.

It is worth making a final point about residuals when they are used as sources. Recall from
the original LP equation that as well as the residual being the outcome when the speech is inverse
filtered, it is also simply the error in the LP analysis. Henceif a residual is used to excite the filter
from which it came, the result should be a perfect reconstruction of the original signal. As we shall
see in Section 14, there are many implementation issues to dowith frame edges and so on, but it
is worth noting that no matter how crude any of the assumptions we have made with regard to LP
analysis in general, a powerful feature of the model is that the speech can be exactly reconstructed
if excited with the correct input.

12.6.4 Impulse/noise models

Linear prediction was in fact primarily developed for use inspeech coding applications. As we
have just seen, performing LP analysis allows us to deconvolve the signal into a source and filter,
which can then be used to reconstruct the original signal. Simply separating the source and filter
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doesn’t actually save any space, the trick comes in replacing the residual by a much simpler (and
more economical) source signal.

In what we shall henceforth callclassical linear prediction the source is modelled by two
systems; one for voiced sounds and one for obstruent sounds.In Figure 12.19, we saw that the in-
tegrated residual signal was a reasonably close approximation to the glottal flow derivative signal.
The primary feature in such a signal is the negative spike caused by the glottal closure. As this is
reasonably close to an impulse, the classical LP model simply uses a single impulse as the excita-
tion for voiced sounds. To do this properly, one impulse is generated for every pitch period, and so
in analysis, an estimation of the pitch period has to be foundand stored/transmitted. All obstruent
sounds have a frication source, generated by white noise in our model from section 11.5.2. In the
classical LP system, all we need store/transmit is the fact that we have an obstruent sound, upon
which a noise source is used during reconstruction. For voiced obstruents, both the impulse and
noise source are used.

The impulse/noise model provides a very efficient means of encoding the residual, but does
so at some cost, the effects of which can clearly be heard in the reconstructed signal as a buzz or
metallic sound. Apart from the space saving, having an impulse excited system has the additional
benefit in that we are free to generate the impulses when we like; in other words, we are not
limited to generating the impulses at the same spacing as in the analysis. This provides a means
of changing the pitch of a signal and in fact forms the basis ofthe synthesis technique described
in Section 13.3.

12.6.5 Parameterisation of glottal flow signal

Performing the above analysis allows us to find a reasonable estimate of the glottal flow or glottal
flow derivative. In fact, we can go one stage further and parameterise this by further analysis. One
technique described by Quatieri [364] involves fitting the Lijencrants-Fant model to the residual by
means of least squares minimisation. In philosophy, this isof course similar to linear prediction
analysis itself, where we attempt to find the set of predictorcoefficients which give the lowest
error. In practice, the LF model is non-linear and so the LP technique is not available to us.
Instead, numerical techniques such as the Gauss-Newton method are used to iterate to a set of
optimum model parameters. Dutoit [148] describes a different technique where the glottal source
parameters are actually found at the same time as the predictor coefficients.

While we can find the optimal parameters for any given frame for a model such as LF, we
never actually achieve a perfect fit. In fact, we can determine a sample by sample difference
between the model and the residual. This of course, is another “residual” or “error” signal, which
now represents the modelling error after the LP model and theLF model have been taken into
account. One interesting study by Plumpe et al [356] describes how this signal is in fact highly
individual to speakers and can be used as the basis of speakerrecognition or verification.
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12.7 PITCH AND EPOCH DETECTION

12.7.1 Pitch detection

The process of finding the fundamental frequency (F0) or pitch from a signal is known aspitch
detectionor pitch tracking . Recall from Chapter 7 that fundamental frequency is definedas the
frequency at which the glottis vibrates during voiced speech, whereas pitch is the perceived rate
of periodicity in the speech signal by the listener. In general, we ignore this distinction, mainly
because in most cases any difference between these two values is less than the known accuracy of
any detection algorithm. One point that is important thoughis that F0 tracks are in fact used for
many quite different purposes. In some of the signal processing operations described below, an
accurate frame by frame value is required; however in intonational analysis, we are usually only
interested in the general shape of the track, and so small perturbations are often smoothed for such
needs.

As with formant tracking, traditionalpitch detection algorithms PDAsoften have three
stages; a pre-processing stage, where for instance the speech is downsampled or low-pass filtered,
a bottom up candidate finding step, and a decision making stepwhereby the best candidates are
picked.

A wide variety of techniques have been proposed for pitch tracking, including:

• Using the cepstrum. As cepstral analysis generates a representation where the pitch infor-
mation appears as a spike, it is possible to find this spike anddetermine the pitch from that.

• Autocorrelation function. In the time domain, successive pitch periods are usually similar to
one another. As the autocorrelation functions measure how similar a signal is to itself when
shifted, it will have a high value when a a pitch period is mostclosely overlapped with its
neighbour. We can hence find the period by finding these pointswhere the autocorrelation
function is at a maximum. In a similar fashion, the normalised cross correlation function can
be used.

• Frequency domain. As the harmonics in the DFT are spaced at multiples of the period,
these can be used to find the period. One strength in this technique is that there are multiple
harmonics and hence more than one measurement can be made. A drawback is that they can
often be hard to measure accurately, especially at higher frequencies.

• Residual analysis. As the residual is mostly free from vocaltract influence, it represents the
source, and from this the period can be seen. In practice thistechnique is rarely used as the
artefacts in LP analysis often make the determination of theperiod quite difficult.

The classic work on pitch detection is that of Hess [202] who gives a thorough overview
of all the PDA techniques just mentioned. With PDAs, the basic techniques only go so far and
an important component of the algorithm is the use of many heuristic or empirically determined
factors. Bagshaw [28] conducted an objective test on 6 popular techniques and claims that the time
domain super resolution pitch determination algorithm [309] is the best. Other well known pitch-
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Figure 12.20 Different ways of displaying F0 plots against time
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trackers include Talkin’s getf0 and RAPT algorithms [431] (these were not included in Bagshaw’s
test, but are generally acknowledged to be very accurate). As with formant tracking, traditional
PDAs suffer somewhat from their heuristic rather than probabilistic formulation. Recently, more
interest in probabilistic techniques has arisen [141], andfor instance Li et al [283] cite accuracy
results for a probabilistic technique which is significantly more accurate than getf0.

12.7.2 Epoch detection: finding the instant of glottal closure

We have just seen that closed phase linear prediction requires that we analyse each pitch period
separately. This type of speech analysis is calledpitch synchronous analysisand can only be
performed if we are in fact able to find and isolate individualperiods of speech. We do this by
means of anpitch marking orepoch detectionalgorithm (EDA).

The idea behind an EDA is to locate a single instant in each pitch period that serves as an
“anchor” for further analysis. These positions are often known aspitch marks, pitch epochsor
simply epochs. In general, they can refer to any reference point, but are often described in terms
of salient positions on the glottal flow signal, such as the peak of the flow for each pitch period.
For many types of analysis (such as TD-PSOLA described in Section 14.2) it doesn’t really matter
where the anchor point is chosen, so long as it is consistent from period to period. Often a time-
domain reference point such as the peak of the highest excursion in each period is used, or the
trough of the lowest excursion. That said, many analysis techniques focus on one particular point
known as theinstant of glottal closure (IGC). This is manifested as a large negative going spike in
the glottal flow derivative, as shown in Figure 12.21. If we view this as the input to the vocal tract
(which we do be including the radiation term), we see that it closely resembles a large negative
impulse. Such an impulse excites the filter in such a way that we can examine the filter properties
without interference from the ongoing effects of the glottis. As we saw above, this is the basis on
which close-phase LP analysis is performed.

Locating the instant of glottal closure and epoch detectionin general is widely acknowledged
as a thorny problem. In the past, most pitch synchronous applications could use a rough estimate
of the ICG, as the technique was not particularly sensitive to determining these instants exactly.
Indeed, the closed phase LP technique described above does not need a particularly accurate esti-
mate - the window used by the technique does not have to start exactly at the ICG. With the more
widespread adoption of pitch synchronous speech synthesistechniques (described in Chapter 14)
it becomes more important to locate the exact ICG, or some other anchor point, more exactly.
Dutoit [148] gives a review of some of the difficulties involved, and describes a process common
in the early 1990s whereby researchers would actually mark epochs by hand. This was seen as
being an acceptable burden when speech databases were smalland when the only alternative was
to use other much poorer sounding synthesis techniques. Dutoit describes some of the difficulties
involved in this, most specifically the fact that because of various phase effects, it is not always
the largest negative peak in the waveform which correspondsto the IGC. Furthermore, it is known
that phase distortion can make time domain marking of waveforms virtually impossible for either
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Figure 12.21 Comparison of (from top to bottom) waveform, laryngograph signal, integrated resid-
ual and residual.

machine or human.
These difficulties led many to a radical alternative, which was to measure the glottal be-

haviour by means other than from the speech waveform. A common techniques was to use a
device known as anelectroglottograph or a laryngograph. This consists of two metal discs
which are placed on each side of the protruding part of the larynx (the “adam’s apple”). A very
high frequency alternating current is passed through the system, such that the current passes from
one disc, through the larynx, to the other disc, and from thisthe electrical impedance and flow of
current across the larynx can be measured. If the glottis is open, the impedance is high and the
current is low; if the glottis is shut the impedance is low andthe current is high. Laryngograph sig-
nals (known as Lx signals) do not however generate the glottal flow signal itself as the relationship
between the electrical impedance and flow is not simply related. The Lx signal is however quite
simple, and from it, it is usually possible to find the instants when the glottis shuts (the IGC) and
opens. Figures 12.21 and 12.22 show a speech waveform, an Lx signal and a LP derived estimate
of the glottal flow derivative. The Lx signal clearly shows each pitch period, and is particularly
clear at showing exactly when the transition between voicedand unvoiced sounds occurs, which
is one of the most difficult areas to perform accurate epoch detection. Epoch detection by means
of Lx signals has been quite widely used in TTS in the last 15 years, but it is rare to find explicit
mention of this. Acero [3] does however provide a good account of the process of Lx use for TTS.

There are two main problems with Lx use. Firstly, the technique doesn’t work well for some
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Figure 12.22 Fine grained comparison of (from top to bottom) waveform, laryngograph signal,
integrated residual and residual. The vertical lines show the instants of glottal closure and glottal
opening. Here we can see that while the general periodicity of the form of the LX and residual glottal
flow are similar, the functions are not simply related in shape. Note that when the glottis is open, the
LX signal is at a minimum because the current flow is at a minimum. The integrated residual signal
(c) approximates the glottal volume velocity. Ideally the closed phase in this signal should be flatter,
but the many modelling errors combine to give this part of thewaveform a gradual upward slope. A
small sharpening in the gradient of this can be seen at the instant of glottal opening.

speakers due to physiological reasons. Secondly, it is simply awkward to have to record all the
speech data with both a microphone and the Lx device. It is notparticularly comfortable (although
it is completely safe) and some speakers, particularly highly paid voice talents, are not happy with
its use. Thankfully, a number of fully automatic techniquesnow do exist that can extract the
IGCs from the speech waveform directly. Many of these work onthe residual, and it is known
that the negative pulse of the residual can give quite an accurate estimation of the IGC if care is
taken with the analysis and the signal does not suffer from phase distortion. Recently several other
techniques have been developed for automatic extraction from speech. Brookes [68] describes a
technique which uses the glottal energy flow, and claims thatthis is significantly more accurate
than residual analysis. Vedhius describes a general technique that uses dynamic programming
to constrain the epoch search, and shows that this techniquecan be extended to other points of
interest besides the IGC [469].
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12.8 DISCUSSION

For those approaching these topics for the first time, some ofthe formulations, reasoning and
sheer number of representations can make the speech analysis subject seem quite daunting. It is
in fact virtually impossible to learn this subject purely from the mathematics: speech analysis is a
practical subject and requires practical study, and by far the best means to study this is by interac-
tively playing with real speech signals. Luckily a number ofpackages exist which allow intimate
examination of speech signals. Using these, it is possible to examine magnitude spectra, linear
prediction envelopes, spectrograms of different types andso on. In fact, a good understanding of
the speech representations described here can be gained from interactive study alone without any
understanding of the equations involved (although this of course is not recommended).

Speech analysis is a broad topic and is used in many applications. Historically, most of the
techniques described here were first developed for use in speech coding, where the aim is to trans-
mit a signal down a wire as efficiently as possible. With any general type of data, there is often
considerable redundancy, and by studying the patterns in which the data naturally occurs we can
study this redundancy and eliminate it. These general techniques only go so far, and it soon be-
came apparent that special purpose coders designed specifically for speech signals could be much
more efficient, delivering more than a factor of 10 compression rate. In fact, linear prediction
was developed for just this purpose. Linear predictive coding (LPC) as it is known, separates the
source and filter for each frame, but only sends the filter coefficients, normally encoded as reflec-
tion coefficients or line spectral frequencies. The residual is not transmitted, rather an estimate of
the pitch is sent for voiced signals, and a flag stating whether the source is noisy (ie is an obstruent
sound). When the speech is to be reconstructed, the pitch information is used to generate an im-
pulse sequence for voiced signals, and white noise is added if the noise flag it set. The quality of
LPC speech is considerably worse than the original, but it has proved a popular choice, especially
for situations with user acceptance and requirements for very low transmission rates (usually mili-
tary). More recently, LPC coders with more sophisticated residual reconstruction techniques have
been used in normal commercial applications.

Automatic speech recognition systems use speech analysis as their first stage. All ASR
systems are essentially pattern recognisers, and so work well with when presented with input
features with certain properties. These include that the representation should be compact, so that
the number of parameters to be learned is low; and this sharesobvious common ground with the
speech coding applications just mentioned. A good example is that many ASR systems use multi-
variate Gaussians to model phone distributions (see Chapter 15). For a vector with 10 components,
doing so fully requires a set of 10 means and a set of 10 by 10 (100) covariances. If however the
components are statistically independent of each other, wecan ignore most of the covariance terms
and model the distribution with 10 means and just 10 variances. In addition, it is desirable that
the representations should be invariant for a single class;for this reason, recognition is never
performed on the waveform itself, as the phase aspect makes signals with the same envelope look
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quite different.
Currently, mel-scale cepstral coefficients, and perceptual linear prediction coefficients trans-

formed into cepstral coefficients, are popular choices for the above reasons. Specifically they are
chosen because they are robust to noise, can be modelled withdiagonal covariance, and with the
aid of the perceptual scaling are more discriminative than would otherwise be. From a speech
synthesis point of view, these points are worth making, not because the same requirements exist
for synthesis, but rather to make the reader aware that the reason MFCCs and PLPs are so often
used in ASR systems is for the above reasons, and not because they are intrinsically better in any
general purpose sort of way. This also helps explain why there are so many speech representations
in the first place; each has strengths in certain areas, and will be used as the application demands.
In fact, as we shall see in Chapter 16, the application requirements which make, say, MFCCs so
suitable for speech recognition are almost entirely absentfor our purposes. We shall leave a dis-
cussion as to what representations really are suited for speech synthesis purposes until Chapter
16.

12.8.1 Further reading

There are several good books on speech analysis, most of which adopt an application neutral
attitude. The classic work is Rabiner and Schafer [368] and while written several decades ago,
this book remains an excellent reference for all the fundamentals of speech analysis. It assumes
the reader is familiar with basic signal processing, and so can be a little difficult for those with
no prior experience. Given an understanding of the topics covered in Chapter 10 of this book, the
reader should have little difficulty. An excellent more recent book is Quatieri [364]. The subject
matter doesn’t differ much from that of Rabiner and Schafer,but the book covers many of the
techniques developed since. Other good references includeFurui [168], Huang et al [224], Kleijn
and Paliwal [256], Deller and Proakis [128] and Gold and Morgan [176].

12.8.2 Summary

• Speech analysis is in general concerned with three main problems:

1. eliminate phase; the magnitude DFT does this
2. separate source and filter; this can be done with cepstral analysis or linear prediction
3. transform the representation into a space which has more desirable properties; log mag-

nitude spectra follow the ear’s dynamic range; mel-scaled cepstra scales according to
the frequency sensitivity to the ear. Log area ratios are amenable to simple interpolation
and line spectral frequencies show the formant patterns robustly.

• The continuously varying signal is divided by a process called windowing into a sequence
of stationary smaller signals called frames.

• Windowing affects the signal and so a perfect representation of the original waveform is not
possible.



396 Chapter 12. Analysis of Speech Signals

• The most common spectral representation is achieved by applying a discrete Fourier trans-
form (DFT) to the frame of speech.

• Successive application of DFTs can be used to generate a spectrogram.

• The cepstrum is the inverse Fourier transform of the log magnitude spectrum. It separates
variation in frequency across the range and so implicitly separates source and filter compo-
nents in the spectrum.

• Linear prediction performs source/filter separation by assuming an IIR system represents the
filter. This allows the filter coefficients to be found by a process of minimising the error
predicted from the IIR filter.

• The linear prediction equations can be solved by the autocorrelation or covariance methods.
Each involves solving the equations by means of efficient matrix inversion.

• The direct linear prediction, IIR, coefficients are inherently unrobust with regard to quanti-
sation and interpolation. A set of derived representations, including reflection coefficients,
log area ratios and line spectral frequencies avoid these problems.

• The source signal, called the residual, can be found by inverse filtering the speech signal
with the linear prediction coefficients.

• With appropriate care during analysis and filtering, this commonalities between this residual
and the glottal flow derivative signal can be shown.



13
SYNTHESIS
TECHNIQUES BASED ON
VOCAL TRACT MODELS

In this chapter we introduce the three main synthesis techniques which dominated the field up until
the late 1980s, collectively known asfirst generation techniques. While these techniques are used
less today, it is still useful to explore them, as apart from simple historical interest, they give us an
understanding of why today’s systems are configured the way they are. As an example, we need to
know why today’s dominant technique of unit selection is used rather than the more basic approach
which would be to generate speech waveforms “from scratch”.Furthermore, modern techniques
have only been made possible by vast increases in processingpower and memory, so in fact for
applications which require small footprints and low processing cost, the techniques explained here
remain quite competitive.

13.1 SYNTHESIS SPECIFICATION: THE INPUT TO THE SYNTHESISER

First generation techniques usually require a quite detailed, low-level description of what is to
be spoken. For purposes of explanation, we will take this to be a phonetic representation for the
verbal component, along with a time for each phone, and an F0 contour for the whole sentence.
The phones will have been generated by a combination of lexical lookup, LTS rules and post-
lexical processing (see Chapter 8), while the timing and F0 contour will have been generated by
a classical prosody algorithm of the type described in Chapter 9. It is often convenient to place
this information in a new structure called asynthesis specification. Hence the specification is the
input to the synthesiser and the waveform is the output.

Initially, we will assume a simple model where the specification is a listSSS===<<< sss1,,,sss2,,, .........,,,sssN >>>,
in which each itemsssj contains the phoneme identity, a duration, and one or more F0values. Recall
from Chapter 9, that the F0 contour is necessarily dependenton the timing information, as the F0
generator must produce an F0 contour that matches the lengthof the utterance. One option is to
specify the F0 contour on a frame by frame basis, so that if we had say a 50ms duration phoneme
and a 10ms frame shift, we would have 5 F0 values in the specification. A 70ms duration phoneme
would have 7 frames and so on:

397
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[F0 ] = < 121,123,127,128,126> (5 frame example)
[F0 ] = < 121,123,127,128,126,121,118> (7 frame example)

and so a example of a complete specification item would look like

sssj =








PHONEME /ah/
DURATION 70
F0 < 125,123,119,117,115,115,114>








Having different numbers of F0 values per item can be unwieldy, so sometimes the F0 contour is
sampled at the mid point of the unit or other key positions to give a simpler specification:

sj =












PHONEME /ah/
DURATION 50
F0 START 121
F0 MID 123
F0 END 127












Once the specification has been created, the synthesis process itself can begin.

13.2 FORMANT SYNTHESIS

Formant synthesiswas the first genuine synthesis technique to be developed andwas the domi-
nant technique until the early 1980s. Formant synthesis is often calledsynthesis-by-rule; a term
invented to make clear at the time that this was synthesis “from scratch” (at the time the term
“synthesis” was more commonly used for the process of reconstructing a waveform that had been
parameterised for speech coding purposes). As we shall see,most formant synthesis techniques
do in fact use rules of the traditional form, but data driven techniques have also been used.

Formant synthesis adopts amodular, model-based, acoustic-phoneticapproach to the syn-
thesis problem. The formant synthesiser makes use of the acoustic tube model, but does so in a
particular way so that the control elements of the tube are easily related to acoustic-phonetic prop-
erties than can easily be observed. A typical basic layout ofa formant synthesiser in shown in
Figure 13.1. Here we see that the sound is generated from a source, which is periodic for voiced
sounds and white noise for obstruent sounds. This basic source signal is then fed into the vocal
tract model. In virtually all formant synthesisers, the oral and nasal cavities are modelled sep-
arately as parallel systems. Hence the signal passes into the component which models the oral
cavity, but can also pass into the component for modelling the nasal cavity if required for a nasal
or nasalised sound. Finally, the outputs from these components are combined and passed through
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Figure 13.1 Block diagram of basic formant synthesiser

a radiation component, which simulates the load and propagation characteristics of the lips and
nose.

The first point of note regarding the formant synthesiser is that it is not an accurate model
of the vocal tract. Even taking into account the crude assumptions regarding all-pole modelling,
losses and so on, the formant synthesiser structure differssignificantly in that it allows separate
and independent control of each formant. In the vocal tract model developed in Chapter 11, the
formants emerged as a result of the whole, concatenated-tube model; it was not possible to point
to just one section of tube and say that that section was responsible for the behaviour of a partic-
ular formant. Hence the formant synthesiser is based on alumped parameter model of speech
generation, rather than thedistributed model developed in Chapter 11. The reason for modelling
the formants as individual components is that this allows the system designer to gain direct control
of the formants and the reason for wishing to do this is that atthe time when formant synthesisers
were developed, it was much easier to read real formant values from spectrograms than to deter-
mine real vocal tract configurations. Even today, with MRI and EMA, the logistics of acquiring
formant values are considerably simpler than those of determining vocal tract shapes. Hence con-
structing a synthesis paradigm based on formant control is one of pragmatics (being able to control
what we can observe) and modularity (where each component can be separately controlled).

That said formant synthesis does share much in common with the all-pole vocal tract model.
As with the tube model, the formant synthesiser is modular with respect to the source and vocal
tract filter. The oral cavity component is formed from the connection of between 3 and 6 individual
formant resonators in series, as predicted by the vocal tract model, and each formant resonator is
a second order filter of the type discussed in Section 10.5.3.

13.2.1 Sound sources

The source for vowels and voiced consonants can be generatedeither as an explicit time domain
periodic function, of the type described in Section 11.4.2,or by an impulse sequence that is fed
into a glottal LTI filter. For obstruent sounds a random noisegenerator is used. Sounds such as
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voiced fricatives use both sources. If we adopt the impulse/filter approach, we see that in fact
these sources are equivalent to those of classical impulse/noise linear prediction model (Section
12.6.4). One difference between the impulse/glottal filtersource and linear prediction models is
that in the impulse/glottal filter model the voiced source isformed by a series of impulses which
pass through a simple filter to generate a periodic source signal. In classical linear prediction on
the other hand, the source is the impulses themselves and anymodification performed on these is
combined in with the filter use to model the vocal tract.

13.2.2 Synthesising a single formant

Recall from Section 10.5.3 that a formant can created by a second order IIR filter whose transfer
function is:

H(z) =
1

1−a1z−1−a2z−2

This can be factorised as

H(z) =
1

(1− p1z−1)(1− p2z−1)

To generate filter coefficientsa1 anda2 with real values, the poles have to form a complex conju-
gate pair. Recall that a second order expression like this generates a spectrum with two formants,
but as only one of these lies in the positive frequency range,the above expression does in fact gen-
erate a single usable formant with the full range of amplitude, bandwidth and frequency position.

The poles can be represented in polar form. As they form a complex conjugate pair, they
have the same magnituder and anglesθ and−θ:

H(z) =
1

(1− re jθz−1)(1− re− jθz−1)
(13.1)

As explained previously, poles can be visualised on a pole-zero plot, such as that shown in Figure
10.22. The magnitude of the pole determines the bandwidth and amplitude of the resonance; for
low values ofr, the formant will be very flat, asr increases the formant will become sharp, until
a pole with a value of 1 will have an infinite amplitude (which should not occur in practice).
The angleθ determines the normalised angular frequency position of the pole and is expressed
in radians; it can be converted to a frequency in Hertz by multiplication by 2πFs whereFs is the
sampling frequency. If we multiply Equation 13.1 out again,we can write the transfer function in
terms of the radius and angle of the poles:

H(z) =
1

1− r(ejθ +e− jθ)+ r2z−2

and from Euler’s formula (Equation 10.9) we can see that the complex terms cancel out to give a
value for the first coefficient expressed in cosine terms.

H(z) =
1

1−2rcos(θ)+ r2z−2
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Figure 13.2 Different formant configurations.

While we can generate a formant of any desired frequency directly by appropriate use ofθ, con-
trolling the bandwidth directly is a little more difficult. The position of the formant will change the
shape of the spectrum somewhat and so a precise relationshipfor all cases is not possible. Note
also, that when two poles (from two separate second order filters) are close together, they have the
effect of combining into a single resonant peak and this again makes bandwidth calculation some-
what difficult. However, it can be shown that a reasonable approximation linking the normalised
bandwidth of a formant to the radius of the pole is

B̂ =−2ln(r)

Using this, we can the write the transfer function in terms ofthe normalised frequencŷF and
normalised bandwidtĥB of the formant:

H(z) =
1

1−2e−2B̂cos(2πF̂)z−1 +e−2B̂z−2

As before, values for the normalised frequencyF̂ and bandwidthB̂ can be determined from the
frequencyF and bandwidthB by dividing byFs, the sampling rate. Figures 10.23 and 10.24 show
the spectrum for a single formant with different values for frequency and bandwidth.

13.2.3 Resonators in series and parallel

A transfer function that creates multiple formants can be formed by simply multiplying several
second order filters together. Hence the transfer function for the vocal tract is given as:
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H(z) = H1(z)H2(z)H3(z)H4(z) (13.2)

=
1

1−2e−B̂1cos(2πF̂1)z−1 +e−2B̂1z−2
︸ ︷︷ ︸

H1

...
1

1−2e−B̂4cos(2πF̂4)z−1 +e−2B̂4z−2
︸ ︷︷ ︸

H4

(13.3)

whereF1 is the frequency of the first formant,B1 is the bandwidth of the first formant and so on.
The terms in the denominator are multiplied out to give the standard all-pole filter transfer function

H(z) =
1

1−a1z−1−a2z−2− ...−a8z−8 (13.4)

and time domain difference equation

y[n] = x[n]+a1y[n−1]+a2y[n−2]+ ...+a8y[n−8] (13.5)

These equations show the main advantage of the formant technique, namely that for a given set
of formant values, we can easily create a single transfer function and difference equation for the
whole oral tract. In a similar fashion, a nasal system can be created, which likewise links the
values of the nasal formant to a transfer function and difference equation.

This formulation is known as aserial or cascadeformant synthesiser and was the first type
to be developed. Note that the relative amplitudes of the formants are determined as part of this
calculation and are not set explicitly. This works because each formant sits on the skirt of the
others, and this naturally generates formants of the correct amplitude. Hence the generated spec-
trum from such a formulation will always seem “natural” in terms of its shape. Counter to these
advantages is the problem that the interactions of the formants when cascaded can sometimes have
some unwanted effects. In particular, when two formants areclose, the resultant values as mea-
sured from the spectrum can often differ from the input formant parameters and hence a lack of
control appears.

An alternative formulation is theparallel formant synthesiser, in which each formant is mod-
elled in isolation, and during speech generation, the source signal is fed through each separately.
After this, the signals from all the formants are combined. The advantage is that the frequency
of each formant can be more accurately specified, the disadvantage is that now the amplitudes of
each must be carefully controlled; they do not appear on their own unlike in the cascading method.
In addition, there is no neat single transfer function or difference equation for the parallel case,
rather each formant has its own transfer function
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H1(z) =
1

1−a11z−1−a12z−2 (13.6)

H2(z) =
1

1−a21z−1−a22z−2 (13.7)

... (13.8)

and difference equation

y1[n] = x[n]+a11y1[n−1]+a12y1[n−2] (13.9)

y2[n] = x[n]+a21y2[n−1]+a22y2[n−2] (13.10)
... (13.11)

which are added in the time domain to give the final signal

y[n] = y1[n]+y2[n]... (13.12)

The two configurations are shown in Figure 13.2. Note that theparallel configuration has an
amplitude (gain) control for each formant.

13.2.4 Synthesising consonants

The source characteristics of consonants differ dependingon the class of sound being produced.
All unvoiced sounds use only the noise source; nasals and approximants use only the periodic
source while voiced obstruents (i.e. voice fricatives, affricates and stops) use both sources. Ap-
proximants are generated in much the same way as vowels. Someconsonants (such as [h]) can be
synthesised in the same way as vowels; that is by sending a sound source through the oral cavity
resonators. Most other consonants are however more complicated than /h/ because their source is
not at one end of the vocal tract.

Recall from Section 11.5 and Figure 11.17 that we used a number of different tube configu-
rations for each consonant type. The same approach is used informant synthesis. In the case of
nasals, the nasal cavity acts as a resonator and the nose is the only place where sound escapes. The
oral cavity does however still have an effect - even with the velum lowered sound from the glottis
still passes into the oral cavity, but now is reflected at the lips rather than escaping. The oral cavity
still operates as a resonator and some of the glottal source wave that it modifies enters the nasal
cavity through the lowered velum. The oral cavity thereforehas a significant effect on the sound
of the nasal and this explains why we can have different sounding nasals even though the nasal
cavity itself only has a single, unmoving shape.
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In real speech obstruents have their frication source generated at a place of constriction and
not by the glottis. Normally this place of constriction is caused by the tongue nearing the roof
of the mouth. In these cases, some of the sound created at the place of constriction travels back
towards the glottis, is reflected there and travels forwards, through the constriction and towards
the lips. Hence the vocal tract is effectively split into a separate front and rear cavity which have
separate resonant properties.

While details differ from system to system, in formant synthesis these more complex vocal
organ configurations can be modelled by the use of parallel resonators. In the case of nasals, one
set of resonators can be used to model the nasal cavity while another models the oral cavity. The
outputs of these are then simply added to generate the output. While this obviously differs from
the real vocal tract (where the output of the oral cavity is further modified by the nasal cavity),
with appropriate choices of parameters, a convincing effect can be achieved. Fricative sounds
are generated in a similar fashion, with one combination of resonators being used for the forward
cavity and another for the back cavity. Again this is simplerthat the real vocal tract, but this can
be overcome with appropriate choice of parameters.

Further refinement can be achieved by the use of zeros. These can be used to create anti-
resonances, corresponding to a notch in the frequency response. Here the format synthesis model
again deviates from the all-pole tube model, but recall thatwe only adopted the all-pole model
to make the derivation of the tube model easier. While the all-pole model has been shown to be
perfectly adequate for vowel sounds, the quality of nasal and fricative sounds can be improved by
the use of some additional zeros. In particular, it has be shown [254] that the use of a single zero
anti-resonator in series with a the normal resonators can produce realistic nasal sounds.

13.2.5 Complete synthesiser

TheKlatt synthesiser [254] [10] is one of the most sophisticated formant synthesisers developed.
It combines all the components just described, and includesboth a parallel and cascade resonator
system. A diagram of this system is shown in Figure 13.3. Recall that from the tube model, we
determined that see we require about 1 formant per 1000Hz. The Klatt synthesiser was set up to
work at 10KHz and 6 main formants are used. It is worth noting that most literature on formant
synthesis uses a sampling rate of 8KHz or 10KHz; not because of any principled quality reason
but mostly because space, speed and output requirements at the time prevented higher sampling
rates being used. If a higher sampling rate is required, thisnumber can easily be extended. That
said, it has been shown that by only the first three formants are used by listeners to discriminate
sounds, and so the higher formants are there simply to add naturalness to the speech.

When generating speech, in principle all the parameters (that is, the formant values, band-
width, voicing, F0 etc) could be changed on a sample by samplebasis. In principle however, a
slower rate of parameter update, such as every 5ms, is used.
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Figure 13.4 Formant patterns for different speech rates.

13.2.6 The phonetic input to the synthesiser

The formant synthesis technique just described is of courseonly half the problem; in addition
to generating waveforms from formant parameters, we have tobe able to generate formant pa-
rameters from the discrete pronunciation representationsof the type represented by the synthesis
specification. It is useful therefore to split the overall process into separateparameter-to-speech
(i.e. the formant synthesiser just described) andspecification-to-parametercomponents.

Before going into this, we should ask - how good does the speech sound if we give the for-
mant synthesiser “perfect” input? The specification-to-parameter component may produce errors
and if we are interested in assessing the quality of the formant synthesis itself, it may be difficult
to do this from the specification directly. Instead we can usethe technique ofcopy synthesis,
where we forget about automatic text-to-speech conversion, and instead artificially generate the
best possible parameters for the synthesiser. This test is in fact one of the corner stones of speech
synthesis research; it allows us to work on one part of the system in a modular fashion, but more
importantly it acts as a proof of concept as to the synthesiser’s eventual suitability for inclusion
in the full TTS system. The key point is that if the synthesis sounds bad with the best possible
input, then it will only sound worse when potentially error-full input is given instead. In effect
copy synthesis sets the upper limit on expected quality fromany system.

A particularly interesting event in speech synthesis history occurred in 1972 when John
Holmes demonstrated just such a parameter-to-speech copy synthesis experiment with his then
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Figure 13.5 Example spectrogram with formant values marked

state of the art parallel formant synthesiser [218]. Holmesdemonstrated quite convincingly that
most people found it impossible to tell the difference between an original recording of his voice
saying a particular sentence, and a copy synthesis version of the same sentence. Holmes’ demon-
stration was met with considerable excitement and optimism. It had been assumed by many that
the synthesiser itself would be too crude to faithfully mimic human speech, but this was shown
not to be the case by Holmes1

Given hindsight and an improved understanding of the issuesinvolved, we should per-
haps be less surprised that copy formant synthesis performsso well. From our exposition of
the source/filter model we see that while the way in which the synthesiser is controlled is very
different to human articulation, it is in essence a reasonable analogue. Also, from linear predic-
tion resynthesis, we know that an all-pole filter excited by the correct residual signal can generate
a perceptually perfect reconstruction of the original speech. The effect of Holmes’ and similar
demonstrations was to convince people that the parameter-to-speech part of the problem was in
effect solved; attention should focus on the specification-to-parameter part of the problem. In fact
many believed that this would be a significantly easier problem than the parameter to speech one,
and hence some thought the whole synthesis problem was closeto being solved.

As we shall see, this optimism was misplaced, but to help showthis, we will return to

1 Admittedly, in this experiment, the sample rate was 10KHz and the audio quality of the original sentence wasn’t
perfect (which would help cover up some slight differences). Furthermore, it appears that Holmes spent an enormous
amount of time carefully adjusting the parameters; it wasn’t just the case that he measured a few values from a spectro-
gram and the results sounded fine. These issues aside, the demonstration was still impressive.
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the issue of how to generate parameters from pronunciation,in the knowledge that if we can
manage to do this well, the resultant speech should sound very good. For many sounds, it is
fairly straightforward to determine suitable parameters.If we look at the spectrogram in Figure
13.5, we can readily identify the formant frequencies for the marked vowels. A serial synthesiser
determines the amplitude values by itself, in the parallel case these can be found by simple rules
linking the amplitude to the bandwidth and formant position. Non-vowel sounds are somewhat
more difficult in that the parameters are not as easily measurable.

In adopting such an approach, we have to take allophones intoaccount; while each phone
may have typical formant values, a single phoneme with two ormore allophones will obviously
require a separate set of parameters for each. Hence the provision of an adequate phoneme to
allophone component is an essential step of such an approach. In most systems, an allophone
sequence is generated from the phoneme sequence by context sensitive rules of the type described
in Section 8.1.2. For each allophones it is often possible byexperimentation to determine suitable
parameter values. This however only gets us part of the way. In Section 7.3.4, we explained
that it is not the case that each phoneme has a single unique articulatory or acoustic pattern;
the phenomena of coarticulation, where the movement of the articulators between the required
position for one phone and the next, ensures that a huge variety of acoustic patterns are observed
for each phoneme.

One technique, originally developed by Holmes, Mattingly and Shearme [219] is to define
a target that represents the steady state portion of each phone. Depending on the duration of the
phone, this will be longer or shorter. Between the steady state portion of one phone and the next,
a transition region occurs, where the parameter values are interpolatedbetween the steady state
of the first phone and the second. The rate of change of the transition is constant, and hence for
different durations of the same phone sequence the transition portion will look the same while
the steady state portion will change. An enhancement to the model allows for the possibility that
the speech is spoken so quickly that the steady state portionis never reached; in such cases the
parametersundershoot the target and continue on and try and reach the target valuesfor the next
phoneme. By this means, an attempt is made to mimic the more casual speaking style of fast
speech. This process is shown in Figure 13.4.

13.2.7 Formant synthesis quality

The general assessment of formant synthesis is that it is intelligible, often “clean” sounding, but
far from natural. It looking for reasons for this, we can say firstly that the source model is just
too simplistic; we shall however leave discussion of this until Section 13.3.5 as problems with this
have much in common with the linear prediction technique explained next. Secondly, the target
and transition model is also too simplistic, and misses manyof the subtleties really involved in
the dynamics of speech. While the shapes of the formant trajectories are measured from a spec-
trogram, the underlying process is one of motor control and muscle movement of the articulators.
While each articulator may move in a fairly simple fashion, when they are combined the overall
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system is highly complex. Furthermore, this complexity is simply that of the vocal tract; as this
acts as a recursive filter, the effect on the passage of the source waveform is even more com-
plicated. Finally, the assumptions made about the nature ofthe vocal tract model do have some
effect, and even though each of these assumptions is valid onits own, the lack of precision adds
up and affects the overall model. Significantly, while it canbe shown that most of the bad effects
caused by these assumptions can be by-passed, but this can only be done by manipulating the
parameter values away from their “natural” interpretation. In other words, while by appropriate
manipulation the formant synthesiser can produce very natural speech, this is at a cost of having
to use the parameters in strange ways that don’t relate to their observable and easy to understand
interpretations. As this is the main motivation for using formant synthesis, we see there is a real
conflict in having a model which has easy control and one whichproduces high quality speech.

That said, the main criticism of formant synthesis is that itdoesn’t soundnatural. It can
in fact produce quiteintelligible speech, and is still competitive in that regard with some of the
best of today’s systems. The reason for this goes back to our initial discussion on the nature of
communication in Chapter 2. There we showed that a primary factor in successful communi-
cation was that of contrast between symbols (phonemes in ourcase). Hence the success of the
message communicating aspect of speech (i.e. the intelligibility) can be achieved so long as the
signal identifies the units in a contrasting fashion such that they can successfully be decoded. In
the target-transition model, the targets are of course based on typical or canonical values of the
formants for each phoneme; and as such should be clear and distinct from one another. The fact
that the transitions between them don’t accurately follow natural patterns only slightly detracts
from the ability to decode the signal. In fact, it could be argued that good formant synthesis could
producemoreintelligible speech than slurred natural speech as the targets are harder to identify in
the later.

Given that one of the main problems lies with generating natural dynamic trajectories of the
formants, we now turn to a series of techniques designed to dojust that by means of determining
these dynamics from natural speech.

13.3 CLASSICAL L INEAR PREDICTION SYNTHESIS

One of the main difficulties in building a more sophisticatedtarget-transition model is that it is not
always straightforward to find the formant values directly from speech. While formant values can
often be determined by visually scanning a spectrogram, this can be time consuming and prone to
human error. Use of an automatic formant tracker can bypass these practical difficulties, but in the
years when formant synthesis was at its height accurate formant trackers had yet to be developed.
In addition, both visual and automatic techniques suffer from the problem that in some cases the
formants simply aren’t easily discernible. The vocal tracttransfer function at that point is not in
a position where it generates clear resonant peaks; rather the poles are well within the unit circle
and hence the spectral envelope is not particularly “peaky”. Hence while formants may be the
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primary means of distinguishing between different certainphonemes, their values are not always
clear foreveryframe of speech, and so having formants as the primary means of control can lead
to difficulties. Finally, even if we could find the formant values, it is certainly not the case that
their dynamics conform to simple target/transition models; in reality the movements are complex
and hard to predict by a simple formula.

An alternative to using formants as the primary means of control is to use the parameters of
the vocal tract transfer function directly. The key here is that if we assume the all-pole tube model,
wecan in fact determine these parameters automatically by means of linear prediction, performed
by the covariance or autocorrelation technique described in Chapter 12. In the following section
we will explain in detail the commonality between linear prediction and formant synthesis, where
the two techniques diverge, and how linear prediction can beused to generate speech.

13.3.1 Comparison with formant synthesis

With the series formant synthesiser, we saw that the transfer function for a single formant with
specified frequency and bandwidth could be created by a second order filter:

Hn(z) =
1

1−2e−2B̂cos(2πF̂)z−1 +e−2B̂z−2

and that a single transfer function for the whole oral cavitycould then be made by cascading
several of these second order filters together:

H(z) = H1(z)H2(z)H3(z)H4(z) (13.13)

=
1

1−2e−B̂1cos(2πF̂1)z−1 +e−2B̂1z−2
︸ ︷︷ ︸

H1

...
1

1−2e−B̂4cos(2πF̂4)z−1 +e−2B̂4z−2
︸ ︷︷ ︸

H4

(13.14)

which when multiplied out can be expressed in terms of a polynomial of filter coefficientsA =
{a1,a2, ...,aP}:

H(z) =
1

1−a1z−1−a2z−2− ...−apz−p (13.15)

For an inputX(z) and outputX(Z), we write

Y(z) =
X(z)

1−a1z−1−a2z−2− ...−apz−p (13.16)

and the inverse z-transform of this gives the time domain difference equation;
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y[n] = x[n]+a1y[n−1]+a2y[n−2]...+apy[n− p] (13.17)

=
P

∑
k=1

aky[n−k]+x[n] (13.18)

Recall that Equation 13.18 is exactly the same as the linear prediction Equation 12.16, where
A= {a1,a2, ...,aP} are the predictor coefficients andx[n] is the “error” signale[n]. This shows that
the result of linear prediction gives us the same type of transfer function as the serial formant
synthesiser, and hence LP can produce exactly the same rangeof frequency responses as the
serial formant synthesiser. The significance is of course that we can derive the linear prediction
coefficients automatically from speech and don’t have to make manual or perform potentially
errorful automatic formant analysis. This is not however a solution to the formant estimation
problem itself; reversing the set of Equations 13.14 to 13.18 is not trivial, meaning that while we
can accurately estimate the all-pole transfer function forarbitrary speech, we can’t necessarily
decompose this into individual formants.

Beyond this the similarities between the formant synthesiser and LP model start to diverge.
Firstly, with the LP model, we use a single all-pole transferfunction for all sounds. In the formant
model, there are separate transfer functions in the formantsynthesiser for the oral and nasal cavity.
In addition a further separate resonator is used in formant synthesis to create a voiced source
signal from the impulse train; in the LP model the filter that does this is included in the all-pole
filter. Hence the formant synthesiser is fundamentally moremodular in that it separates these
components. This lack of modularity in the LP model adds to the difficulty in providing physical
interpretations to the coefficients.

13.3.2 Impulse/noise source model

One of the commonalities with the formant model is that LP synthesis maintains a source/filter
separation. This means that for a sequence of frames, we can resynthesise this with a different
fundamental frequency to that of the original. The benefit isthat for a given transition effect that
we wish to synthesise, we need only analyse one example of this; we can create the full range of
fundamental frequency effects by the separate control of the source.

In performing LP analysis, we are trying to find the set of predictor coefficients which min-
imisee[n] over the analysis period. It can be shown that in doing so, we are in fact attempting to
find the set of predictor coefficients which give rise to the error signal with the flatest spectrum.
This is why the glottal filter is subsumed within the LP all-pole filter; if it wasn’t the spectrum
of the error signal wouldn’t be flat. From this we conclude that the proper form of the source for
the LP filter then is also a signal with a flat spectrum. For period sounds this can be provided by
a sequence of impulses, for obstruent sounds this is provided by a noise source. When creating
the source then, we first pick the type of source that is appropriate to the phoneme class of the
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Figure 13.6 Phones and Diphones

coefficients: impulse train for voiced speech, noise sourcefor obstruents, and both for voiced ob-
struents. Then for voiced sounds, we generate an impulse train with period given by the F0 values
given in the specification.

It is worth noting that this is the same as the source generation method used in formant
synthesis. The main difference is that there, the impulse sequence was fed into a special glottal
filter in an attempt to produce a realistic glottal volume velocity signal, whereas in the LP synthesis
the impulse train is passed directly into the filter. The reason for this difference has been explained
before, namely that LP analysis generates the coefficients for a filter that model both the glottal
and vocal tract characteristics. The fact that we use an impulse/noise model is why we call this
classical linear prediction synthesis; this distinguishes it from the other source techniques that
use linear prediction which we will described in Chapter 14.

13.3.3 Linear prediction diphone concatenative synthesis

By using LP analysis over a number of frames, we can exactly capture the vocal tract dynamics of
those frames. We therefore solve the transition modelling problem implicitly: as we can measure
the dynamics directly, we simply do so for all the types of transitions we are interested in and store
the results. By then synthesising from these patterns, we can exactly recreate the original speech
dynamics that we analysed. Independently, we generate a source signal using the noise source for
obstruent sounds and the impulse source for voiced sounds. We control the fundamental frequency
of the source by controlling the rate of impulses, which allows us to generate speech with a range
of fundamental frequencies for a single set of stored frames.

This use of the LP model leads us to the technique calledconcatenative synthesis. Here,
no explicit vocal tract modelling is performed; rather an exhaustive set ofunits is acquired and
synthesis is performed byconcatenatingthese units in appropriate order. The targets and transi-
tions are stored within the units, and so long as suitable units and good original speech are used, it
should be possible to generate realistic parameter patterns via the concatenation technique.

One of the most the most popular choices of unit is that of thediphone. A diphone is defined
as a unit which starts in middle of one phone and extends to themiddle of the next phone. The
justification for using diphones follows directly from the target-transition model where we have a
stable “target” region (the phone middle) which then has a transition period to the middle of the
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next phone. Because the diphones start and stop in these middle, stable, target regions, they should
have similar vocal tract shapes at these points and therefore join together well. By comparison,
concatenating units at phone boundaries is much less likelyto be successful as this is where the
variance in vocal tract shapes is greatest.

A diphone synthesiser requires a different type of synthesis specification from the phone
centred one used previously. For a phoneme string of lengthN, a diphone specification of phone
pairs of lengthN−1 is required. Each item in the specification is comprised of two statesknown
here ashalf-phones2, namedSTATE 1 andSTATE 2. Each of these half-phones has its own dura-
tion. We can define the start and end points of the diphones in anumber of ways, but the simplest
is to place them in the half way between the start and end of each phone. A number of options are
available for the F0 component as before, but one neat way is to have a single F0 value for each
half-phone, measured from the middle of that half phone. This is shown graphically in Figure
13.6. A single item in a diphone specification would then for example look like:
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For convenience, we often denote a single diphone by both itshalf-phones joined by a hy-
phen. Hence the phone string /h eh l ow/ gives the diphone sequence /h-eh eh-l l-ow/ or /h-eh/,
/eh-l/, /l-ow/.

A key task is to carefully determine the full set of possible diphones. This is dealt with in
full in Section 14.1, but for now, it suffices to say that we should find a database where there is a
high degree of consistency, to ensure good continuity and joins, and where there is a broad range
of phonetic contexts to ensure that all diphone combinations can be found. While it is possible to
use existing databases, it is more common to specifically design and record a speech database that
meets these particular requirements.

Once the diphone tokens have been identified in the speech database we can extract the
LP parameters. This is normally done with fixed frame analysis. First we window the section
of speech into a number of frames, with say a fixed frame shift of 10ms and a window length of
25ms. The coefficients can be stored as is, or converted to oneof the alternative LP representations.

2 The terminology regarding unit names is unfortunately complicated by historical naming quirks. We’ll go into this
more thoroughly in section 16
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When storing the units in the database, it is important that the durations and F0 values of the two
half phones are recorded as these are needed in the prosodic modification process.

13.3.4 Complete synthesiser

From the diphone specification, we find the matching units in our database, and concatenate them
into a unit sequence. From this we extract the sequence of LP parameters for each unit and
concatenate them into a single sequence of parameters. In doing this we should have created a se-
quence of frames with appropriate targets and transitions for the phone sequence we are attempting
to synthesise. Next we need to ensure that the speech we generate has the correct duration and F0
as given in the specification. From now on, it is easiest to think of the task in terms of half-phones,
and so for each half-phone in the specification, we have a specified duration and specified F0.
These can be compared with the database durations and F0 values of each half phone in our unit
sequence, and from this we can determine the amount of prosodic modification to be performed
for each half-phone.

The unit durations can be made to match the specification durations in a number of ways.
Firstly, we can simply stretch and compress the frame rate. Imagine we have a unit which is
originally 120ms long. This will comprise 12 frames at 10ms intervals. Imagine now the target
duration tells us to create a unit 90ms long. This can be created by change the synthesis frame
rate to 7.5ms, in which case the 12 frames will have a durationof 12× 7.5ms= 90ms. If a
longer duration is required the synthesis frame rate can be lengthened. An alternative is to shorten
the unit by keeping the frame rate the same but by leaving out every 4th frame - this will result
in 9 frames of 10ms = 90ms. To lengthen the unit, appropriate frames can be duplicated. The
leaving out/duplication strategy is cruder than the compression/stretching strategy, but so long as
the change is not too large (say within a factor of 2) it works surprisingly well. By using one of
these duration techniques we can generate a single sequenceof LP frames for the entire utterance.

Given the durations, we can calculate the source signal for the utterance. We use an impulse
source for sonorant phones, a noise source for unvoiced consonants, and a combined impulse and
noise source for voiced obstruents. The source characteristics are switched at phone boundaries.
For voiced sounds, the impulse sequence is created by placing impulses at a separation distance
determined by 1/F0 at that point. Finally we feed the source signal into the filter coefficients to
generate the final speech waveform for the sentence.

There are a number of minor modifications we can make to this basic model. Firstly, it is
possible to lessen the switching character of the sound source at phone boundaries by appropriate
use of amplitude control on the noise and impulse source. This is motivated from measurements
of glottal activity which show that it may take a frame or two for the glottis to change modes. At
boundaries between frames, we will encounter the situationthat at one point we are having our
synthetic speech signals[n] being generated by the coefficients of framej, but as we reach the end
of the frame we will have to start using the coefficients of thenext framej +1. During this cross-
over, at a pointK less than the filter orderP, we will be using the low valued coefficients (< K) of
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frame j +1 and the high valued coefficients (> K) of the previous frame,j. This can occasionally
lead to unwanted artefacts and so it is often sensible to perform some sort of filter interpolation
at this point. The simplest way is simply to smooth and interpolate the filter coefficients at the
P samples around the frame boundary. Alternatively, one can adopt a technique of constant in-
terpolation where in effecteverysample has its own unique set of coefficients interpolated from
the two nearest frames. This equates to a constantly moving vocal tract rather than the piecewise
stationary model assumed by normal frame based analysis. While interpolation can be performed
on the other representations as before, experimentation has shown that often the linear prediction
coefficients are sufficiently similar from one frame to the next to allow direct interpolation on the
coefficients themselves.

13.3.5 Problems with the source

Despite its ability to faithfully mimic the target and transition patterns of natural speech, standard
LP synthesis has a significant unnatural quality to it, oftenimpressionisticly described as “buzzy”
or “metallic” sounding. Recall that while we measured the vocal tract model parameters directly
from real speech, we still used an explicit impulse/noise model for the source. As we will now see,
it is this, and specifically the interaction of this with the filter, which creates the unnaturalness.

We can demonstrate that this is so with objective and subjective evidence. Recall from
Section 12.6.1 that we can synthesis a signaly′[n] that is exactly the same as the original speech
signaly[n] that we analysed provided we excite the LP filter with the residual. If we look at a real
residual signal such as that shown in Figure 12.17 we can clearly see a major spike for each pitch
period. This is what we are modelling with our single impulse. We can however see that there are
many other smaller spikes and patterns in the residual, and as these are being completely ignored
in the impulse/noise model, we can see that we are considerably over simplifying the source.

Subjectively, we can analyse the source of the unnatural “buzzy” sound by again performing
a copy synthesis experiment. This time we take a complete, natural sentence (no diphones or other
units), and synthesise it under different conditions. The first is to use the standard LP resynthesis
model whereby the analyse the sentence into frames and resynthesise with a noise source and
sequence of impulses which match the original pitch. The resultant speech sounds reasonably
good, but clearly different (degraded) from the original, especially if we do this with good audio
conditions and a high sampling rate (the good audio conditions allow us to hear more detail in
the signal, and from this we can therefore detect errors moreeasily). If we now change the pitch
but keep everything else the same (by changing the impulse sequence), we find that the speech
becomes noticeably more buzzy. Thirdly, we can keep the original frames and pitch patterns, but
change the durations by one of the two techniques described above. This sounds reasonably good,
and for small duration modifications the speech does not sound noticeable worse than condition 1.
Finally, we resynthesise, not using the impulse/noise source, but by the actual residual error signal
(details described below). That is, during analysis we record the error at every sample, and make a
complete residual waveform. When the speech is resynthesised using this as a source, the speech
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sounds perfect and is in fact completely indistinguishablefrom the original. From this, we can
safely conclude that the buzzy nature of the speech is indeedcaused by use of an overly simplistic
sound source.

13.4 ARTICULATORY SYNTHESIS

Perhaps the most obvious way to synthesise speech is to try a direct simulation of human speech
production. This approach is calledarticulatory synthesis and is actually the oldest in the sense
that the famous talking machine of von Kempelen can be seen asan articulatory synthesizer [478].
This machine was mechanical device with tubes, bellows and pipes which with a little training
could be used to produce recognisable speech The machine was“played” in much the same way
that one plays a musical instrument. The device is of course mimicking the vocal tract using
sources and filters, it is just that this time the physical nature of these is acoustic. While it may
seem amazing that a device developed as long ago as this can produced half reasonable speech,
we should now realise that a major reason for this is that the “specification-to-parameter” part of
this device is controlled by a human in real time, and this adds many advantages to the system in
that the human can use mechanisms such as feedback to controlthe playback and hence mimic
the natural speech production process. In modern times, articulatory synthesis is tackled from
a different perspective as it is obviously incomplete and impractical to have someone “play” the
synthesizer in this way.

Many modern articulatory synthesisers are extensions of the acoustic tube models described
in Chapter 11 [164], [382], [11], [288]. As we saw there, a complex tube shape can be approx-
imated by a number of smaller uniform tubes, and as we know thesound propagation properties
of such systems, we can use these to build a more complex general model. Hence the difference
between articulatory synthesis and our other techniques isthat with formant synthesis we are im-
plicitly using the tube model, but in fact using the resultant behaviour of the tube model as our
parameter space rather than the tubes themselves. With linear prediction synthesis, we are using
one form of the tube model (i.e. the all-pole model), but acquiring the tube parameters from data
and not attempting to build a model of how the tubes themselves behave. The attractive part of
articulatory synthesis is that as the tubes themselves are the controls, this is a much easier and
more natural way to generate speech; small, “natural” movements in tubes can give rise to the
complex patterns of speech, thus bypassing the problems of modelling complex formant trajecto-
ries explicitly. Often articulatory synthesis models havean interim stage, where the motion of the
tubes is controlled by some simple process (such as mechanical damping, or filtering) intended to
model the fact that the articulators move with a certain inherent speed. Thismotor control space
is then used as the parameters for the specification to parameter component.

The two difficulties in articulatory synthesis are firstly, deciding how to generate the control
parameters from the specification, and secondly finding the right balance between a highly accu-
rate model that closely follows human physiology and a more pragmatic model than is easy to
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design and control. The first problem is similar to that of formant synthesis. There however, in
many cases (but not all) it is straightforward to find the formant values from real speech; we simply
record the speech, calculate the spectrogram and determinethe formant values. The problem is
considerably more difficult with articulatory synthesis inthat finding what the correct articulatory
parameters can not be found from recordings, rather we must resort to more intrusive measures
such as x-ray photography, MRI or EMA imaging (explained in Section 7.1.7). Not only is this
sort of data inherently more difficult to collect, many of these techniques are relatively recent de-
velopments, meaning that during the early days of articulatory synthesis acquiring this data was
particularly difficult.

The second problem concerns just how accurate our model of articulation should be. As
we saw in our discussion on tube models, there is always a balance between the desire to mimic
the phenomenon accurately and with being able to do so with a simple and tractable model. The
earliest models, were more or less those described in Chapter 11, but since then a wide number
of improvements have been made many along the lines described in Section 11.5. These have
included modelling vocal tract losses, source-filter interaction, radiation from the lips, and of
course improved glottal source characteristics REFS. In addition many of these have attempted to
be models of both the vocal tract itself and the controls within it, such that many have models for
muscle movement and motor control.

Both these problems present considerable difficulty, such that the best articulatory synthesis
is quite poor compared to the best synthesis from other techniques (however, some good copy syn-
thesis has been demonstrated). Because of this, articulatory synthesis has largely been abandoned
as a technique for generating high quality speech for engineering purposes. However, while this
approach may not provide a good engineering solution for text-to-speech, it still arouses inter-
est in a number of related disciplines. Firstly, there is considerable interest in the scientific field
of speech production. Many have argued that because the articulatory domain is the natural and
true domain for speech production, that it does in fact help explain the systematic organisation of
higher level aspects of speech. For instance thearticulatory phonology of Browman and Gold-
stein [69] is based on the idea ofarticulatory gestures as the phonological primitives rather than
the segment based features described in Section 7.4.3. Boersma [60] is also notable for developing
a theory of phonology coupled with a articulatory synthesiser. A second, related, field of interest
is what we can termarticulatory physiology where the goal is to create fully accurate models of
articulator movement. The emphasis here is somewhat different in that we are attempting to model
specific articulators or effects precisely, rather than build a complete (but necessarily approximate)
model, or to link this with linguistic/phonetic model [490], [468]. Finally, articulatory synthesis is
implicitly connected to the field ofaudio-visual synthesisor talking head synthesis, where the
idea is to build a completevisualanimated model of the head while talking. Talking heads can be
built in a number of ways, from systems which attempt a bottomup reconstruction of the head by
modelling the articulators directly, to more data-driven approaches which take photos or videos of
real heads and then use morphing techniques to create animation [32], [304], [188].
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13.5 DISCUSSION

In order to gain a better understanding of contemporary techniques, it is important to understand
the strengths and weakness, and ultimate shortcomings of three techniques described here. In our
exploration, we have seen a number of factors that enable us to draw up a “wish-list” for a perfect
synthesiser:

Modularity It is advantageous to have a modular system, so that we can control components
separately. All three techniques provide a source/filter modularity, with the formant and
articulatory techniques scoring better in this regard in that the glottal waveform itself is fully
separable. The formant and articulatory synthesisers havefurther modularity, in that they
allow separate control of the oral and nasal cavities. Beyond this, the formant synthesiser
allows individual control of each formant, giving a final level of modularity which greatly
outweighs the other techniques.

Ease of data acquisitionWhether the system is “rule-driven” or “data-driven”,somedata has to
be acquired, even if this is just to help the rule-writer determine appropriate values for the
rules. Here linear prediction clearly wins, because its parameters can easily be determined
from any real speech waveform. When formant synthesisers were mainly being developed,
no fully reliable formant trackers existed, so the formant values had to be determined either
manually or semi-manually. While better formant trackers now exist, many other parameters
required in formant synthesis (e.g. zero locations or bandwidth values) are still somewhat
difficult to determine. Articulatory synthesis is particularly interesting in that in the past it
was next to impossible to acquire data. Now, various techniques such as EMA and MRI
have made this much easier, and so it should be possible to collect much bigger databases
for this purpose. The inability to collect accurate articulatory data is certainly one of the
main reasons why articulatory synthesis never really took off.

Effectiveness of modelAll three techniques are based on related but different models of speech,
but some are more inherently “natural”, meaning that the waythe parameters change over
time can be specified by simpler means.

It should be clear from our exposition that each technique has inherent tradeoffs with respect
to the above wish list. For example, we make many assumptionsin order to use the lossless
all-pole linear prediction model for all speech sounds. In doing so, we achieve a model whose
parameters we can measure easily and automatically, but findthat these are difficult to interpret
in a useful sense. While the general nature of the model is justified, the assumptions we make to
achieve automatic analysis mean that we can’t modify, manipulate and control the parameters in
as direct a way as we can with formant synthesis. Following onfrom this, it is difficult to produce
a simple and elegant phonetics-to-parameter model, as it isdifficult to interpret these parameters
in higher level phonetic terms.

On the other hand, with formant synthesis, we can in some sense relate the parameters to the
phonetics in that we know for instance that the typical formant values for an /iy/ vowel are 300Hz,
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2200Hz and 3000Hz. But because we can’t find the required parameters easily for some arbitrary
section of speech, we have to resort to a top-down fully specified model for transitions, which
when compared to real transitions is often found severely lacking. Because parameter collection
is so hard, it is difficult to come up with more accurate phonetics-to-parameter models as the
development and test cycle is slow and inaccurate.

Moving on from these issues, we see problems that are common to all techniques. Firstly,
there is the issue of source quality. In effect, all use the same or similar sources. While these
perform theirbasic job of generating a glottal waveform signal of specified F0 quite well, they
fall far short of producing a genuinely natural sounding one. In fact, our understanding of source
characteristics now is such that we know that this part of thespeech apparatus is highly individual,
and something that gives individual speakers their identity. Having a single, “mean” model for all
speakers is very crude. Furthermore, the shape of the signalchanges with frequency, with vocal
effort and with other speaking factors. We know that the source and filter aren’t in fact completely
decoupled, and this has an impact. Finally, the source has its own version of coarticulation, so that
the source characteristics can become very complex over a phone boundary, especially when the
voicing is switched on and off. More sophisticated source models of the type described in Section
11.4 improve matters somewhat, but even these are not close to accurately generating the complex
source patterns observed in real speech.

A second issue is that as we demand ever greater fidelity in theoutput speech, the various
assumptions we have made in our models start having a more noticeable negative effect. We
have already shown this for the source modelling, but these are present too in the various filter
model variants. In Section 11.6 we listed several assumptions in the source/tube model such as
assumptions made with losses, simple radiation characteristics, linearity of the filters and so on.
As we wish to create ever higher quality speech, each of thesestarts to have an effect.

The final further issue concerns the specification-to-parameters problem. In going from
formant synthesis to LP synthesis the key move was to abandonan explicit specification-to-
parameters model of vocal tract configurations and instead measure the required parameters from
data. From this we can use a look-up table at synthesis time which simply lists the parameters
for each unit (typically a diphone). The cost in doing so is firstly to loose explicit control of the
phenomenon, and secondly of course to incur significant extra storage. If we now however look at
how closely the LP parameters for one diphone follow parameters for lots of examples of that same
diphone in many different real situations, we see that in fact even this purely data driven approach
is severely lacking, and in many cases the set of parameters for our diphone bear only match one
specific linguistic context and can be quote different from that diphone in other linguistic contexts.

We have presented LP synthesis from one particular viewpoint; specifically one where we
show the similarity between this and formant and articulatory synthesis. It is quite common to
see another type of explanation of the same system. This alternative explanation is based on the
principle that in general we wish to record speech and play itback untouched; in doing so we
have of course exactly recreated the original signal and hence the quality is perfect. The problem
is of course that we can’t collect an example of everything wewish to say; in fact we can only
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collect a tiny fraction. This leads us to the idea that we should perform synthesis from natural data,
which has had the minimum, “non-intrusive” modification required to make it obey the synthesis
specification.

These two final points are in fact the essence of the modern synthesis problem as currently
defined. Firstly, we wish to create speech with a set of parameters which can faithfully gener-
ate the patterns of as wide a range of naturally occurring speech sounds as possible. Secondly,
and because we may not be able to collect everything we wish, we will then modify those gen-
erate parameters to deliver speech which matches the specification. These two problems, natural
parameter generation, and speech modification, are the subject of the next chapters.

13.5.1 Further reading

Klatt’s 1987 article,Review of Text-to-Speech Conversion for English[255] is an excellent source
for further reading on first generation systems. Klatt documents the history of the entire TTS field,
and then explains the (then) state of the art systems in detail. While his account is heavily biased
towards formant synthesis, rather than LP or articulatory synthesis, it none the less remains a very
solid account of technology before and at the time.

In the article Klatt gives a very thorough and fascinating account of text-to-speech from the
early days until the mid 1980s, and as such documents the development of the first generation
techniques explained in this chapter. Klatt starts his discussion with an examination of what we
might now term “pre-first generation” systems which were notintended to be used in text-to-
speech, but rather as basic demonstrations that machines could generate speech. The first widely
recognised modern speech synthesiser is thevodor developed at the AT&T telephone company by
Dudley [143]. This was in many ways an electronic counterpart to von Kempelen’s talking ma-
chine in that the vodor was “played” by human operators, who with a little practice could generate
somewhat intelligible speech. The next notable system was the “pattern playback” developed at
Haskins labs in the US [106] This devices worked by reading parameters from a roll of paper that
was fed into the machine. The marks on the roll could be measured from spectrograms or painted
on by hand.

The development of the source filter model and the general acoustic theory of speech produc-
tion by Fant and others (see Chapter 11 was a key breakthroughstep and allows the development
of the type of formant synthesisers described here. The Parametric Artificial Talker (PAT) de-
veloped by Walter Lawrence and colleagues (including PeterLadefoged) at Edinburgh University
[278] worked in a similar fashion to the Haskins system except that the roll of paper now specified
formant values. Fant developed the OVE I and OVE II synthesissystems which were fully elec-
tronic, and their modular structure allowed phoneticians to apply the knowledge they had acquired
of speech directly to the synthesis problem. Further development in formant synthesis progressed
by the exploration of enhancements such as parallel formants, nasal branches, anti-formants and
so on. Two of the leading figures in this stage were Denis Klatt[252], [254] and John Holmes
[219], [218].
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The development of linear prediction synthesis was really aby-product of research into
speech compression or coding. Linear prediction is of course the basis of linear predictive coding
(LPC) which was developed in the late 1960s and early 1970s [233], [20] [301] [294]. The com-
pression was achieved by source/filter separation in which the LP coefficients were transmitted
but the source was replaced by just a pitch value. One of the most famous developments in speech
technology was the Texas Instruments Speak’n Spell toy [486] which used LP coding to compress
a considerable number of words, with the aim of speaking thatword and getting a child to spell it
on a keyboard so as to learn how to spell3. One of the first complete synthesisers to use LP was
developed at Bell Labs, [339] [338] and this started a line ofunbroken TTS development for many
years.

13.5.2 Summary

There are three main techniques which make use of the classical acoustic theory of speech pro-
duction model:

Formant synthesis

• Formant synthesis works by using individually controllable formant filters which can be set
to produce accurate estimations of the vocal tract transferfunction

• An impulse train is used to generate voiced sounds and a noisesource obstruent sounds.
These are then passed through the filters to produce speech.

• The parameters of the formant synthesiser are determined bya set of rules which examine
the phone characteristics and phone context.

• In general formant synthesis produces intelligible but notnatural sounding speech.

• It can be shown very natural speech can be generated so long asthe parameters are set very
accurately. Unfortunately it is extremely hard to do this automatically.

• The inherent difficulty and complexity in designing formantrules by hand has led to this
technique largely being abandoned for engineering purposes.

Classical Linear Prediction

• This adopts the all-pole vocal tract model, and uses an impulse and noise source model.

• In terms of production, it is very similar to formant synthesis with regard to the source and
vowels. It differs in that all sounds are generated by an all-pole filter, whereas parallel filters
are common in formant synthesis.

• Its main strength is that the vocal tract parameters can be determined automatically from
speech.

3 As a child I tried this, and while I marvelled at the technology then, and so so even more today, it had no noticeable
effect on my awful spelling.
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Articulatory synthesis

• These models generate speech by direct modelling of human articulator behaviour

• As such they are the most “natural” way of generating speech,and in principle speech gener-
ation in this way should involve control of a simply parameter space with only a few degrees
of freedom.

• In practice, acquiring data to determining rules and modelsis very difficult

• Mimicking the human system closely can be very complex and computational intractable.

• Because of these difficulties, there is little engineering work in articulatory synthesis, but it
is central in the other areas of speech production, articulator physiology and audio-visual or
talking head synthesis.



14
SYNTHESIS BY
CONCATENATION AND
SIGNAL PROCESSING
MODIFICATION

We saw in Chapter 13 that while vocal tract methods can often generate intelligible speech, they
seem fundamentally limited in terms of generating natural sounding speech. We saw that in the
case of formant synthesis, the main limitation is not so muchin generating the speech from the
parametric representation, but rather in generating theseparameters from the input specification
which was created by the text analysis process. The mapping between the specification and the
parameters is highly complex, and seems beyond what we can express in explicit human derived
rules, no matter how “expert” the rule designer. We face the same problems with articulatory
synthesis and in addition have to deal with the fact that acquiring data is fundamentally difficult
and that improving naturalness often necessitates a considerable increase in complexity in the
synthesiser.

A partial solution to the complexities of specifiction to parameter mapping is found in clas-
sical linear prediction technique where we bypassed the issue of generating of the vocal tract pa-
rameters explicitly and instead measured these from data. The source parameters however, were
still specified by an explicit model, and this was identified as the main source of the unnaturalness.

In this chapter we introduce a set of techniques that attemptto get around these limitations.
In a way, these can be viewed as extensions of the classical LPtechnique in that they use a data-
driven approach: the increase in quality however largely arises from the abandonment of the over
simplistic impulse/noise source model. These techniques are often collectively calledsecond
generation synthesis systems, in contrast to thefirst generation systems of Chapter 13. While
details vary we can characterise second generation systemsas ones where we directly use data
to determine the parameters of the verbal component as with classical linear prediction. The
difference is that the source waveform is now also generatedin a data driven fashion. Theinput
to the source however is still controlled by an explicit model. So for instance we might have a
explicit F0 generation model of the type described in Section 9.5 which generates an F0 value
every 10ms. The second generation technique then realises these values in the synthesized speech
by a data driven technique, rather than the impulse/noise model (Section13.3.2).

The differences in the second generation techniques mainlyarise from how explicitly they
use a parametrisation of the signal. While all use a data driven approach, some use an explicit
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speech model (for example using linear prediction coefficients to model the vocal tract) while
others perform little or no modelling at all, and just use “raw” waveforms as the data.

As we saw in Chapter 9, the acoustic manifestation of prosodyis complex and affects many
parts of the speech signal. In second generation synthesis,this is greatly simplified and generally
just reduces to modelling pitch and timing. This in many waysis a matter of expediency; while
pitch and timing are clearly heavily influenced by the prosodic form of an utterance, they also
happen to be the two aspects of the signal that are the most easy to modify. Other aspects such as
voice quality (say breathiness at the end of a sentence) can’t easily be accommodated within this
framework and therefore are usually ignored.

The standard setup in a second generation system is to have a specification composed of
a sequence of items where each contains a phone description,an F0 value and a duration for
that phone. The phone description is matched to the data, andvarious techniques are used to
modify the pitch and duration of this. In general, the verbalor phonetic component of second
generation systems is quite trivial. Typically, just one recorded speech unit is available for each
unique phonetic specification, and to generate the synthesis waveform we simply find these units
in a database and concatenate them. Modifying the pitch and timing without introducing any
unwanted side effects can however by quite tricky, and it is for this reason that the majority of
interest in second generation systems lies with the development of these techniques. The following
sections therefore mostly concentrate on the signal processing techniques used to change the pitch
and timing of concatenated waveforms.

14.1 SPEECH UNITS IN SECOND GENERATION SYSTEMS

Historically, we can view second generation systems as the further development of classical lin-
ear prediction concatenative synthesis, where the goal of the new systems was to eliminate the
problems caused by assuming the over simplistic impulse/noise source model. A subtly different
perspective can be formed by considering that in first generation systems (developed in the 1970s
and early 1980s) the hard reality of memory limitations meant that alternatives to explicit source
models were impossible; in fact storing the LP parameters themselves was often prohibitive. By
the time second generation systems were mature, memory was cheaper such that it was possible to
store significant numbers of whole waveforms recorded at higher sampling rates (often 16KHz).
The quality of unanalysed speech that is simply played back is of course perfect, and this leads
to a different view on the nature of second generation systems: rather than seeing them as a way
of acquiring model parameters directly from data, alternatively we can see them as a technique
where we record good quality natural speech and use recombination techniques to generate phone
and word sequences that weren’t originally in the data. The only problem is that while we can
acquire enough real data to cover the range of phonetic effects, we can’t do this and also cover
all the prosodic effects. Hence we use signal processing to help us with this last stage. Given
that the quality of the basic recombined speech can be very high, the goal of the signal processing
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algorithms can then be stated as one where we want to achieve the required prosody but do so in a
way that leaves all the other aspects of the signal as they were. From this perspective, we see why
classical linear prediction synthesis can sound so poor, asin this technique we are performing the
quite brutal modification of replacing the natural source with a simple impulse.

14.1.1 Creating a diphone inventory

The most common type of unit is second generation systems is the diphone, so a key task is to
carefully determine the full set of possible diphones. Our investigation into phonotactics (Section
7.4.1) showed that phonemes occurred in characteristics sequences, so at the beginning of a word
we may find /s t r/ but not /s b r/. We can use such a phonotactic grammar to help us determine the
full set of diphones; if a pair of phonemes in sequence is impossible according to the grammar we
will not include it in our legal diphone set. It is worth noting that while phoneme sequences within
words can be quite constrained, because we need to consider sequences across word boundaries
also, the number of possibilities is quite large. In fact compared to the theoretical maximum (ie all
possible pairs), there are only a few which are not legal. These all arise from constraints on what
phones can occur word finally so because /h/, /w/ and /y/ don’toccur word finally, /y-l/, /w-t/ and
/h-ng/ are all out.

The full list of diphone types is called thediphone inventory, and once determined, we need
to find units of such diphones in real speech. As we are only extracting one unit for each diphone
type, we need to make sure this is in fact a good example for ourpurposes. We can state three
criteria for this.

1. We need to extract diphones that will join together well. At any join, we have a left diphone
and a right diphone which share a phoneme. For each phoneme wewill have about 40 left
diphones and 40 right diphones, and the aim is to extract units of these 80 diphones such that
the last frame of all the left diphones is similar acoustically to the first frame of all the right
diphones.

2. We wish for the diphones to be typical of their type - as we only have one unit of each, it
makes sense to avoid outliers.

3. As we will have to change the duration and pitch of this unit, it makes sense to pick units
which are least likely to incur distortion when these changes are made. As the distortion
incurred is proportional to the amount of change, it makes sense again to pick units with
average pitch and duration values, as this minimises the average amount of change. One
subtlety to this is that it is easier to make a long unit shorter than make a short unit longer;
this is because short units often lack the clearly define target regions of the longer units
and if these are lengthened the result can sound unnatural. If on the other hand a long unit
is shortened, some perception of “over articulation” may occur, but the result is generally
acceptable.
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14.1.2 Obtaining diphones from speech

A number of techniques have been proposed for acquiring the diphone units based on these three
criteria. Firstly we can simply search for them in any corpusof speech from a single speaker.
This can have the advantage that we need not necessarily collect new data for out synthesiser, but
it can be difficult to find units which meet the criteria. An alternative is to carefully design and
record a corpus of isolated words in which one or perhaps two diphones are embedded in each
word. The advantage here is that firstly we can control the phonetic context of the diphone so that
longer range allophonic and coarticulation effects are absent. For example, if we wish to obtain a
typical diphone /t-ae/, it is probably best not to record this in the context of a following /n/ phone,
as in the word /t ae n/. The /n/ will colour the /ae/ vowel, and this will sound unnatural when the
/t-ae/ diphone is used in non-nasal contexts. Secondly, thespeaking and recording conditions can
be carefully controlled and it is generally easier to elicita diphone with the necessary prosodic
characteristics in such circumstances. One approach alongthese lines is to search a lexicon and
from this define a word list which covers all required diphones. A variation on this is to specially
design a set of invented words (callednonsense wordsor logotomes) which exactly match the
criteria we require. In doing so, we can create a template (e.g. /ax X Y t ax/) for a diphone such
that the context is nearly always the same for every unit, forexample
/ax r uh t ax/
/ax l uh t ax/
/ax p uh t ax/
/ax b uh t ax/
One last major difficulty is that while our phonotactic grammar may give us all the possible
phoneme pairs which exist in a language, in reality a significant minority may never occur in
any known word. In English this is particularly problematicwith the /zh/ phoneme as is nearly
always followed by /er/ (e.g.MEASURE). For cases like this, imaginative use of phoneme pairs
across word boundaries or the creation of nonsense words will be required.

Experience has shown that with a suitably recorded and analysed diphone set, it is usually
possible to concatenate the diphones without any interpolation or smoothing at the concatenation
point. This is to be expected if the steady-state/transition model is correct (see Section 13.2.6). As
we shall see in Chapter 16 however, this assumption is reallyonly possible because the diphones
have been well articulated, come from neutral contexts and have been recorded well. It is not safe
to assume that other units can always be successfully concatenated in phone middles.

Once we have a sequence of diphone units which match the phonetic part of the specification,
we need to modify the pitch and timing of each to match the prosodic part of the specification.
The rest of the chapter focuses on techniques for performingthis task.
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14.2 PITCH SYNCHRONOUS OVERLAP AND ADD(PSOLA)

Perhaps the mostly widely used second generation signal processing techniques are the family
calledpitch synchronous overlap and add, (shortened toPSOLA and pronounced /p ax s ow
l ax/). These techniques are used to modify the pitch and timing of speech but do so without
performing any explicit source/filter separation. The basis of all the PSOLA techniques is to
isolate individual pitch periods in the original speech, perform modification, and then resynthesise
to create the final waveform.

14.2.1 Time domain PSOLA

Time domain pitch synchronous overlap and addor TD-PSOLA is widely regarded as the
most popular PSOLA technique and indeed may well be the most popular algorithm overall for
pitch and timing adjustment [194], [322], [474].

The technique works pitch-synchronously, which means thatthere is one analysis frames
per pitch period. A pre-requisite for this is that we need to be able to identify the epochs in the
speech signal, and with PSOLA it is vital that this is done with very high accuracy. To perform
this step, an algorithm of the the type discussed in Section 12.7 is used. The epoch positions are
often taken to be at the instant of glottal closure for each period (Sections 12.6.2, 12.7.2) but so
long as the epoch lies in the same relative position for everyframe PSOLA should work well.
The signal is then separated into frames with a hanning window which extends one pitch period
before and one pitch period after the epoch, as shown in Figure 14.1. These windowed frames can
then be recombined by placing their centres back on the original epoch positions, and adding the
overlapping regions (hence the name, overlap and add). Whenthis is done, the result is a speech
waveform perceptually indistinguishable from the original. The waveform is notexactlythe same,
as the sinusoid multiplication carried out during analysisis not exactly reversed during synthesis,
but the overlap add procedure comes close enough that the difference is not noticeable.

Time-scale modification is achieved by elimination or duplication of frames, shown in Figure
14.2. For a given set of frames, if we duplicate one of these frames and insert it again into the
sequence and then perform overlap and add, we will create a speech waveform that is nearly
identical to the original except that it is one frame longer.In general, listeners can’t detect that
this operation has been performed and the desired effect of alonger stretch of natural speech is
percieved. Importantly, the listeners can’t detect that inthe new signal two consecutive frames
are identical, rather than slowing evolving which is what wesee in real speech. By eliminating a
frame we can achieve the converse effect, and again, listeners normally do not detect that a frame
is missing. A rule of thumb is often quoted that these processes can be used to lengthen or shorten
a section of speech by a factor of about 2 without any or much noticeable degradation. In reality,
it is fairer to say that the more modification one performs themore likely it is that the listener will
notice.

Pitch-scale modification is performed by recombining the frames on epochs which are set at
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different distances apart from the analysis epochs, shown in Figure 14.3. All other things being
equal, if we take for example a section of speech with an average pitch of 100Hz, the epochs will
lie 10ms apart. From these epochs we perform the analysis andseparate the speech into the pitch
synchronous frames. We can now create a new set of epochs which are closer together, say 9ms
apart. If we now recombine the frames by the overlap add method, we find that we have created
a signal which now has a pitch of 1.0/0.009 = 111Hz. Conversely, if we create a synthetic set of
epochs which are further apart, and overlap and add the frames on those, we find that we generate
a synthetic waveform of lower pitch. This lowering process partly explains why we need frames
which are twice the local pitch period; this is to ensure thatup to a factor of 0.5, when we move
the frames apart we always have some speech to add at the frameedges. Just as with timing
modification in general listeners can not detect any unnaturalness in slight modifications.

14.2.2 Epoch manipulation

One of the key steps in both TD-PSOLA and FD-PSOLA is proper manipulation of the epochs.
First, an epoch detector of the type described in Section 12.7.2 is used to find the instants of glottal
closure. This results in theanalysis epoch sequenceTa =< ta

1, ta
2, ..., ta

M >. From this, the local
pitch period at any epoch can be found. A simple means of determining this is just to measure the
distance between the previous and next epochs and divide by two:

pa
m =

ta
m+1− ta

m−1

2
(14.1)

Alternatively, more sophisticated means such as taking a running average of the epoch distances
can be employed. Given the sequence of epochs and local pitchperiods, we can extract a sequence
of analysis frames by successively windowing the original signal with a hanning window:

xa
m[n] = wm[n]x[n] (14.2)

the limits ofn in the above are proportional to twice the local analysis pitch period.
Next, a set of synthesis epochsTs =< ts

1, t
s
2, ..., t

s
M > is created from the F0 and timing values

given in the specification. If a synthetic F0 contour has already been created, the synthesis epochs
can simply be calculated from this by placingts

0 at 0, reading the first frequency value, taking the
reciprocal of this to find the first pitch period, advancing this distance and settingts

1 at this position.
The F0 at this point is then found, the reciprocal taken to findthe next pitch period and so on.

A mapping functionM[i] is then created. The job of the mapping function is to specify
which analysis frames should be used with which synthesis epoch. We should note at this stage
that the duration and pitch modifications interact. Figure 14.4 demonstrates this. Taking the case
of duration modification first, we see in the example that we have 5 frames of 100HZ speech
spanning 40ms, we can produce a segment with the same pitch (100Hz) but with a new duration.
We do this by creating a sequence of synthesis epochs that have the required pitch but span the
new duration. If we wish to increase the duration we add more epochs, if we wish to decrease
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(a) A section of voiced waveform, with epoch po-
sitions shown by the arrows.
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(b) For every epoch, a frame is created centred on
the epoch. Here, a series of hanning window are
shown; note that the windows overlap
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(c) The sequence of separate frames created by the hanning window process. Each is centred on
the epoch, which in this case is the point of maximum positiveexcursion.
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(d) A waveform resynthesised by overlapping and
adding the separate frames, with positions gov-
erned by the original epoch positions. This results
in a perceptually identical waveform to the origi-
nal.

Figure 14.1 Basic operation of the PSOLA algorithm.
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Figure 14.2 Timing manipulation with PSOLA. Here the original pitch is kept but the section of
speech is made longer by the duplication of frames.

the duration we used less epochs. The mapping functionM is then used to specify which analysis
frames should be used. In the case of increasing the duration, we may need to create (say) 7 new
synthesis frames from the 5 analysis frames. This effect is achieved by duplicating two of the
analysis frames. Conversely, if we wish to decrease the duration, we skip frames.

Now consider the case of changing the pitch. If we have a simple example of a segment of
speech having a constant pitch of 100Hz and spanning 5 frames, we see that the distance between
the first epochta

1 and the lastta
5 is 40ms. Imagine now we wish to change the pitch of this segment

to 150Hz. We can do this by creating a set of synthesis epochsTs which are 1/150= 0.0066s=
6.6msapart. If we use a straightforward linear mapping functionM such thatM[i] = i for all i,
then the analysis frames are simply copied one by one onto thesynthesis epochs. The final signal
is then created by overlap and add of these frames. In doing this we find however that our 5
frames of speech, which originally spanned 40ms(5−1)x10ms= 40mspeak to peak, now only
span(5−1)∗6.6ms= 26mspeak to peak: because the frames are closer they take up less overall
duration. We can compensate for this by using the frame duplication/elimination technique used
for duration modification; in this example we would duplicate 2 frames which would give us a
segment of(7−1)∗6.6ms= 40ms. The mapping function specifies which frames to duplicate.
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Figure 14.3 Pitch manipulation with PSOLA. A new set of synthesis epochsare created which are
spaced further apart than the analysis set. When the frames are overlapped and added, the new pitch
is now lower due to the wider frame spacing.

Hence duration modification can be performed without reference to pitch values, but pitch
modification will necessarily change duration as a by product of moving the frames closer or
further apart. In practice, both modifications are done at once, by a segment by segment calculation
of the mapping function. This ensures that each segment has the required pitch and duration as
specified by the TTP component. A number of options are available for the form of the mapping
function. The simplest is to have a simple linear function, whereby if we wish to create 15 frames
from 10, we duplicate every second frame. Likewise if we wishto create 5 from 10, we eliminate
every second frame. More sophisticated functions are also possible, where for instance frames are
duplicated and eliminated in the middles of phones in an attempt to preserve transition dynamics
and have maleable steady state portions as with formant synthesis.

14.2.3 How does PSOLA work?

We can now ask ourselves, how does TD-PSOLA work? Or in other words, after all we have said
about explicit source/filter separation how is it that we have been able to change the characteristics
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Figure 14.4 Simultaneous pitch and timing modification, where a new set of synthesis epochs, and
a single mapping which performs pitch and timing modification is used.

of the source without performing any separation? This is certainly a surprising result - we appear
to be able to modify the pitch of a signal simply by rearranging the positions where we place the
frames - no local modification of the frame is required at all.While the explanation is now known
(and given below), at the time this was certainly a surprising result. TD-PSOLA is massively
simpler than the other approaches mentioned here, requiresa fraction of the computational cost
and often produces the best sounding speech1.

A simple explanation can in fact be provided. In Figure 14.5a, we have the time domain sig-
nal for a single impulse fed into an IIR filter, which has been given realistic vocal tract coefficients.
We see clearly that the single impulse causes decaying oscillation and produces a characteristic
time-domain pattern. Crucially, this pattern is a consequence of the filter only, all the impulse does
is provide energy to the system. Now consider Figure 14.5b, where we have a series of well sepa-
rated impulses exciting the same filter. We see the pattern ofFigure 14.5a repeated, each impulse
causes a time domain pattern whose characteristics are governed by the filter only. In Figure 14.5c,

1 While the explanation given here is satisfactory, it is certainly “after the event” - if it was possible to deduce this
from basic signal processing principles the technique would have been discovered at least 20 years previously.
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(a) The time domain pattern of a single impulse
fed through an IIR filter. The shape of the wave-
form is entirely dependent on the filter, and not the
impulse.

(b) A series of impulse responses, clearly separated in time. As before the pattern of the
response for each period is only dependent on the filter characteristics. The period of this
waveform is determined separately, by the distance betweenthe impulses.

(c) The same series but the impulse responses are positionedso
close that they overlap. The only difference between the perception
of this and case b) is that here the pitch will be higher because the
separation is so much less. The spectral envelope will be thesame
because the impulse response itself is hardly altered.

Figure 14.5 Explanation of how it is possible to change pitch in PSOLA without changing the
spectral envelope characteristics.
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we see that it is easy to change the pitch of this signal by moving the impulses nearer together,
which has no effect on the characteristic ringing of the filter. This shows that provided we can
separate the effects of each impulse we can safely change thepitch without changing the filter. In
effect TD-PSOLA is attempting to mimic this process on real speech. The fact that the technique
is pitch synchronous means that we are in effect isolating individual excitations into the vocal
tract. In real speech we have the problem that the ringing of the filter is not well isolated from the
direct effects of the excitation. We get around this by use ofthe hanning windows which attempt
to capture as much of the filter effect from each pitch period without running into the effect of the
excitation from the next pitch period. The hanning window does this by tapering near the window
edges.

14.3 RESIDUAL EXCITED LINEAR PREDICTION

When the TD-PSOLA algorithm is used with speech which has been accurately epoch-marked,
the quality of synthesis is extremely high, and so long as thepitch and timing modifications aren’t
too big (say within 25% of the original) the quality of the speech can be “perfect” in the sense that
listeners can’t tell that this is not completely natural speech. In terms of speed, it is nearly incon-
ceivable that any algorithm could be faster. Hence for many situations TD-PSOLA is regarded as
a complete solution to the pitch and timing modification issue. The algorithm is not however ideal
for every situation, not because it fails in its goals (it does not) but because we have additional
requirements. Firstly, TD-PSOLA canonly perform pitch and timing modification; no spectral or
other modification is possible. Secondly, the storage requirements are that of the original speech
database. Whether or not this is a problem depends of course on the size of the database; for a
basic diphone synthesiser with 1600 diphones, we might require 2M-5M storage for a 16000Hz
sampling rate. TD-PSOLA can also be used with much larger unit selection databases where the
database size may be several hundred megabytes. In such cases, some compression may be used,
and as this is often based on linear prediction, we do in fact end up using linear prediction in any
case. We now therefore turn to techniques which use the linear prediction model, but which avoid
the problems caused by impulse excitation.

To start with, we know that we can find, by inverse filtering or other method, a residual signal
that when fed back into the LP filter produces perfect speech.Our goal is therefore to see what we
can learn or incorporate from this residual signal in order to produce the type of source signal we
require. Modelling the noise part of the source is not an issue; we can feed the residual back into
the filter and the output will sound perfect. If we need to lengthen or shorten the signal we can use
the eliminate/duplicate model and the result sounds very good for duration modifications less than
a factor of two. The main challenge lies with voiced speech: while feeding the real residual back
into the filter produces perfect speech, it will only of course produce speech with the original F0
and duration. As we want to produce speech that has the F0 and duration of the specification, we
can’t simply use the residual as is.
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14.3.1 Residual manipulation

Hunt [228] proposed a technique for modifying the original residual so as to produce a synthetic
residual of desired F0 and duration. The key to this technique is to find and isolate each pitch
period in the residual. Once this is done, a special asymmetric window function is applied to each
pitch period which isolates it from the rest of the residual and we can therefore use the elimina-
tion/duplication technique to change the timing. The F0 canbe increased by moving the pitch
periods closer together, and decreased by moving the pitch periods further apart. This rearrange-
ment of the pitch periods is analogous to creating an impulsetrain from scratch; there we created
a high F0 with impulses which were close together and a low F0 with impulses further apart. With
the Hunt technique we are performing a similar operation, but adjusting the spacing of the primary
impulse plus secondary impulses. Once the synthetic residual has been created, it is fed into the
LP filter in exactly the same way as the impulse/noise residual.

The resultant speech is much more natural than speech generated with the impulse/noise
model. If the pitch and duration are not modified at all the speech sounds indistinguishable from
the original; and if slight (less than 25%) pitch and duration modifications are made hardly any
degradation can be heard. The main downside is that the storage requirements are significantly
higher as now the residual waveform for each frame must be stored as well as the coefficients. In
addition, pitch synchronous analysis must be performed which is prone to error if not not done
properly.

14.3.2 Linear Prediction PSOLA

The above technique bears some similarities to the TD-PSOLAtechnique in that it uses a pitch-
synchronous analysis to isolate individual pitch periods,after which modification and resynthesis
is performed. In fact in a technique calledlinear prediction pitch synchronous overlap and
add or LP-PSOLA, we can use the PSOLA more or less directly on the residual rather than the
waveform. As above, epoch detection is used to find the epochs. The residual is then separated into
a number of symmetrical frames centred on the epoch. Pitch modification is performed by moving
the residual frames closer or further away, and duration modification is performed by duplication
or elimination of frames, in just the same way as in TD-PSOLA.The only difference is that these
operations are performed on the residual which is then fed into the LP filter to produce speech.
This technique differs only from the Hunt technique in the shape of the frames. Both techniques
uses window functions with their highest point at the epoch;in Hunt’s technique the windows are
asymmetrical with the idea that they are capturing a single impulse, in LP-PSOLA the windows
are symmetrical. In listening tests, the two techniques produced virtually identical quality speech.

A number of other refinements on residual excited LP have beenproposed. Hirai et al [203]
proposed a technique fairly similar to Hunt’s which performs a particular type of manipulation
on the residual before using it to excite the filter, and a number of studies have attempted to find
an LP analysis technique which gives a parameterised sourcerather than simply a residual [336]
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[337], [135] [476].
There is no convincing evidence that these techniques produce better quality modifications

than TD-PSOLA, but they do have the advantages in that they offer a unifed framework for
pitch/timing modification and compression. A typical system might be able to efficiently encode
the LP paramaters as reflection coefficients or line spectralfrequencies. In classicial linear predic-
tion the main compression gain comes from being able to encode the source signal as a single F0
value which is then used to generate an impulse sequence at synthesis time. In a residual excited
model we cannot use this approach as we have to store the complete residual. It is however known
that the dynamic range of this is less than for real speech, and so this can savings can be made this
way.

In addition to these advantages we also have the possibilityto modify the spectral character-
istics of the units. One use of this would be to ensure that thespectral transitions at diphone joins
are completely smooth. While careful design and extractionof the units from the database should
help ensure smooth joins, they can’t always be guarenteed, and so some spectral manipulation can
be useful.

14.4 SINUSOIDAL MODELS

Recall in our introduction to signal processing, we saw thatwe could use the Fourier series to
generate any periodic signal from a sum of sinusoids (Section 10.1.2).

x(t) =
L

∑
l=1

Alcos(ω0l + φl ) (14.3)

The family of techniques known assinusoidal modelsuse this as their basic building block and
performs speech modification by finding the sinusoidal components for a waveform and perform-
ing modification by altering the parameters of the above equation, namely the amplitudes, phases
and frequencies. It has some advantages over models such as TD-PSOLA in is that it allows
adjustments in the frequency domain. While frequency domain adjustments are possible in the
linear prediction techniques, the sinusoidal techniques facilitate this with far fewer assumptions
about the nature of the signal and in particular don’t assumea source and all-pole filter model.

14.4.1 Pure sinusoidal models

In principle we could perform Fourier analysis to find the model parameters, but for reasons ex-
plained below, it is in fact advantageous to follow a different procedure that is geared towards our
synthesis goals. For purposes of modifying pitch, it is useful to perform the analysis in a pitch
synchronous manner and in fact one of the main advantages of sinusoidal modelling is that the
accuracy of this does not have to be as high as that for PSOLA [420], [293], [520].
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Figure 14.6 Original waveform (solid line) and reconstructed synthetic waveform (dashed line) of
a short section of speech. (From Kain [244].)

For a frame of speech, basic sinusoidal analysis can be foundin a means similar to linear
prediction (Section 12.4), where we use the model to create an artificial signal ˆs(n):

ŝ(n) =
L

∑
l=1

Alcos(ω0l + φl))
2

We then attempt to find the set of values forAl , ω0 andφl

and choose then best artificial signal as the one that has the lowest error between it and the
original s(n). So in the expression

E = ∑
n

w(n)2(s(n)− ŝ(n))2 (14.4)

= ∑
n

w(n)2(s(n)−
L

∑
l=1

Alcos(ω0l + φl))
2 (14.5)

we find the signal ˆs(n) that minimisesE. Unlike the case with LPC, there is no direct solution
to this. Rather, we determine the model parameters by a complex linear regression [421], [364].
The reason why we use Equation 14.5 rather than Fourier analysis is that Equation 14.5 uses a
window function which concentrates the modelling accuracyin the centre of the window. This
has advantageous effects when the synthesis step is performed. Secondly, this analysis can be
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performed on relatively short frames of speech, rather thanthe fixed frame lengths required in
standard Fourier analysis.

Given the parameters of the model, we can reconstruct a time domain waveform for each
frame by use of the synthesis Equation 14.3. Figure 14.6 shows a real and resynthesised frame
of speech. An entire waveform can be resynthesised by overlapping and adding the frames just
as with the PSOLA method (in fact the use of overlap add techniques was first developed for
conjunction with sinusoidal models).

Modification is performed by separating the harmonics from the spectral envelope, but this
is achieved in a way that doesn’t perform explicit source/filter separation as with LP analysis.
The spectral envelope can be found by a number of numerical techniques. For example, Kain
[244] transforms the spectra into a power spectrum and then uses an inverse Fourier transform to
find the time domain autocorrelation function. LP analysis is performed on this to give an all-
pole representation of the spectral envelope. This has a number of advantages over standard LP
analysis in that the power spectrum can be weighted so as to emphasise the perceptually important
parts of the spectrum. Other techniques use peak picking in the spectrum to determine the spectral
envelope. Once the envelope has been found, the harmonics can be moved in the frequency domain
and new amplitudes found from the envelope. From this, the standard synthesis algorithm can be
used to generate waveforms.

14.4.2 Harmonic/Noise Models

The technique just described works very well for perfectly periodic signals, but performance can
degrade because the signal is rarely perfectly periodic. This is particularly true for signals which
have a high sampling rate, where the inherent roll-off characteristics of the voiced source mean that
very little periodic source information is found at high frequencies. To see this, consider Figure
14.7 which shows a magnitude spectrum of a vowel from a signalsampled at 16000Hz. While the
lower frequencies clearly exhibit the “spikes” that we associate with the harmonics of a periodic
signal, at higher frequencies we see that this pattern breaks down, and the signal is significantly
noisier. The non-periodic part of the signal arises from many sources, including breath passing
through the glottis and turbulence in the vocal tract. It should be realised that normal voiced
speech is in fact significantly noisier than we often assume.We can see this by comparing stable
sung notes to speech; in the signing case the noise is often greatly reduced. In fact a well known
exercise in classical singing is to sing a note at full volumein front of a candle flame. The idea is
to sing without causing the candle to flicker, which it will doif there is any breath in the singing.
The fact that this is incredibly hard to do demonstrates thatthere is nearly always a small but
significant amount of breath in normal speech (and in rock singing, which is one reason why this
sounds different to classical singing).

This observation has lead to a number of models which includea stochastic component in
addition to the harmonic one, giving:
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Figure 14.7 Log magnitude DFT at 16000Hz sample rate. We can see that the lower part of the
spectrum is more regular and clearly exhibits the spikes spaced at even intervals that we expect from
periodic sounds. At higher frequencies the spectrum is considerably less regular as the roll-off from
the voice source takes effect and other sound sources such asbreath appear.

ŝ(t) = ŝ(t)p + ŝ(t)r (14.6)

=
L

∑
l=1

Al cos(ω0l + φl )+s(t)r (14.7)

where the noise components(t)r is assumed to be Gaussian noise. A number of techniques based
on this principle have been proposed, include themulti-band excitation (MBE) model [185],
[281] and a parallel hybrid approach [2]. The same idea has been applied to LP residuals in an
attempt to separate the periodic and noise components of thesource [485], [118], [461].

We will now explore theHarmonic/Noise model (HNM) of Stylianou [421] in detail, as
this model was developed specifically for TTS. As the name suggests the model is composed
of a harmonic component (as above) and a noise component. This noise component is more
sophisticated that some models in that it explicitly modelsthe fact that noise in real speech can
have very specific temporal patterns. In stops for example, the noise component is rapidly evolving
over time, such that a model which enforces uniformity across the frame will lack important detail.
The noise part is therefor given by

sr(t) = e(t)[h(t,τ)⊗b(t)] (14.8)



440 Chapter 14. Synthesis by Concatenation and Signal Processing Modification

whereb(t) is white Gaussian noise,h(t,τ) is a spectral filter applied to the noise, ande(t) is a
function applied to give the filtered noise the correct temporal pattern.

The first analysis stages in HNM concern classifying the frames into voiced and unvoiced
portions, which then dictate the parameters of the harmonicand noise component and the relative
strengths of the contribution of each component to the frame. First we estimate pitch and with this
perform a basic pitch synchronous analysis. This does not have to be performed with the aim of
finding the instant of glottal closure, rather a simple location of pitch periods is sufficient. Next
a harmonic model, using a fundamental frequencyω0 estimated from the pitch tracking, is fitted
to each frame, and from this the error between the speech generated with the model and the real
waveform is found. Highly harmonic frames will have a low error, noisy frames will have a high
error. For frames which we believe are voiced, we then determine the highest harmonic frequency,
that is, the boundary between the low frequency harmonic part and the higher frequency noisy
part. We carry this out by moving through the frequency rangeand continually testing how well a
synthetic waveform generated from the best matching model parameters fits the real waveform.

Once this cutoff has been found, we proceed to find a more accurate estimation of the pitch
using only the lower part of the signal. This is now possible as we are not attempting to pitch track
noise. The amplitudes and phases are now found from Equation14.5 as before, by minimising
the error between the real and synthetic waveforms. This search can be performed in a number
of ways; Stylianou presents a fast technique for minimisingEquation 14.5 directly [420]. The
noise component essentially has two parts;h(t) which describes the impulse response of the noise
(which describes the spectrum of the noise envelope when transformed to the Frequency domain),
ande(t) which describes the sub-frame time evolution of the noise. For each frame,h(t) is found in
a manner similar to linear prediction ande(t) is estimated indirectly by calculating several values
of h(t) at shifted positions within the frame.

A final step is required to ensure that phase mismatches don’toccur between frames. As the
pitch synchronous analysis was performed without reference to the instant of glottal closure they
do not necessarily align. A time domain technique is now usedto adjust the relative positions of
the waveforms within the frames to ensure that they all align.

At synthesis time, a set of synthesis epochs is generated anda mapping function from the
analysis epochs is calculated in exactly the same was as for PSOLA. Timing modification is per-
formed by this mapping function in the same was as for PSOLA. For pitch modification, we have
to adjust the harmonics of the frames, this is done by resampling the spectrum of the frame and
applying these values to each sinusoidal component. The noise component is created by passing
the Gaussian noiseb(t) through the filterh(t). This is performed several times per frame to ensure
that the temporal characteristics are successfully generated. For voiced frames, the noise is high
pass filter at the cut-off point of the harmonic component; inthis way, no low frequency noise
is generated. The noise is then modulated in the time domain to ensure it is synchronised with
the harmonic component. This stage is essential to ensure that the perception is of a single sound
rather that two separate unrelated sounds. Finally, synthesis is performed by overlap and add, as
with PSOLA.
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14.5 MBROLA

The only real drawback of TD-PSOLA in terms of quality is thatit is very sensitive to errors in
epoch placements. In fact, it is safe to say that if the epochsare not marked with extremely high
accuracy, then the speech quality from TD-PSOLA systems cansound very poor. The effect of
inaccurate epochs is to make the synthetic speech soundhoarseas if the speaker is straining their
voice, or has an infection or some other ailment. This is not surprising as it is known that the effect
hoarseness in natural speech arises because of irregular periodicity in the source.

Dutoit [148] investigates the issue of epoch accuracy and concludes that the problem is
complicated, partly due to a lack of formal definition as to where exactly the epoch should lie
(the instant of glottal closure is only one possibility). Since then, more accurate epoch detection
algorithms have been developed (see Section 12.7.2) but there are cases (for example with poorer
quality recordings) where perfect automatic epoch detection may not be possible.

The MBROLA technique was developed partly as a solution to this problem. It uses a syn-
thesis technique similar to the Harmonic/Noise model, but uses an additional step to help deal
with the problems associated with epochs. The MBROLA methodoperates pitch-synchronously
as before, but unlike TD-PSOLA the exact position of the epoch in the frame need not be consis-
tent from frame to frame. Hence a more course-grained epoch detection suffices. During analysis,
the frames are found as before, but during resynthesis, the phases are adjusted so that every frame
in the database has matching phase. This step, which is easy to perform with a sinusoidal model,
effectively adjusts all the epochs so as to lie in the same relative positions within the frames. Minor
epoch errors are hence eliminated. Another way of looking atthis is view the analysis algorithm as
analysing the speech and resynthesising it at a constant pitch for the whole database. TD-PSOLA
can then be performed with complete accuracy.

14.6 SYNTHESIS FROMCEPSTRALCOEFFICIENTS

We now turn to techniques used to synthesize speech from cepstral representations and in particu-
lar the mel-frequency cepstral coefficients (MFCCs) commonly used in ASR systems. Synthesis
from these is not actually a common second generation technique, but it is timely to introduce this
technique here as it is effectively performing the same job as pure second generation techniques.
In Chapter 15 we will give a full justification for wanting to synthesise from MFCCs, but the main
reason is that they are a representation that is highly amenable to robust statistical analysis because
the coefficients are statistically independent of one another.

Figure 14.8a shows the operations involved in creating the normal, complex cepstrum. Most
of these operations are invertible, though the fact that we use the magnitude spectrum only and
discard the phase means that information has been lost at this stage. Figure 14.8b shows the steps
involved in MFCC analysis and we see that the situation is somewhat more complicated. First,
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Figure 14.8 Steps in cepstral analysis

it is common to perform pre-emphasis so as to remove the inherent tilt in the spectrum. Next
we perform the filter bank operation that smoothes the spectrum and performs the mel-scaling.
Finally after the cepstrum has been created, we perform a “liftering” operation where we discard
the higher cepstral coefficients, to leave typically only 12. The liftering operation and the filter
bank operation are not invertible because information is lost at these points.

A number of techniques have been developed which attempt to reverse these operations and
generate speech [229], [261], [419], [85]. Here we follow one such technique described by Milner
and Shao [313]; described in the following steps:

1. Remove the pre-emphasis and the influence that the mel-scaling operation has on spectral
tilt. This can be performed by creating cepstral vectors foreach process, and then simply
subtracting these from the MFCC vector.

2. Perform an inverse liftering operation by padding the mel-scale cepstrum with zeros. This
then gives us a vector of the correct size.

3. Perform an inverse cosine transform, which gives us a mel-scaled spectrum. This differs
from the analysis mel-scale cepstrum because of the liftering, but in fact the differences
in the envelopes of the original and reconstructed spectra have been shown to be minor,
particularly with respect to the important formant locations.

4. Partially reverse the filter bank operation. This is not trivial and it is impossible to recover
even an approximation of the original spectrum as we threw away all the information about
the harmonics in the original filter bank operation. Instead, we attempt to find the spectral
envelope, and do this by a process of “up-sampling” the filterbank to a very detailed spec-
trum, and then sampling this at the required intervals, so asto give a spectrum with 128
points.

5. From the magnitude spectrum, we calculate the power spectrum, and from this calculate a
set of autocorrelation coefficients by performing an inverse DFT.

6. Calculate the LP coefficients from the autocorrelation coefficients by solving Equation 12.27.
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Figure 14.9 Phase problems can be caused by inconsistencies in epoch locations across join bound-
aries.

7. Choose a value for F0, use this to generate an impulse trainwhich then excites the LP
coefficients. Use a noise source for unvoiced components.

This technique successfully reverses the MFCC coding operation. The main weakness is
that because we threw away the harmonic information in the filter bank step, we have to resort to a
classical LP style technique of using an impulse to drive theLP filter. A number of improvements
have been made to this, with the motivation of generating a more natural source, while still keeping
a model systems where the parameters are largely statistically independent. For example in the
technique of Yoshimura et al [510] a number of excitation parameters are used that allow mixing
of noise and impulse, and allow a degree of aperiodicity in the positions of the impulses.

14.7 CONCATENATION ISSUES

Having described a number of techniques for prosodic modifcation, we turn to the final issue
in second generation synthesis, that of how to successfullyjoin sections of waveform, such that
the joins can not be heard so that the final speech sounds smooth continuous and not obviously
concatenated.

When discussing concatenation, it is useful to make a distinction betweenmicro-concatenation
andmacro-concatenation. Micro-concatenation concerns the low level issues of joining signals.
For example, if we join two voiced waveforms such that there is a large jump between samples
at the boundary, this may result in a “click” being heard. This is because the effect of the jump
is the same as a high frequency impulse, and even though such an effect may only last for one
or two samples, it is easily noticed by the lister. Macro-concatenation is concerned with higher
level, longer range effects, such as ensuring that the general pattern of spectral evolution across a
join is natural. In this section we concentrate on the issuesof micro-concatenation, as the issue of
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macro-concatenation is discussed extensively in Section 16.5.1.
In general, the goal in concatenating speech is to do so such that the listener can not hear

the join at all. The problem of clicks, caused by discontinuities in waveforms, can nearly always
be solved by tapering the frames to be overlapped at their edges so that the samples near the end
of the frame (and hence the join) are zero or close to zero. We can see that this works from
PSOLA, where we sucessfully “join” frames of speech all the time in the overlaop add operation.
Furthermore, the timing modification part of PSOLA, which eliminates or duplicates frames is
proof that frames not originally contiguous can be successfully joined. This principle can be
extended to cases where the frames to be joined are from different diphones; by simply overlapping
and adding at diphone edges, successful micro-concatenation can be achieved.

One significant problem in many types of synthesis is that there may bephase mismatches
between units. An example of this is shown in Figure 14.9 where we have a situation where both
units have accurate epochs, resulting in “correct” pitch synchronous analysis, but where the point
of reference for the epochs is different for each unit. When concatenated, this will result in a
single irregular period at the join, which is usually detectable. Many proposals have been made as
to how to fix this problem [149]. Obviously, we can try and ensure consistent epoch detection in
the first place. While good epoch detectors are now more common, this was not always possible
in the past. Other solutions include a cross-correlation technique where the frames at the joins are
shifted over one another until their cross-correlation is at a minimum [420]. Techniques such as
MBROLA were in fact developed to handle such problems; recall that the solution there was to
effectively resynthesis the whole database at a fixed pitch to ensure phase consistency. Bellegarda
has proposed a technique similar to latent semantic analysis, where the DFT decomposition of the
signal is avoided altogether, and joins are judged according to a measure of their distance in a
transformed space [39].

A further issue in micro-concatenation concernswherein the unit we should make the join.
So far, in describing our example of diphone synthesis, we have talked about placing the diphone
boundary in the “middle” of the phone, without defining exactly what we mean by this. Options
include taking the temporal middle (i.e. the half way point through the phone), but we can also
opt for a strategy that selects the acoustically most stableregion, as this is after all our motivation
for using diphones in the first place. The best place to join units may of course depend on the
particular units themselves and the technique ofoptimal coupling was developed to find a unique
boundary location for every pair of diphones to be joined [445], [105]. In this, the diphones are
stored as complete phone pairs, extending from the start of the first phone to the end of the second.
When two phones are to be joined, the two halves of each diphone are “slid over” each other
frame by frame, and the distance between an acoustic representation (e.g. cepstra) of the phones
is measured for that alignment. The idea is to match the general trajectories of the phones and not
just the values at the concatenation point. The alignment with the lowest distance is chosen and
the diphones are cut and then joined at these points.

While in second generation synthesis signal processing in mainly used to modify pitch and
timing, it can also be used in concatenation. If we are using atechnique which gives us some
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sort of spectral representation, such as residual excited LP or sinusoidal modelling, then we can
smooth or interpolate the spectral parameters at the join. This is only possible in models with a
spectral representation, and is one of the reasons why residual excited LP and sinusoidal models
are chosen over PSOLA.

14.8 DISCUSSION

Second generation techniques are characterised by a hybridapproach of using data to determine
the behaviour of the verbal or phonetic part of synthesis, and an explicit model plus signal pro-
cessing to generate the correct prosody.

It should be clear that apart from the cepstral technique, there is a considerable degree of
similarity between the main signal processing techniques described here. All operate pitch syn-
chronously and all avoid an explicit model of the source. It is in their detail that where we can see
differences. For example, the PSOLA technique clearly avoids a modelling approach altogether,
and only assumes that the signal is composed of pitch periods. The sinusoidal models also make
assumptions, but they are little more than general ones which are true of all periodic or quasi-
periodic signals. While the linear prediction techniques make the strongest assumptions, many
of the negative consequences of these are lessened by the useof whole natural residuals. While
all the techniques are pitch-synchronous, again we see subtle differences where the PSOLA tech-
niques in particular are very sensitive to epoch location errors, while the sinusoidal and MBROLA
techniques are more robust to these because they can controlthe phase details during synthesis.
In general, the synthesis quality of all these techniques isvery similar, such that the choice of one
technique over another is usually governed by other factors, such as speed vs size tradeoffs and
other practical factors.

14.8.1 Further Reading

A number of books cover the area of speech modification quite thoroughly. Kleijn and Paliwal
[256] gives a good introduction to many aspects of speech analysis, coding, modification and syn-
thesis. Dutoit [148] stands out as being one of the few books to tackle the signal processing issue
from a TTS only perspective, describing all the algorithms mentioned here in considerable detail.
Many more general purpose books exist which cover a number oftopics in analysis, synthesis,
coding and modifcation including Quatieri [364], Rabiner and Schaffer [367] and Huang et al
[224].

14.8.2 Summary

• Second generation synthesis systems are characterised by using a data driven approach to
generating the verbal content of the signal.
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• This takes the form of a set of units where we have one unit for each unique type. Diphones
are the most popular type of unit.

• The synthesis specification, generated by the TTP system is in the form of a list of items,
each with a verbal specification, one or more pitch values anda duration.

• The prosodic content is generated by explicit algorithms, and signal processing techniques
are used to modify the pitch and timing of the diphones to match that of the specification.

• A number of techniques have been developed to modify the pitch and timing. These include:

– PSOLA which operates in the time domain. It separates the originalspeech into frames
pitch-synchronously and performs modification by overlapping and adding these frames
onto a new set of epochs, created to match the synthesis specification.

– Residual excited linear predictionperforms LP analysis, but uses the whole residual
in resynthesis rather than an impulse. The residual is modified in a manner very similar
to that of PSOLA.

– Sinusoidal modelsuse a harmonic model and decompose each frame into a set of
harmonics of an estimated fundamental frequency. The modelparameters are the am-
plitudes and phases of the harmonics. With these, the value of the fundamental can be
changed while keeping the same basic spectral envelope.

– Harmonic Noise modelsare similar to sinusoidal models, except that they have an
additional noise component which allows accurate modelling of noisy high frequency
portions of voiced speech and all parts of unvoiced speech.

– MBROLA is a PSOLA like technique which uses sinusoidal modelling todecompose
each frame and from this resynthesise the database at a constant pitch and phase, thus
alleviating many problems in inaccurate epoch detection.

– MFCC synthesisis a technique which attempts to synthesise from a representation that
we use because of its statistical modelling properties. A completely accurate synthesis
from this is not possible, but it is possible to perform fairly accurate vocal tract filter
reconstruction. Basic techniques use an impulse/noise excitation method, while more
advanced techniques attempt a complex parameterisation ofthe source.

• The quality of these techniques is considerably higher thanclassical, impulse excited linear
prediction

• All these have roughly similar quality, meaning that the choice of which technique to use is
mostly made on other criteria, such as speed and storage.
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HIDDEN MARKOV
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We saw in Chapter 13 that despite the approximations in all the vocal tract models concerned, the
limiting factor in generating high quality speech is not so much in converting the parameters into
speech, but in knowing which parameters to use for a given synthesis specification. Determining
these by hand written rules can produce fairly intelligiblespeech, but the inherent complexities
of speech seem to place an upper limit on the quality that can be achieved in this way. The
various second generation synthesis techniques explainedin Chapter 14 solve the problem by
simply measuring the values from real speech waveforms. While this is successful to a certain
extent, it is not a perfect solution. As we will see in Chapter16, we can never collect enough
data to cover all the effects we wish to synthesize, and oftenthe coverage we have in the database
is very uneven. Furthermore, the concatenative approach always limits us to recreating what we
have recorded; in a sense all we are doing is reordering the original data.

An alternative is to use statistical, machine learning techniques to infer the specification-to-
parameter mapping from data. While this and the concatenative approach can both be described as
data-driven, in the concatenative approach we are effectivelymemorisingthe data, whereas in the
statistical approach we are attempting tolearn the general properties of the data. Two advantages
that arise from statistical models are that firstly we require orders of magnitude less memory to
store the parameters of the model than memorise the data, andsecondly that we can modify the
model in various ways, for example to convert the original voice into a different voice.

While many possible approaches to statistical synthesis are possible, most work has focused
on usinghidden Markov models (HMMs). This along with the unit selection techniques of the
next chapter are termedthird generation techniques. This chapter gives a full introduction to
these and explains how they can be used in synthesis. In addition we also show how these can
be used to automatically label speech databases, which findsuse in many areas of speech tech-
nology, including unit selection synthesis. Finally, we introduce some other statistical synthesis
techniques.

447
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Figure 15.1 The Gaussian function.

15.1 THE HMM FORMALISM

HMMs themselves are quite general models and although originally developed for speech recog-
nition [36] have been used for many tasks in speech and language technology, and are now in fact
one of the fundamental techniques in biology (to such an extent that their use there now completely
dwarfs speech technology applications). General introductions to HMMs can be found in [243],
[224]; but here we focus only on the type of HMMs most relevantto modern speech recognition
and synthesis. In doing so, we closely follow the HTK speech recognition toolkit of Young et al
[511]. This is the most widely used HMM system in research labs today, and also forms the basis
of one of the most successful ASR engines of the past few years[192], [171], [170], [407]. An
introduction/refresher course in probability can be foundin Appendix A.

15.1.1 Observation probabilities

The input to an ASR system is a sequence of frames of speech, known asobservationsand denoted
as

O =< o1,o2, ...oT >

The frames are processed so as to removed phase and source information. The most com-
mon representation is based on mel-scale cepstral coefficients (MFCCs), introduced in Section
12.5.7. Hence each observationo j is a vector of continuous values. For each phone we build a
probabilistic model which tells us the probability of observing a particular acoustic input.

So far in the book, all the probabilities we have considered have been ofdiscreteevents, for
example, the probability that we will observe a wordwi in a particular context. In all the cases
we have so far considered, this effectively means keeping a unique record of each event (e.g. the
probability of observing wordwi in the context of wordw j ); no “general” properties of the process
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/u/ /e/ /i/
Figure 15.2 Schematic of how we can build a Gaussian model for a phone. Thefigure shows three
phones and a Gaussian showing the probability distributionfor the second formant. We can use this
probability distribution to tell us which phone was most likely to have generated the data.

have been modelled. We often find however, that the probabilities with which events occur are not
arbitrary; rather, we find that the probabilities with whichevents occur can be described by a
parameterised function. The advantage of this is that with asmall number of parameters, we
can effectively summarise the probabilistic behaviour of an event. For continuous variables, such
functions are calledprobability density functions (pdfs). The integral, or total area under the
curve, always sums to exactly 1, in just the same way that the probabilities for all possible events
in a discrete system sum to 1.

One important function is theGaussian distribution, often called thenormal distribution
or bell curve which is defined by two parameters. Themean, µ, describes its “average” value.
The variance denotedσ2 describes whether the distribution is narrow or dispersed.The square
root of the variance is called thestandard deviation and is denotedσ. The Gaussian distribution
is shown in Figure 15.1 and defined by the equation

N (o;µ,σ) =
1

σ
√

2π
e
−(o−µ)2

2σ2 (15.1)
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Figure 15.3 Mixtures of Gaussians. This shows how three weighted Gaussians, each with its own
mean and variance, can be “mixed” (added) to form a non-Gaussian distribution. Note that the total
probability, given by the area under the curve must equal 1 and so the mixture weights are set to ensure
this.

The Gaussian has many interesting mathematical propertiesand because of these and the
fact that a large range of natural phenomena seem to belong tothis distribution (e.g. the range of
peoples’ heights in a population), it is often seen as the most “natural” or elementary probability
distribution.

When dealing with vector data, as in our case where the observations are acoustic frames,
we need to use amultivariate Gaussian. This is the natural extension of the univariate one,
but it is important to note that while we have one mean value for each component in the vector,
we have acovariance matrix, Σ, not a variance vector. This is because we wish to model not
only the variance of each component, but thecovariance between each component. The pdf of an
N-dimensional Gaussian is given by:

N (o;µ,Σ) =
1

√

(2π)N|Σ|
e−

1
2(o−µ)′Σ−1(o−µ) (15.2)

whereN is the dimensionality,µ is the vector of means andΣ is the covariance matrix.
With this, we can therefore build a system in which we have a model for every phone,

each described by its own multivariate Gaussian. For an unknown utterance, if we know the phone
boundaries, we can therefore test each phone model in turn and find which model gives the highest
probability to the observed frames of speech, and from this find the sequence of phones that are
most likely to have given rise to the observations in the utterance in question. A diagram of this is
shown in Figure 15.2.

We can improve on the accuracy of these models in a number of ways. First, we note that the
true density of a phone model is in fact rarely Gaussian. Rather than use other types of distribution,
we adopt a general solution whereby we use amixture of Gaussians, shown in Figure 15.3 and
given by

b(ot) =
M

∑
m=1

cmN (ot ;µm,Σm) (15.3)

In this, we haveM Gaussians, each with a mean vectorµm and covariance matrixΣm. The pa-
rameterscm are known as themixture weights and are used to determine the relative importance
of each Gaussian. As with any pdf, the area under the curve should sum to 1. We can draw a
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comparison between mixtures of Gaussians here and the Fourier series of Section 10.1.2. Here we
can model a pdf of arbitrary complexity by summing weighted Gaussians, there we could build a
periodic signal of arbitrary complexity by summing weighted sinusoids.

15.1.2 Delta coefficients

A second common addition to the observation function arisesfrom our knowledge that the frames
within a phone are not static, rather they evolve as a function of time. For this reason it is standard
to include extra coefficients in the observations that not only describe the data itself, but also
the rate of change of the coefficients, and the rate of change of the rate of change. These extra
coefficients are termed thevelocity or delta coefficients, and theacceleration or delta delta
coefficients respectively. As we shall see in Section 15.2, not only do these encode this rate of
change information, but they also in quite powerful way makeup for some of the weakness in the
modelling power of the HMMs.

A simple rate of change calculation is given by

dt =
ct+1−ct−1

2

wheredt is the delta coefficient andct is the original cepstral coefficient. Such calculations can
however be quite unstable as a little noise in either of the coefficients can give rise to a large
variation indt . A more robust solution then is to calculate the rate of change over several frames.
One way of doing this is with:

dt =

L
∑

l=1
l(ct+ l −ct−l)

2
L
∑

l=1
l2

(15.4)

WhereL can be thought of as the length of window over which the rate ofchange calculation is
performed. This can also be written as

dt =
L

∑
l=−L

wl (ct+l ) (15.5)

where the weightsw can be calculated from Equation 15.4.

15.1.3 Acoustic representations and covariance

A final point regarding the probabilistic modelling of observations concerns issues with the co-
variance matrix. If we use say 13 acoustic coefficients (often a standard number made from 12
cepstral coefficients and one energy coefficient), and then use delta and acceleration coefficients,
we have a total of 39 coefficients in each observation frame and so the mean vector has 39 values.
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Figure 15.4 Schematic of HMM with three states. Each with a separate Gaussian, denotedb1, b2

andb3. The transition probabilities are given byai j wherei is the start state andj is the destination
state. Ifi = j then this is the self-transition probability, that is, the probability that we will stay in the
same state. The transition probabilities exiting a state always sums to 1.

The covariance matrix however has 392 = 1521 values. It is often difficult to find enough data to
accurately determine each of these values, and so a common solution is to ignore the covariance
between coefficients, and simply model the variance of each coefficient alone. This is termed us-
ing adiagonal covariance, as only the diagonal values in the covariance matrix are calculated; the
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other values are set to zero. In general, using such a covariance matrix is not advised as the cor-
relations (covariances) between coefficients often contain useful information. However, if we can
show that the coefficients in the data vary more or less independently of one another, no modelling
power is lost in this assumption.

It is partly for this reason that we find mel-frequency cepstral coefficients (MFCCs) are
used as the representation of choice in many ASR systems (in addition, they are deemed to have
good discrimination properties and are somewhat insensitive to differences between speakers).
It is important to note however HMMs themselves are neutral to the type of observation used,
and in principle we could use any of the signal processing derived representations of Chapter 12.
Another way of producing data with independent coefficientsis to perform a projection of the
original data into a new space. Principle component analysis (PCA) does this, as do a number of
more sophisticated techniques. These not only ensure that the coefficients in the new space are
independent, they can also be used to reduced the dimensionality of the data being modelled.

15.1.4 States and transitions

As we noted above, the pattern of frames within a phone is not static. In addition to modelling
the rate of change, it is also normal to split each phone modelinto a number ofstates, each of
which represents a different part of the phone. In principleany number of states is allowable, but
it is quite common to use three, which can informally be thought of as modelling the beginning,
middle and end of each phone. We usetransition probabilities which give us the probability of
moving from one state to the next (this “moving” process is most easily visualised if we think of
the models as the generators of the acoustic data). In general, we can move from any state to any
other state, and so for a model withP states, the transition probabilities can be stored in aP×P
matrix. This matrix stores a set of set of discrete probabilities ai j which give the probability of
moving from statei to statej.

One common HMM topology is to use three states, each its own observation probability.
Each state has is linked to the next state and back to itself again. This last transition is known
as theself transition probability and is basically the probability that we will generate the next
observation from the state we are already in. A phone’s statetransition probabilities govern the
durational characteristics of the phone; if the self transition probabilities are high, it is more likely
that more observations will be generated by that phone whichmeans the overall phone length will
be longer. Such a model is shown in Figure 15.4

15.1.5 Recognising with HMMs

Each HMM state has a probability density function and so for any single observationot we can
find the state whose pdf gives the highest probability for this. Note that because of the way
HMM recognisers are configured, we don’t in fact have an explicit function that gives us the most
probable model given the data. Rather, we have a set of modelseach of which has a pdf. Hence
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Figure 15.5 Schematic of how we can build a Gaussian model for a phone. Thefigure shows three
phones and a Gaussian showing the probability distributionfor the second formant. We can use this
probability distribution to tell us which phone was most likely to have generated the data.

the way recognition works is that we assume that one of the models generatedthe data that we
are observing1, and that the recognition job is to find which model. It does this by calculating
the probability that each model generated the observation,and picks the one with the highest
probability as being correct. This is why HMMs are calledgenerative models.

If we only had one observation, it would be easy to find the state which gives the highest
probability. Instead of course we have a sequence of observations, which we assume has been
generated by moving through a sequence of states. In principle any oneof the possible state
sequences could have generated these observations; its just that some are more likely than others.
Because of this, we can not deterministically find the state sequence from the observations, and
this is why we say these arehiddenMarkov models.

For a state sequenceQ, we can find the total probability that this sequence generated the
observations by calculating the probabilities of the observations and transitions of that sequence,

1 Of course it didn’t really, the speaker generated the data, but the idea is that if we pretend that a speaker has an HMM
generator inside his/her head and it is this process we are trying to model.
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so for a sequence that moves through states 1, 2 and 3, for example we would have:

P(O,Q|M) = a12b1(o1)a23b2(o2)a34b3(o3)

In general then, for a sequence of statesQ =< q1,q2, ..,qt >, the probability for that sequence is
given by

P(O,Q|M) = aq(0)q(1)

T

∏
t=1

bq(t)(ot)aq(t)q(t+1) (15.6)

whereq(0) is a special entry state andq(T +1) is a special exit state.
By definition, all probabilities are< 1 and so it should be clear that the final calculated values

in Equation 15.6 may be very small, even for the single highest probability case. Because of this,
it is common to uselog probabilities, in which case Equation 15.6 becomes:

log(P(O,Q|M)) = aq(0)q(1) +
T

∑
t=1

bq(t)(ot)+aq(t)q(t+1) (15.7)

To uses these equations for recognition, we need to connect state sequences with what we
wish to eventually find, that is, word sequences. We do this byusing the lexicon, so that if the
word HELLO has a lexicon pronunciation /h eh l ou/, then a model for the whole word is created
by simply concatenating the individual HMMs for the phones /h/ /eh/ /l/ and /ou/. As the phone
model is made of states, a sequence of concatenated phone models simply generates a new word
model with more states: there is no qualitative difference between the two. We can then also join
words by concatenation; the result of this is a sentence model, which again is simply made from a
sequence of states. Hence the Markov properties of the states and the language model (explained
below) provide a nice way of moving from states to sentences.
Given the input observation sequenceO=< o1,o2, ...oT > and a word sequenceW =< w1,w2, ...WN >,
we can use Equation 15.7 to find the probability that this wordsequence generated those obser-
vations. The goal of the recogniser is to examine all possible word sequences and find the oneŴ
which has the highest probability according to our model:

Ŵ = argmax
w

{

P(W|O)

}

HMMs are generators, configured so that we have a model for each linguistic unit which generates
sequences of frames. Hence the HMM for a single wordwi, which has been concatenated from
single phone models, is of the form

P(O|wi)

So the HMM itself gives us the probability of observing a sequence of frames given the word, and
not the probability we require which is that of observing theword given the frames. We convert
one to the other using Bayes rule (SectionA.2.8) so that:
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P(wi|O) =
P(wi)P(O|wi)

P(O)

and if we consider this for the entire sentence, we have

P(W|O) =
P(W)P(O|W)

P(O)
(15.8)

P(W) is called theprior and represents the probability that this particular sequence of words
occurs independently of the data (after all, some words are simply more common than others).
P(O|W) is called thelikelihood and is the probability given by our HMMs.P(O) is theevidence
and is the probability that this sequence of frames will be observed independent of everything else.
As this is fixed for each utterance we are recognising, it is common to ignore this term.

Our recognition algorithm then becomes

Ŵ = argmax
w

{

P(W)P(O|W)

}

15.1.6 Language models

In Equation 15.8 the termP(W), gives us the prior probability that the sequence of wordsW =<
w1,w2, ...,wN > will occur. Unlike the case of acoustic observations, we know of no natural
distribution that models this. Partly this is due to the factthat the number of possible sentences (ie
unique combinations of words) is extremely large. We therefore model sentence probabilities by
a counting technique as follows.

The probability of a sentenceW =< w1,w2,w3, ...wM > is given by

P(W) = P(w1,w2,w3, ...wM)

The chain rule in probability (Section A.2.10) can be used tobreak this into a number of terms:

P(w1,w2,w3, ...wM) = P(w1)P(w2|w1)P(w3|w1,w2)...P(wM |w1, ...,wM−1) (15.9)

=
M

∏
i=1

P(wi|w1, ...,wi−1) (15.10)

The estimation of this becomes tractable if we shorten the number of words such that we approxi-
mate the termP(wi|w1, ...,wi−1) as

P̂(wi|w1, ...,wi−1)≈ P(wi|wi−n+1, ...,wi−1) (15.11)
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Figure 15.6 The Viterbi search shown as a trellis. The states are arranged vertically as nodes,
which are duplicated once for each time slot. The connections between the nodes indicate transitions.

that is, we estimate the probability of seeing wordwi on a fixed windowhistory of theN previous
words. This is known as anN-gram language model. It basic probabilities are estimated from
counting occurrences of the sequences in a corpus.

Many sequences are not observed, and in such cases we do not assume that these could
neveroccur, but rather assume that they are missing from the training data because of sparse data
problems. To counter this, a number ofsmoothingandback-off techniques are employed, which
ensure that some extra probability is given to rare and unseen sequences. It is worth noting that
these techniques provide the answer to Chomsky’s false assertion that because most sentences will
never have been observed by a person, this implies that humanlanguage cannot have a statistical
basis [89]. In his argument (often called “poverty of the stimulus” rather than data sparsity), all
unseen events would have a zero probability, meaning that a listener would be baffled on hearing
a new sentence. No serious probabilistic model would adopt such a notion, and the ability to infer
the probabilities of unseen events from the patterns of seenevents is the basis of much of the entire
field of probabilistic modelling.

15.1.7 The Viterbi algorithm

The key to recognition is to find the single path with the highest probability. To be sure of finding
the single best (i.e. highest probability) path, we have to check every sequence of states. The
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number of possible sequences is very large indeed, in fact far too large to every calculate no matter
how much computer power we have available. Instead we make use of the principle of dynamic
programming and use theViterbi algorithm which allows us to find the best path in linear time
[477].

The search can be visualised as anN by T size trellis , whereN is the number of states
andT is the number of observations. The trellis is composed ofT time slots, shown arranged
horizontally in Figure 15.5. In each time slot, we have a set of N nodes, one for each state, and
between a time slott and the nextt +1 set of transitions exist. For simplicity we will assumed that
the trellis is fully connected, that is all nodes in time slott are connected to all nodes in time slot
t +1. The search is performed by “moving” through the trellis, calculating probabilities as we go.

Consider the probabilities associated with a single nodeuk at time slott +1, and the nodes in
the previous time slott, shown in Figure 15.7. For a given nodeui at time slott, the log probability
of movingfrom ui to uk is simply:

log probability= aik +bi(ot) (15.12)

that is, the log observation probability of the nodeui generating observationot plus the log transi-
tion probability between the two nodesui anduk. If we accumulate these probabilities as we move
further forward in the lattice, thetotal probability is given by

total log probabilityt+1 = aik +bi(ot)+ total probabilityt (15.13)

For a given nodeuk in time slott + 1, we can find the total probability for all the nodes in
the preceding time slot. Given those probabilities, we can find the single highest and remember
the node in time slott which gave us this probability. This is the crucial step, because it turns out
that for our nodeuk, the identity of the nodeux̂ in the preceding time slot with the highesttotal
probability is all we need to keep track off. This is because if we subsequently find out that our
nodeuk is in fact in the highest probability sequence, then is is guaranteed thatux̂ in the preceding
time slot will also be in the highest probability sequence.

The complete search is performed as follows. Starting at time slot 1, we initialise a set ofδ
functions for every node to be 0.

δi(1) = 0 i ≤ j ≤ N (15.14)

We then move to time slot 2 and iterate through each node in turn. For one of these nodes,uk, we
iterate through all the nodes in time slot 1, and for each nodecalculate the total probability using
Equation 15.13. We then find the node in time slot 1 which givesthe highest total probability, and
record its identity inuk. We also store the total probability associated with that node:

δk(2) = max
i

δi(1)+ai j +bi(o1) (15.15)
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Figure 15.7 Calculation of probabilities for movement between time slot t and time slott + 1.
The transition probabilitiesa12 etc connect the nodes and show the probability of moving fromone
node to another. The observation probabilitiesb1 etc give the probability of that state generating the
observation.

This is repeated this for all nodes in time slot 2. So now everynode in time slot 2 has two search
values associated with it: the identity of the node in the previous time slot which has the highest
total probability, and the valueδkt of this total probability. We then move forward through the
trellis and repeat the calculation:

δk(t +1) = max
i

δi(t)+ai j +bi(ot) (15.16)

The search terminates at the final time slotT. Once we reach there, we find the node in the final
time slot with the highest total probabilityδT . This node, ˆxT is in the optimal (highest probability)
path. Once this node has been identified, we look at the node inprevious time slotT−1 which x̂T

has recorded as giving the highest probability path. We shall call this node ˆxT−1. We then move
to time slotT−1, focus on the single node ˆxT−1 and find the node in the previous time slotT−2
which x̂T−1 has recorded. We repeat this procedure of moving backwardsthrough the trellis
until we have reached the initial time slot. The pathX̂ we have just traced is the optimal, highest
probability path. This is shown in Figure 15.8.

The key ideas to the Viterbi algorithm are:

1. For a single nodeuk at any time slot, we only need to record the best path leading to this
node. If it turns out that this particular nodeuk is in fact on the global best path, then the
node in the preceding time slot that it has recorded is also onthe best path.
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Figure 15.8 Back-trace. Once we have calculated all the probabilities,we find the node in the last
time slot with the highest total probability, shown as the thick circle. From this, we find the node in
the previous time slot that was recorded as having the highest probability leading to the current slot
(shown by the thick line). We then move to that slot and repeatthe procedure.

2. We must reach the end of the time slots before finding the best path. At any given time slot
t when moving forward through the trellis, it is possible to find the nodeuxt with the highest
total probability to this point. By back-trace we can then find the best path nodes in all the
preceding time slots. But no matter how high the probabilityassociated withuxt, there is no
guarantee that this will end up on the best path when we do the full back-trace from time slot
T. Imagine for instance that there are simply no nodes in time slot t + 1 which have high
transition probabilities to nodeuXt.

3. The search works in linear time. If the time taken to calculate a single transition probability is
Oa and the time taken to calculate a single observation probability is Ob, then for a database
with N nodes, the total time for each time slot isOa(N2)+ Ob(N). For T time slots this is
thenT[Oa(N2)+Ob(N)].

15.1.8 Training HMMS

If the alignment of states to observations is known, then it is a simple matter to use the data
to estimate the means and covariances directly. Assuming that we have a set of framesO j =
o j1,o j2, ...o jT that are aligned with statej, then we find the mean by calculating the simple average
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µ̂j =
1
Tj

Tj

∑
t=1

o jt (15.17)

and calculate the covariance by

Σ̂ j =
1
Tj

Tj

∑
t=1

(o jt −µj)(o jt −µj)
′ (15.18)

So long as we have sufficient examples for each state, this provides a robust way to estimate the
means and covariances. The transition probabilities can becalculated by a simply counting the
number of times for a statei we move to statej and dividing this by the total number of times we
exit statej.

In general however, this state to observation alignment information is not given to us, and so
we can’t use Equations 15.17 and 15.18 on their own. The most common situation in training is to
have a list of the correct words for the sentencew1,w2, ...wM , and the observations,o1,o2, ...,oT

but no information saying which word should be aligned with which observation. In the past (say
pre 1990), it was common for researchers to used hand labelled databases where labellers would
mark the word and phone boundaries by listening and examining spectrograms. Given these, the
only unknowns were the state boundaries with each phone. This hand labelling is a laborious
process, but thankfully it turns out that using hand labelled word or phone boundaries in fact is not
necessary, as we instead we can use the HMMs themselves to give the state sequence.

We do this iteratively, so that if we have a set of modelsM1 we can use these, and run the
recogniser inforced alignment mode, where instead of “recognising” the words in the utterance,
we instead only give it the correct words in the correct sequence to choose from. The recognition
will obviously be correct, but as the Viterbi algorithm produces the state alignment as a by-product,
we now have a state-observation alignment sequence. This can then be used to train a new set
of modelsM2 and this process can be repeated until the final set of models is obtained. This
technique, calledViterbi training is a very quick and simple way of of training HMMs

Viterbi training does however have a serious drawback in that it enforces hard decisions
during training. If for instance our alignment picks the completely wrong boundaries, it will then
train on these, and may pick those same boundaries next time;in effect the iteration gets in a rut
from which it is hard to recover.

An alternative is to use theBaum-Welchalgorithm2. Instead of using a single state sequence
as in the Viterbi case, the Baum-Welch algorithm considers all possible alignments of states and
observations, not simply the best one as in the case with the Viterbi algorithm. In these align-
ments, each state will be aligned with each observation, butin doing this we also make use of
the probability that that state generated the observation.In other words, instead of assigning each
observation vector to a specific state as in the above approximation, each observation is assigned

2 The following explanation is taken from the HTK book [511].
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to every state in proportion to the probability of that stategenerating the observation. Thus, if
L j(t) denotes the probability of being in statej at timet then the Equations 15.17 and 15.18 can
be modified to give the following weighted averages:

µ̂j =

T
∑

t=1
L j(t)ot

T
∑

t=1
L j(t)

(15.19)

and

Σ̂ j =

T
∑

t=1
L j(t)(ot −µj)(ot −µj)

′

T
∑

t=1
L j(t)

(15.20)

where the summations in the denominators are included to give the required normalisation.
Equations 15.19 and 15.20 are the Baum-Welch re-estimationformulae for the means and co-

variances of a HMM. A similar but slightly more complex formula can be derived for the transition
probabilities. Of course, to apply equations 15.19 and 15.20, the probability of state occupation
L j(t) must be calculated. This is done efficiently using theforward-backward algorithm. Let the
forward probability α j(t) for some modelM with N states be defined as

α j(t) = P(o1, . . . ,ot ,x(t) = j|M).

That is,α j(t) is the joint probability of observing the firstt speech vectors and being in statej at
time t. This forward probability can be efficiently calculated by the following recursion

α j(t) =

[
N−1

∑
i=2

αi(t−1)ai j

]

b j(ot).

This recursion depends on the fact that the probability of being in state j at time t and seeing
observationot can be deduced by summing the forward probabilities for all possible predecessor
statesi weighted by the transition probabilityai j . The slightly odd limits are caused by the fact
that states 1 andN are non-emitting. The initial conditions for the above recursion are

α1(1) = 1

α j(1) = a1 jb j(o1)

for 1 < j < N and the final condition is given by

αN(T) =
N−1

∑
i=2

αi(T)aiN .
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Notice here that from the definition ofα j(t),

P(O|M) = αN(T).

Hence, the calculation of the forward probability also yields the total likelihoodP(O|M).
Thebackward probability β j(t) is defined as

β j(t) = P(ot+1, . . . ,oT |x(t) = j,M).

As in the forward case, this backward probability can be computed efficiently using the following
recursion

βi(t) =
N−1

∑
j=2

ai j b j(ot+1)β j(t +1)

with initial condition given by

βi(T) = aiN

for 1 < i < N and final condition given by

β1(1) =
N−1

∑
j=2

a1 jb j(o1)β j(1).

Notice that in the definitions above, the forward probability is a joint probability whereas the back-
ward probability is a conditional probability. This somewhat asymmetric definition is deliberate
since it allows the probability of state occupation to be determined by taking the product of the
two probabilities. From the definitions,

α j(t)β j(t) = P(O,x(t) = j|M).

Hence,

L j(t) = P(x(t) = j|O,M) (15.21)

=
P(O,x(t) = j|M)

P(O|M)
(15.22)

=
1
P

α j(t)β j(t) (15.23)

whereP = P(O|M).
All of the information needed to perform HMM parameter re-estimation using the Baum-

Welch algorithm is now in place. The steps in this algorithm may be summarised as follows



464 Chapter 15. Hidden Markov Model Synthesis

1. For every parameter vector/matrix requiring re-estimation, allocate storage for the numerator
and denominator summations of the form illustrated by equations 15.19 and 15.20. These
storage locations are referred to as accumulators.

2. Calculate the forward and backward probabilities for allstatesj and timest.

3. For each statej and timet, use the probabilityL j(t) and the current observation vectorot to
update the accumulators for that state.

4. Use the final accumulator values to calculate new parameter values.

5. If the value ofP = P(O|M) for this iteration is not higher than the value at the previous
iteration then stop, otherwise repeat the above steps usingthe new re-estimated parameter
values.

All of the above assumes that the parameters for a HMM are re-estimated from a single
observation sequence, that is a single example of the spokenword. In practice, many examples
are needed to get good parameter estimates. However, the useof multiple observation sequences
adds no additional complexity to the algorithm. Steps 2 and 3above are simply repeated for each
distinct training sequence.

15.1.9 Context-sensitive modelling

As we saw in Section 7.3.2, the acoustic realisation of a phoneme is heavily dependent on the
phonemes that surround it. We can make use of this in speech recognition by using separate models
for separate phonetic contexts. So instead of having say a single [p] model for all situations, we
have a large number of specialised [p] models, each of which more precisely describes that phone
in those contexts. This reduces the level of confusability in the recogniser and thereby increases
recognition accuracy. The most common way to so this is to useso calledtriphone models, which
are not models made of three phones, but single phone models in the context or the preceding and
following phone. Hence for a phoneme set ofN phones, there will be just less thanN3 triphones
(some combinations never occur).

Unfortunately, we rarely have enough data to have a sufficient number of examples of every
triphone; either we have insufficient examples to train a model (low occupancy), or no examples
at all (zero occupancy). The solution to this is tocluster the data; in effect we borrow parameters
from well trained models for use in the ones that suffer from data sparsity. There are a number of
ways we could do this for the case of models with low occupancy, in that we can just find examples
in acoustic space which are close to the known examples. The situation is more difficult for those
with zero occupancy, as we don’t have any acoustic examples at all.

We solve this by making use of some of the common properties ofphones, and the most
common way of doing this is to use the phones’distinctive features(see Section 7.4.3). In doing
so, we are for instance positing that phones which share the same place of articulation may have
more similar acoustic realisations than ones which don’t. The most common way of performing
this feature based clustering is to use adecision tree: the clever thing about this is that while we
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Figure 15.9 Schematic of 2 coefficients of the cepstrum for all the contexts of a single phone. The
ellipse indicates a line 2 standard deviations from the mean.
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Figure 15.10 The effect of asking three different questions on the data. Each question is asked, the
data is partitioned according to the answer, and the variance calculated for each new cluster. Here we
see that question 1 gives a reasonable separation of the date, question 2 does not, meaning that this
question is irrelevant, while question 3 gives the best separation.
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Figure 15.11 After choosing question 3 as the best split, the process continues and the set of
questions is asked again on each cluster, resulting in 2 further splits. In all cases the variance (denoted
by the width of the ellipse) is decreasing.
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Figure 15.12 An example of part of a trained decision tree. The questions are asked at each node,
after which the tree splits. The number indicate the number of data points at each node. The double
circles indicate leaf nodes, where the splitting processesstops. For clarity, only part of the tree is
shown. The feature structure which describes one leaf is shown.

use the features tosuggestcommonality between triphones, we use the actual data to determine
how close any particular feature combination actually is. In other words, the features serve as
constraints or structure on the clustering, but don’t determine what should be clustered with what.

The decision tree operates in a top down manner. It operates on binary features, so as a
preprocessing step we convert the original features into binary ones (so for instance the feature
CONSONANT TYPE which can take valuesstop, fricative etc gets converted into a new set of
features which encode the same information but in a binary valued system: often this is done by
simply using simple question features, such as “is this a stop?”, “is this a fricative?”). Initially,
all the data points for the state of one phone are grouped together in a single cluster. This cluster
is characterised by a measure ofimpurity ; choices of which include variance, log likelihood or
entropy. The process of growing a tree is as follows:

1. Create an initial cluster containing all the data points

2. For each feature:
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(a) form two new clusters based on the value of the feature
(b) measure the combined variance of the two new clusters:

3. find the feature which gives the biggest reduction in variance

4. delete this feature from the list of features to be examined.

5. form two new clusters based on this feature.

6. repeat steps 1 to 4 on each new cluster until the stopping criteria have been met.

Stopping criteria usually involve specifying a minimum decrease in impurity, and that clus-
ters should have a minimum occupancy (say 10 data points). The process of examining and split-
ting clusters is shown in Figures 15.9, 15.10, and 15.11. A trained decision tree is shown in Figure
15.12.

An important point about the decision tree grown in this way is that it provides a cluster for
every feature combination, not just those encountered in the training data. So see this, consider
the tree in Figure 15.12. One branch of this has the feature set












NEXT:NASAL yes
PREV:VOICED yes
PREV:STOP no
NEXT:VOICED no
PREV:VOWEL no












(15.24)

Which will contain all the training examples matching this feature combination. This is only
a subset of the features we use: the stopping criteria mean that while further feature differences
may occur after this point, the differences are deemed slight or the model occupancy so low as to
prevent further splitting. If we now have a model with features


















NEXT:NASAL yes
PREV:VOICED yes
PREV:STOP no
NEXT:VOICED no
PREV:VOWEL no
PREV:ALEVOLAR yes
NEXT:DENTAL no
NEXT:VELAR no


















which is unobserved in the data, we see that the feature combination of 15.24 is a subset of this,
which means that we will use those parameters for this model.While there is no path which
exactly matches this, we find the sub set of features which do (and this is always unique) and this
gives us the cluster we require.
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As well shall see in Sections 15.2.4 and 16.4.1, decision tree clustering is a key component of
a number of synthesis systems. In these, the decision is not seen so much as a clustering algorithm,
but rather as a mapping or function from the discrete featurespace to the acoustic space. As
this is fully defined for every possible feature combination, it provides a general mechanism for
generating acoustic representations from linguistic ones.

15.1.10 Are HMMs a good model of speech?

It is often asked whether HMMs are in fact a good model of speech [317], [63], [102]. This is
not so straightforward to answer. On the surface, the answeris “no” as we can identify many
ways in which HMM behaviour differs from that of real speech,and we shall list some of these
differences below. However, in their defence, it is important to realise that many of the additions
to the canonical HMM alleviate these weaknesses, and so one must be careful to define exactly
what sort of HMM is being discussed. Criticisms include:

1. Independence of observations. This is probably the most cited weaknesses of HMMs. While
an observations depends on its state, and the state depends on the previous states, one obser-
vation is not statistically dependent on the previous one. To see effect of this, consider the
probability of a sequence of observations at a single value.If we have a density with a mean
of 0.5, we would then find that a sequence of observations of 0.3, 0.3, 0.3, 0.3... would have
a certain probability, and as the Gaussian is symmetrical, this would be the same probability
as a sequence of 0.7, 0.7, 0.7, 0.7.... But as the observations are independent of one another,
this would have the same probability as a sequence which “oscillates” such as 0.3, 0.7, 0.3,
0.7... Such a pattern would be extremely unlikely in real speech, a fact not reflected in the
model.

2. Discrete states. This problem arises because while real speech evolves more or less smoothly,
the HMM switches characteristics suddenly when moving fromone state to the next. Both
this and the independent observation problems are largely solved by the use of dynamic
features. When these are included, then we can distinguish between the stable and oscillating
sequences. In fact as we shall see in Section 15.2, very natural trajectories can be generated
by an HMM which uses dynamic features.

3. Linearity of the model. HMMs enforce a strictly linear model of speech, whereby a sentence
is composed of a list of words, which are composed of a list of phones, a list of states
and finally a list of frames. While there is little problem with describing an utterance as a
list of words, or as a list of frames, we know that the strict linear model of phones within
words and worse, states within phones, differs from the morecomplex interactions in real
speech production (see Section 7.3.5). There we showed thatit was wrong to think we could
identify phones or phonemes in a waveform, rather we should think of speech production as
a process where phonemes are input and speech is output and wecan only approximately
identify where the output of a phone lies in the waveform. When we consider the alignment
of states and frames in HMMs we see that we have in fact insisted that every frame belongs
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to exactly one state and one phone, which is a gross simplification of the speech production
process.

4. Generative nature. HMMs are generative models, meaning that they declaratively describe
the phones, but are not a recognition algorithm in their own right. Furthermore, the max-
imum likelihood training normally used has been questionedas to why we want to have a
system which maximises the likelihood of the data rather than have a system which max-
imises recognition performance.

While many of these points are valid, there are often solutions which help alleviate any
problems. As just explained, the use of dynamic features helps greatly with the problems of ob-
servation independence and discrete states. As we shall seethe linearity issue is potentially more
of a problem in speech synthesis. Models such as neural networks which perform classification
directly have been proposed [375] and have produced reasonable results. More recently, discrimi-
native training has become the norm in ASR [495], [360] whereHMMs as described are used, but
where their parameters are trained to maximise discrimination, not data likelihood.

An alternative argument about HMMs is simply that they have consistently been shown to
outperform other techniques. The HMM recognition systems of today are very different from
the systems of the early 1990s and so it is important to also realise that HMMs are more of a
framework in which a number of ideas can be tried, rather thanjust a single, unified approach.

15.2 SYNTHESIS FROM HIDDENMARKOV MODELS

While HMMs are nearly always described in terms of their use in recognition, there is noth-
ing about the models themselves which performs recognition; this is only achieved by using the
models in conjunction with a search algorithm such as Viterbi. The models themselves are just
declarative representations of the acoustics of a phone andas such, should be just as amenable for
use in speech synthesis as recognition.

If we were to use HMMs for synthesis, we know that the specification gives us the required
phone sequence and possibly a duration for each phone. The phone sequence tells us which models
to use in which order, but not which states to use, or which observations to generate from the state
Gaussians. If we have a duration in the specification, this tells us how many observations that we
should generate from this model, but again not which states to generate from. The question then
is, if we want to use the models for synthesis how do we actually go about this?

A possible approach is just to randomly sample from each HMM.So starting in the first state
of the first phone, we simply use a random number generator to generate a value which we use
with the state’s Gaussian to generate an observation. We generate another random number and use
this to decide which state we will use next. This process is repeated until we have generated the
entire utterance. This approach is valid in a statistical sense in that over a sufficiently large number
of syntheses, the utterances generated will have the same statistical properties as the models. (That
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is, if we were to retrain on the generated data, we should end up with very similar models). This
approach does not however produce natural speech; the main reason being that such an approach
causes the spectra changes rapidly and randomly from one frame to the next. Real speech in
contrast evolves with some level of continuity.

A second approach is to use a maximum likelihood solution, inwhich instead of randomly
sampling from the model in accordance with its mean and variance, we just generate the most
likely sequence of observations from the sequence of models. (Unlike the first approach, retraining
on this data will not give us the same models as the values for all states will be exactly the same and
hence all the variances will be zero). It should be obvious that in all cases each state will generate
its mean observation. This avoids the problem of the previous approach in which the observations
were “jumping around” from one frame to the next, but now has the problem that the spectra
clearly “jumps” at each state boundary. Furthermore the spectra are the same during each state,
meaning that, in one dimension, the generated speech is a flatline followed by a discontinuity,
followed by a different flat line. This again does not look or sound like natural speech. In effect
we are ignoring all variance information - if we retrained onspeech generated by this model we
would always see the same observation for each state and hence would calculate the same mean
but calculate a zero variance in all cases.

15.2.1 Finding the most likely observations given the statesequence

The approach just described can be stated as one which generates the most likely observations
from the models in the normal sense. The problem with this is that the states always generate
their mean values, which results in jumps at state boundaries. A solution to this problem was
presented in a series of articles by Tokuda and colleagues [453], [452], [454] which showed how
to generate a maximum likelihood solution that took the natural dynamics of speech into account.
The key point in this technique is to use the delta and acceleration coefficients as constraints on
what observations can be generated.

Here we show the original system by Tokuda et al [453], which uses delta coefficients as the
constraint. It is simple to extend this to cases which use acceleration and higher order constraints
also. As before we represent the observations as

O =< o1,o2, ...oT >

but we split each observation into its constituent parts of coefficients and delta coefficients:

ot = {ct ,∆ct}

All we require for actual synthesis are the coefficientsC =< c1,c2, ...cT >, so the problem is
to generate the highest probability sequence of these thatalso obeys the constraints of the delta
coefficients∆C =< ∆c1,∆c2, ...∆cT >. As we have to find both the observations and the state
sequence, we can’t use the Viterbi algorithm as above but rather use an algorithm specific to this
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problem. First, we assume that we have a state sequenceQ. This probability of observing a
sequence of acoustic vectors is therefore equal to

P(O|q,λ) = bq1(o1)bq2o2, ...bqT (oT) (15.25)

Recall that the observation probability for a single N-dimensional Gaussian is given by

N (o;µ,Σ) =
1

√

(2π)N|Σ|
e−

1
2(o−µ)′Σ−1(o−µ) (15.26)

The observation probability of a statej, which includes the coefficients and delta coefficients is
given by

b j(ot) = N (ct ;µj ,Σ j).N (∆ct ;∆µj ,∆Σ j). (15.27)

It is easier to work with log probabilities. Equation 15.25 becomes

logP(O|q,λ) = bq1(o1)+bq2o2 + ...+bqT (oT) (15.28)

If we substitute Equation 15.26 into 15.27, we get the following expressed in log probabilities:

b j(ot) =−1/2
[

2Nlog2π+ |Σ|+(c−µ)′Σ−1(c−µ)+ |∆Σ|+(∆c−∆µ)′∆Σ−1(∆c−∆µ)
]

If we then put this into Equation 15.28, we can find generate anexpression that gives us the log
probability for the state sequence. As everything is in the log domain, all these terms add giving:

logP(O|q,λ) =−1/2
[

(ccc−µµµ)′ΣΣΣ−1(ccc−µµµ)+ (∆∆∆ccc−∆∆∆µµµ)′∆∆∆ΣΣΣ−1(∆∆∆ccc−∆∆∆µµµ)+K
]

where

ccc = [c1,c2, ...,cT ]

∆∆∆ccc = [∆c1,∆c2, ...,∆cT ]

µµµ= [µ1,µ2, ...,µT ]

∆∆∆µµµ= [∆µ1,∆µ2, ...,∆µT ]

ΣΣΣ =








Σ1 0 . . . . . . 0
0 Σ2 0 · · · 0
...

...
...

0 . . . . . . . . . . ΣT








∆∆∆ΣΣΣ =








∆|Σ1 0 . . . . . . 0
0 ∆Σ2 0 · · · 0
...

.. .
...

0 . . . . . . . . . . . ∆ΣT
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K = 2TNlog2π+ ∑T
t=1 |Σ|+ ∑T

t=1 |∆Σ|
Note that now we have vectors such asccc which represent the entire sequence of coefficients for
the sentence. We now introduce Equation 15.5 into our derivation. Recall, this is how we calculate
the delta coefficients from the normal coefficients, and by replacing the∆c terms with weighted
versions ofc we now have our maximum likelihood expression expressed purely in terms of the
normal coefficientsc:

−1/2
[

(ccc−µµµ)′ΣΣΣ−1(ccc−µµµ)+ (WWWccc−∆∆∆µµµ)′∆∆∆ΣΣΣ−1(WWWccc−∆∆∆µµµ)+K
]

(15.29)

HereWWW is a matrix which expresses the weights of Equation 15.5. This is given by

www =












w(0)I · · · w(L)I 0
... w(0)I

.. .

w(L)I
. . . w(L)I

. . . .. .
...

0 w(0)I · · · w(0)I












(15.30)

To maximise Equation 15.29, we differentiate with respect to c which gives

ΣΣΣ−1+WWW′′′∆∆∆ΣΣΣ−1WWWccc = ΣΣΣ−1µµµ+WWW′′′∆∆∆ΣΣΣ−1∆∆∆µµµ (15.31)

which can be solved to findccc by any matrix solution technique.

15.2.2 Finding the most likely observations and state sequence

This gives us the most likely observation sequence for a given state sequence. The state sequence
is partly determined by the synthesis specification in that we know the words and phones, but not
the state sequence within each phone. Ideally, we would search every possible state sequence to
find the observation sequence that maximiseccc in Equation 15.31, but this is too expensive, firstly
because the number of possible state sequences is very largeand secondly because the solution of
Equation 15.31 for each possible state sequence is expensive.

Rather than solve Equation 15.31 every time we wish to consider a new state sequence,
Tokuda et al developed a technique which allows the calculation of P(O|Q′,λ) for a new state
sequenceQ′, onceP(O|Q,λ) for a state sequenceQ has been calculated. The only remaining
problem then is how to search the space of possible state sequences effectively. There is no ideal
solution to this as finding the optimal sequence requires searching all the possibilities. Further-
more, because of the nature of the optimisation, we can not use the Viterbi algorithm as in recog-
nition mode. Rather we use a greedy algorithm approach wherewe choose the best states locally
and then calculate the global probability from this.

This result shows us how to generate from HMMs while also obeying the dynamic con-
straints of the delta coefficients. In further papers, Tokuda, colleagues and others have extended
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Figure 15.13 Synthesis of an F0 contour from an HMM, where we ignore the dynamic information.
The thick vertical lines represent model boundaries and thethin lines state boundaries. The horizontal
lines indicate the state means. It is clear that in all cases the algorithm generates the state means,
which results in discontinuities at state boundaries.

Figure 15.14 Synthesis of an F0 contour where we use Equation 15.31 and model the dynamic
behaviour. The contour is now clearly continuous and the state boundaries are not observable from
the contour alone. Only in some cases is the mean value for a state reached.

this basic result to include any number of delta coefficients(e.g. acceleration coefficients, 3rd
order deltas and so on) [454], explicit duration modelling [515], use of more sophisticated trajec-
tory modelling [455], [134], [133], [514], use of multiple Gaussian mixtures and use ofstreams,
explained below.
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Figure 15.15 Synthesis of an F0 contour where we have boosted the relativestrength of the state
means, which has the effect that the contour now always reaches the state mean. Informally, we can
say the difference between this and that of Figure 15.14 is that here we are imitating the effect of the
speaker speaking in a more enunciated fashion, whereas there the effect is of the speaker speaking
more casually.

Figure 15.16 Comparison of evolution of generated spectra between synthesising from the mean
(left figure) and when using dynamic information (right figure). In the left figure, we can clearly see
that the shape of the spectra jumps at state boundaries. Oncewe include dynamic information the
evolution is smooth across the utterance.



Section 15.2. Synthesis from hidden Markov models 475

Figure 15.17 Effect of using more mixtures in synthesis. It is clear that as we use more mixtures
we can more accurately account for spectral detail.

15.2.3 Acoustic representations

While it is true to say that an HMM itself is neutral to the purpose to which it is put (synthesis
recognition or other), it is also true to say that the manner in which it is normally configured in
ASR systems is specific to the recognition task. For instance, we might use 12 MFCC coefficients
with energy and their delta and acceleration as these are known to be good features for phone
discrimination. We do not however include any F0, other source information or prosody. In fact
even the transition probabilities, which in a sense model duration and can be seen as the one aspect
of prosody that is present in an ASR HMM, are often ignored in modern ASR systems are they
are not thought to include much information that discriminates phones.

For synthesis therefore, we are required to make some modifications to ASR-style HMMs
to ensure good quality speech. MFCCs on their own are not sufficient to generate speech, as we
need (as a minimum) to include F0 information as well. Given avector of MFCCs and an F0
value, a number of techniques, detailed in Section 14.6 can be used to generate the waveform.
While we can include an F0 value directly in the observation vectorot but it is more common to
make use of an additional aspect of the HMM formalism known asstreams. Each stream has a
mixture of Gaussians observation pdfs as before. The addition is that we can now have a number
of these observation pdfs, and this is particularly useful when we want to generate observations
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that are different in nature, as in our case of MFCCs and F0 values. A generalisation of the output
probability specification of Equation 15.3 using streams is:

b j(ot) =
S

∏
s=1

[
M

∑
m=1

c jmsN (ot ;µjms,Σ jms)

]γs

The streams are considered statistically independent and their relative importance are scaled with
the factorsγ1,γ2, .... Note that these weights are set by the system builder and nottrained automat-
ically.

In Figures 15.13 to 15.17 we show some of the synthesis properties of HMMs. The basic
operation of the algorithm is most easily seen with a single dimensional observation, and in Figures
15.13, 15.14, 15.15 we show an example of this where we have used an HMM to synthesize an
F0 contour. One noted weakness of the HMM approach is that often the observations generated
are over-smoothed; informally we can view this as a result ofthe HMMs being “overly cautious”
when generating. The effect of this is shown in Figure 15.14.A principled solution to this has
been proposed by Toda and Tokuda [451], but it is possible to alleviate this effect by simply
boosting the relative importance of the mean over the dynamics; this is shown in Figure 15.15. In
Figures 15.16 and 15.17 we show synthesis for a multi-dimensional representation of an evolving
spectrum, which again shows the different between simply synthesising from the state mean and
synthesising when including the state dynamics.

15.2.4 Context sensitive synthesis models

We use context sensitive models in ASR as they have lower variance than the general phone
models. In synthesis, we use context sensitive models for a similar reason, so that a model in a
particular context generates observations appropriate tothat context only. In synthesis however,
we are interested in a broader range of factors, as we have to generate the prosodic variation as
well as simply the verbal, phonetic variation.

Because of this, it is common to use a much broader notion of “context”. In essence we
decide what linguistic features we think are required for synthesis and build a separate model for
every possible combination. The issue of features in synthesis is discussed fully in Section 16.2,
for here we can just assume that in addition to phonetic context, we also want to include features
such as phrasing, stress and intonation.

The context-sensitive models are built in exactly the same way as described in Section 15.1.9,
and the resultant decision tree provides a unique mapping from every possible feature combination
to HMM model parameters. One significant point of note is thatin synthesis the extra prosodic
features mean that number of possible unique feature combinations can be many orders of magni-
tude larger than in ASR. Given that we may be training on less data than in ASR, we see that the
sparse data problems can be considerably worse. We will return to this issue in Section 16.4.
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15.2.5 Duration modelling

In a standard HMM, transition probabilities determine the durational characteristics of the model.
If we take a standard topology where a state can loop back to itself (with say probability 0.8) or
move to the next state (with probability 0.2), we see that thedistribution of state occupancy has an
exponential form, where it is most common to generate a single observation, with the next most
common being 2 observations, then 3 and so on. In reality, we know that this does not follow the
pattern of observed phone durations which are much more accurately modelled by a Gaussian, or
a skewed Gaussian-like distribution which has low probability for both very short and very long
sequences, and higher probability for sequences at or near the mean.

This disparity has been known for some time, and several attempts were made in ASR to
correct this, the most notable proposal being thehidden semi-Markov model (HSMM) [282]. In
this model, the transition probabilities are replaced by anexplicit Gaussian duration model. It is
now known that this increase in durational accuracy does notin fact improve speech recognition
to any significant degree, most probably because duration itself is not a significant factor in dis-
crimination. In synthesis, however, modelling the duration accurately is known to be important
and for this reason there has been renewed interest in hiddensemi-Markov models [504], [514].

15.2.6 HMM synthesis systems

We now describe some complete HMM synthesis systems. In the HMM system described by Zen
and Tokuda [514] 5 streams are used, one for the MFCCs, one each for log F0, delta log F0, delta
delta log, F0 and voicing information. As separate streams are used, these parts of the models
can in fact be treated separately, to the extent that the decision tree clustering can use different
clusters for each stream. So while the states of one set of models may be clustered together
for modelling MFCCs, a completely different set of states would be clustered for F0. Durations
within phones are modelled by hidden semi-Markov models, and a global variance technique
[451] is used to compensate for the over smoothing effect that HMM synthesis can create. The
STRAIGHT technique [189] is used for signal analysis and synthesis (see Section 14.6).

Acero [4] describes an technique which uses HMMs as described above but with formants as
the acoustic observations. This is particularly interesting in that this can be seen as a direct attempt
to fix the problems of traditional formant synthesisers. Formants are indeed a good spectral repre-
sentation for HMMs as we can assume, like MFCCs, that each formant is statistically independent
of the others. Acero notes that HMMs do in fact generate the sort of formant trajectories often
observed in natural data. In particular, he notes that when amodel is only used to generate a few
frames of speech, its generated observations rarely reach their mean value but when the model
is used to generate longer sequences, the mean values are in fact reached. This concurs with the
explanation of coarticulation and targets given in Section7.3.4, but significantly, because the rates
of change of the individual formants can change independently in the HMM, the over-simplistic
transition and target model of rule base formant synthesis (see Section 13.2.6 and Figure 13.4) is
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avoided. In addition to simply replacing MFCCs with formants, Acero investigates the issue of
the unnatural source excitation associated with formant synthesis [3].

Taylor [438] has performed some preliminary work on HMM topologies other than the three
state left-to-right models used above. He shows that a standard unit selection system of the type
described in Chapter 16 can in fact by modelled by a more general HMM which has many hundreds
of states for each model. He shows that one can reduce the number of states by an arbitrary amount
allowing one to scale the size of a synthesis system in a principled manner.

15.3 LABELLING DATABASES WITH HMM S

In all types of data driven synthesis, we not only require data, but require this data to belabelled
in some way. As a minimum, this normally means we require the words and phones, but any
feature that we require for model building or unit selectionmust be provided by some means. In
this section, we concentrate on one such way of carrying out this labelling, based on the HMM
principles introduced above.

The use of automatic labelling algorithms is normally justified in terms of saving time [384],
[5], [279]. In the past, we had small databases which could belabelled by hand, but as the
databases we use today are larger, and because sometimes we wish to label the database very
quickly, we require an automatic system. This argument basically says that automatic labelling is
therefore a matter ofconvenience; if we had an infinite supply of hand labellers we wouldn’t have
a problem. A second justification is that automatic systems can out perform human labellers in
terms of accuracy and consistency, and so convenience aloneis not the only justification; automatic
systems are in factbetter: in our experience this certainly appears to be true.

15.3.1 Determining the word sequence

On its own the issue of the identifying the word sequence< w1,w2, ...,wM > for an utterance is a
very difficult problem as it in fact amounts to the speech recognition problem itself. Because of this
it is nearly universally accepted that the word sequence is given in some form, and that the labelling
problem then reduces to finding the word boundaries, the phones and the phone boundaries. The
words can be provided in a number of ways. One way is to write ascript which the speaker reads
aloud; from this it is possible to find the words. This is not always a perfect solution as speaker
may deviate from the script. This can be dealt with either by carefully monitoring the speaker and
making them repeat any sentences which deviate, or by using some sort of verification process to
check that the words in the utterance correspond with those being used as the input to the labeller
[15]. A further problem is that the script will be in the form of text, not words, and so some
processing is required to determine the words themselves.

Instead of, or in addition to, this technique it is possible to use a human labeller to listen
to the speech. This labeller would either correct the words when the speaker deviates from the
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script, or else if a script is not available, simply record what words were spoken. While this
use of a human labeller means of course that the technique is not fully automatic, this labelling
can be done quickly and accurately compared to determining the phone sequence or either of the
boundary type locations.

15.3.2 Determining the phone sequence

Given the word sequence, our next job is to determine the phone sequence. In considering this,
we should recall the discussions of Sections 7.3.2, 7.3.6 and 8.1.3. There we stated that there was
considerable choice in how we mapped from the words to a soundrepresentation, with the main
issue being whether to choose a representation that is closeto the lexicon (e.g. phonemes) or one
that is closer to the signal (e.g. phones with allophonic variation marked).

By far the main consideration in determining the phone sequence is that this shouldmatchthe
sort of sequences produced by the TTP. In both HMM and unit selection synthesis, we are going to
match the sequences in the specification with the sequences in the database labels, and obviously
any disparity in labelling procedures or representations will lead to fewer correct matches. One
way of doing this is to use the TTP for both processes: while weof course always use the TTP
for synthesis, we can in fact also generate the phone string using this using the script as input.
While the automatic nature of the TTP may cause errors, the fact that that two representations are
consistent will ensure accurate matching. Sometimes we cannot determine the single best phone
sequence for an utterance. Most often this occurs when we have a pronunciation variant such as
EITHER, which can be pronounced as /iy dh er/ or /ay dh er/. We can not tell which version is used
form the text, so both are passed into the labelling algorithm.

Another important consideration is that if we are going to use an HMM based labeller, then it
makes sense to use a sound representation system which is amenable to HMM labelling. In general
this means adopting a system which represents speech soundsas a linear list, and unfortunately
precludes some of the more sophisticated non-linear phonologies described in Section 7.4.3.

One approach best avoided (but unfortunately very common) is to base the phone sequence
on labels created by an “expert” labeller. Often this entails an “expert” looking at a portion of
the data, deciding the phones and their boundaries, and thenusing this to train, test or guide the
design or the automatic labeller. This runs the risk of firstly being disconnected with the output
that the TTP system will produce at run time, and secondly being based on what is probably highly
errorful labels from the human “expert” labeller.

15.3.3 Determining the phone boundaries

Given the word and phone sequence we can construct an HMM model network can to recognise
just those words. “Recognition” is obviously performed with perfect accuracy, but in doing the
recognition search we also determine the most likely state sequence, and this gives us the phone
and word boundaries. Often this operation is calledforced alignment.
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A number of studies have investigated using a state of the artgeneral purpose speaker in-
dependent speech recogniser to perform the alignment. Thisworks to a certain extent, but most
of these studies have shown that the labelling accuracy is not high enough with frequent errors
occurring [499], [279], [399], [384], [518]. This then is not a complete solution, and so has lead
to a number of alternatives. Some systems use HMMs as a first pass and then perform some fine
tuning others use HMMs but not in the configuration of a general purpose speech recogniser and
finally some systems take a non-HMM approach.

A number of studies have investigated the two pass approach which uses a general purpose
recogniser followed by a fine tuning second stage. Studies advocating this approach include [262],
[263], [399], [482], [279], [390], [357],[357], [348]. Kominek et al refine the ASR output with
a dynamic time warping (DTW) technique3. The DTW approach works by using an existing
synthesiser to synthesise a new sentence which contains thesame words as the sentence to be
labelled. We therefore have two sentences with the same words (and hopefully phones) and we
use the boundaries of the synthesized sentence (which we know because we have generated it)
to determine the boundaries of the sentence to be labelled. This is achieved by using the DTW
algorithm to find the alignment which gives the lowest distance between the two sentences. From
this, we can determine the best phone and word boundaries of the sentence being labelled. Sethy
and Narayanan [399] and Wang et al [482] use a technique wherean HMM alignment is then fine
tuned with a Gaussian mixture model and Lee and Kim [279] propose a technique which uses a
neural network to refine the model boundaries. Sandri and Zovato describe techniques for refining
very specific problems which occur at pause boundaries and insections of speech with low energy
[390]. Adell and Bonefonte perform perhaps the most exhaustive study and compare HMMs,
neural networks, dynamic time warping, Gaussian mixture models, decision trees and show that
the neural network and decision tree approaches are the best. We should also note that a number of
techniques have been proposed which use some of these techniques without the HMM step [357],
[357], [348].

A different approach is to reason that it is not the HMM formulation itself which is the source
of labelling inaccuracies, but rather the particular way that it has been configured in a general pur-
pose recogniser. Recall, that while algorithmically a recogniser operates in a maximum likelihood
sense, in fact the choice of its acoustic representations, model topologies, context modelling and
so on has been chosen using experiments that measure recognition performance, which in effect
means that such systems are designed for word discrimination. Perhaps most importantly, the sys-
tems have been trained on a large number of speakers as they are built in order to recognise any
speaker. Hence we should maybe not be surprised that generalpurpose recognisers do not perform
well at the labelling task when they have in fact been designed for quite different purposes.

This realisation has led to the study of alternative HMM configurations built specifically
for the purpose of alignment. Matousek et al [235] report a number of experiments using the

3 See Jurafsky and Matrin [243] for an explanation of the DTW algorithm, its history and its relation to the Viterbi
algorithm.
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HTK toolkit to label the data, where a small amount of hand labelled data is used to provide initial
models which are then re-trained on the full corpus. In Clarket al [99], [366], the system is trained
only on the synthesis data, using a flat start approach. In recognition mode these systems are then
run on the same data as used in training. In normal recognition tasks this is of course anathema,
the training data should never be used for testing, but here of course the problem is quite different
in that we are building a separate aligner for each speaker and so the generalisation problem does
not arise. Because we are training and aligning on the same data, we do not encounter sparse data
problems, the data to be aligned appears in exactly the same proportion as the data we use for
training.

Multiple pronunciations, caused by pronunciation variants, can easily be dealt with in an
HMM framework, no matter whether a specially trained aligner or general purpose recogniser is
used. When a multiple pronunciation occurs, the recognition network simply splits, and allows
two separate state paths from the start of the word to the end.During alignment, the decoder will
pick the path with the highest probability, and this can be taken to be the correct pronunciation.

15.3.4 Measuring the quality of the alignments

It is common when building any labelling system to evaluate its quality by comparing its perfor-
mance against that of a human labeller. In fact this type of evaluation is so common and accepted
as to not normally warrant comment (nearly all the techniques cited in the previous section were
evaluated this way). As we shall see in Section 17, this type of evaluation is inherently flawed, as
it assumes that in some way the human labeller is inherently better than the automatic algorithm.
This is now known to not be the case, and in fact humans in nearly all cases make frequent la-
belling mistakes. More importantly, their labelling is subject to somewhat arbitrary decisions in
close cases which can produce a high level of inconsistency in the labels. Comparing an automatic
system to a human one is therefore often best avoided.

Apart from the issue of the errors that human labellers make,comparing the quality of the
labelling in this way ignores the fact that this is simply an interim stage in the synthesis process.
Automatic algorithms often have a consistency which means that even if “errors” occur, they
often cancel out at synthesis time. To take a simple example,if every single phone boundary was
marked one frame too late, this would clearly look wrong, butwould probably have little effect on
the quality of the synthesis. Matousek et al [235] points this out and shows that even their poorest
system can produce good quality synthesis because of this “consistency of errors”. So the only
real evaluation of labelling quality is in final synthesis quality.

It is genuinely difficult to reconcile the various opinions and results on this issue, and settle
the issue of whether HMMs alone are of sufficiently high quality to be used in labelling. Some
points we can make though:

1. Human labelling should be avoided if possible.
2. State of the art speech recognition systems do not performlabelling adequately.
3. A HMM systems set up and trained specifically for the purpose perform the task well
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4. A level of find adjustment can be performed by a number of machine learning algorithms.

5. The quality of labelling should be measured in terms of thefinal synthesis, not by comparison
with human labels.

15.4 OTHER DATA DRIVEN SYNTHESIS TECHNIQUES

While the HMM techniques described in this chapter are the leading technique, a number of other
data driven techniques have been developed. All in a sense share the same basic philosophy; that
it is inherently desirable to use a model to generate speech as this enables compact representa-
tions and manipulation of the model parameters, and all are attempts at solving the problems of
specifying the model parameters by hand.

Hogberg [215] uses a decision tree technique to generate formant patterns. This in a sense
shows the general power of the decision tree technique; justas with the context-sensitive cluster-
ing described in Section 15.1.9, Hogberg uses the decision tree to create a mapping between the
discrete linguistic space and the the space of formant values, and in doing so uses the decision tree
to alleviate sparse data problems. Mori et al [320] also attempt to learn formant synthesiser rules
from data, and so so by building a number of modules using an auto-regressive procedure, which
is similar to the linear prediction analysis of Section 12.4.

15.5 DISCUSSION

HMM synthesis is an effective solution to the problem of how to map from the specification to the
parameters. While most approaches aim to generate cepstralparameters, some generate formants
and in this sense the HMM approach can be seen as a direct replacement for the provision of these
rules by hand as described in Chapter 13. Issues still remainregarding the naturalness parameter-
to-speech part of HMM synthesis, but as confidence gains in the ability to solve the specification-
to-parameter part, new techniques will be developed to solve these naturalness problems.

15.5.1 Further Reading

General introductions to HMMs can be found in [243], [224]. The original papers on HMMs
include Baum et al [36], Viterbi [477], Baker [33], Jelink etal [237]. These are mentioned for
purposes of general interest; the ASR systems of today are quite different and apart from the basic
principle, not too much of that early work has survived in today’s systems. The best practical guide
to modern HMM systems is Cambridge University’s HTK system [511]. This is a general purpose
practical toolkit that allows quick and easy building of elementary ASR systems, and serves as
the basis for state-of-the-art systems for the research community. The HTK book is an excellent
introduction to the theory and practice of HMM recognition.
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HMM synthesis started with the now classic paper by Tokuda etal [453] which explained the
basic principles of generating observations which obey thedynamic constraints. Papers explaining
the basic principle include [452], [454] [305]. From this, agradual set of improvements have
been proposed, resulting in today’s high quality synthesissystems. Enhancements include: more
powerful observation modelling [509] duration modelling in HMMs [504], [515] trended HMMs
[134], [133], trajectory HMMs [515], HMM studies on emotionand voice transformation [232],
[429], [404], [505].

15.5.2 Summary

HMM synthesis

• A trained HMM systems describes a model of speech and so can beuse to generate speech.

• A number of representations can be used as observations; a common set up is to use MFCCs,
and F0 and their delta values, and perhaps additional information about the source.

• The most obvious way to do this is via a maximum likelihood approach, but this will simply
generate the state mean vectors if used normally.

• Instead we use an approach which generates the maximum likelihood sequence of vectors
which also obey the state dynamics, as determined by the delta and acceleration coefficients,
determined during training.

• A feature system is defined and a separate model is trained foreach unique feature combi-
nation.

• Decision tree clustering is used to merge parameters for lowand zero occupancy states.

• A number of refinements to the basic HMM technique have been proposed, including more
realistic duration modelling and accounting for global variance.

• Advantages of HMM synthesis:

– HMM synthesis provides a means to automatically train the specification-to-parameter
module, thus bypassing the problems associated with hand-written rules.

– The trained models can produce high quality synthesis, and have the advantages of
being compact, and amenable to modification for voice transformation and other pur-
poses.

• Disadvantages of HMM synthesis:

– The speech has to be generated by a parametric model, so no matter how naturally the
models generate parameters, the final quality is very much dependent on the parameter-
to-speech technique used.

– Even with the dynamic constraints, the models generate somewhat “safe” observations
and fail to generate some of the more interesting and delicate phenomena in speech.

HMMs for labelling databases
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• As the state to frame alignment is a by-product of recognition with HMMs, they can be used
to label and segment a speech database.

• This is done by running a recognition system in forced alignment mode, where the correct
word sequence is given to the recogniser before hand.

• Studies have shown that general purpose speaker independent HMM recognisers do not pro-
duce alignments of acceptable quality.

• One approach therefore is to do a first pass with a speech recogniser and then adjust the
boundaries with a fine tuning technique.

• An alternative approach is to train an HMM system solely on the synthesis data, ensuring
consistency.

• It is inadvisable to measure the accuracy of an alignment system by comparing it to hand-
labelled data, as the quality of hand-labelled data is usually worse than the best automatic
systems.



16
UNIT SELECTION
SYNTHESIS

We now turn tounit selection synthesiswhich is the dominant synthesis technique in text-to-
speech today. Unit selection is the natural extension of second generation concatenative systems,
and deals with the issues of how to manage large numbers of units, how to extend prosody beyond
just F0 and timing control, and how to alleviate the distortions caused by signal processing.

16.1 FROM CONCATENATIVE SYNTHESIS TOUNIT SELECTION

The main progression from first to second generation systemswas a move away from fully explicit
synthesis models. Of the first generation techniques, classical linear prediction synthesis differs
from formant synthesis in the way that it uses data, rather than rules, to specify vocal tract be-
haviour. Both first generation techniques however still used explicit source models. The improved
quality of second generation techniques stems largely fromabandoning explicit source models as
well, regardless of whether TD-PSOLA (no model), RELP (use of real residuals) or sinusoidal
models (no strict source/filter model) is employed. The direction of progress is therefore clear; a
movement away from explicit, hand written rules, towards implicit, data driven techniques.

By the early 1990s, a typical second generation system was a concatenative diphone system
in which the pitch and timing of the original waveforms were modified by a signal processing
technique to match the pitch and timing of the specification.In these second generation systems,
the assumption is that the specification from the TTP system comprises a list of items as before,
where each item is specified with phonetic/phonemic identity information, a pitch and timing
value. As such, these systems assume that:

1. Within one type of diphone, all variation is accountable by pitch and timing differences

2. The signal processing algorithms are capable of performing all necessary pitch and timing
modifications without incurring any unnaturalness.

In turns out that these assumptions are overly strong, and are limiting factors on the quality of
the synthesis. While work still continues on developing signal processing algorithms, even an
algorithm which changed the pitch and timing perfectly would still not address the problems that
arise from assumption 1. The problem here is that it is simplynot true that all the variation within

485



486 Chapter 16. Unit Selection Synthesis

a diphone is accountable by pitch and timing differences. Asan example, we can see that low
pitch can occur in an unaccented function word, in an accented syllable with a “low” intonation
accent and in the last syllable in a sentence, and in all threecases the actual F0 values may be the
same. However, all three sound quite different; the function word may have low energy and inexact
articulation; the low accented syllable may have a high energy and more careful articulation, and
the phrase final syllable may have prominent voice quality effects such as creak and breathiness
as low energy from the lungs can create a significantly different source signal.

This overly simplistic second generation model was mainly adopted for pragmatic, engineer-
ing reasons. Firstly, making this three way distinction is fairly clean, as we can readily identify
and measure the behaviour of each part. Secondly, pitch and timing are simply easier to modify
with signal processing than other factors. Finally, from a higher level sense, it is a reasonable
approximation to say that phones come from the verbal component and pitch and timing from the
prosodic component of language. In other words, there are a mixture of linguistic and physiologi-
cal reasons for concentrating on these two factors, which were further promoted as these were the
only things we could modify in any event.

16.1.1 Extending concatenative synthesis

The observations about weakness with second generation synthesis lead to the development of a
range of techniques known collectively as unit selection. These use a richer variety of speech,
with the aim of capturing more natural variation and relyingless on signal processing. The idea is
that for each basic linguistic type we have a number ofunits, which vary in terms of prosody and
other characteristics. During synthesis, an algorithmselectsone unit from the possible choices, in
an attempt to find the best overall sequence of units which matches the specification.

We can identify a progression from the second generation techniques to full blown unit
selection. With the realisation that having exactly one example (ie one unit) of each diphone was
limiting the quality of the synthesis, the natural course ofaction was to store more than one unit.
Again, the natural way to do extend this is consider featuresbeyond pitch and timing (e.g. stress
or phrasing) and to have one unit for each of the extra features. So for example, for each diphone,
we could have a stressed and unstressed version and a phrase-final and non-phrase final version.
So instead of the type of specification used for second generation systems
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we include additional linguistic features relating to stress, phrasing and so on
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One way of realising this is as a direct extension of the original diphone principle. Instead of
recording and analysing one version of each diphone, we now record and analyse one version for
each combination of specified features. In principle, we cankeep on expanding this methodology,
so that if we wish to have phrase initial, medial and final units of each diphone, or a unit for every
type or variation of pitch accent, we simply design and record the data we require.

As we use more features, we see that in practical terms the approach becomes increasingly
difficult. This is because we now have to collect significantly more data and do so in just such a
way as to collect exactly one of each feature value. Speakerscannot of course not utter specific
diphones in isolation, and so must do so in carrier words or phrases. This has the consequence that
the speaker is uttering speech in the carrier phrases that isnot part of the required list of effects.
If we adhere strictly to this paradigm, we should throw this extra speech away, but this seems
wasteful. The unit selection approach offers a solution to both these problems, which enables us
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to use the carrier speech, and also lessen the problems arising from designing and recording a
database that creates a unit for every feature value.

In unit selection, the idea is that we obtain a database and perform the analysis such that
potentially the entire database can be used as units in synthesis. Systems vary to the degree in
which the content of database is designed. In some systems, an approach similar to that just out-
lined above is taken, in which the words, phrases or sentences to be spoken are carefully designed
so as to illicit a specific range of required feature values. Any extra speech is also added to the
database as a beneficial side effect. At the other extreme, wecan take any database (designed or
not), analyse it and take the all the units we find within this as our final unit database. The differ-
ence is really one of degree as in both cases we will end up withan arbitrary number of each of the
features we want; and depending on how rich the feature set weuse, we may end up with many
cases of missing units, that is, feature combinations whichwe may require at synthesis time but
for which there are no examples in the database. This means weneed some technique for choosing
amongst units which match the specification, and of dealing with cases where an exact match of
features is not possible.

A further issue concerns how we concatenate units in unit selection. Recall that in second
generation synthesis the diphones were specifically designed to join together well, in that they
were all taken from relatively neutral phonetic contexts such that when the two diphones were
joined, the left side of the first diphone could be relied uponto join well with the right side of the
second diphone. The whole point of extending the range of units on offer is to increase variability,
but this has the side effect of increasing the variability atthe unit edges. This results in a situation
where we can not rely on the units always joining well and so steps must to be taken to ensure that
only unit combinations which will result in good joins are used.

Unit selection is made possible by the provision of a significantly larger database than with
second generation techniques, and in fact it is clearly pointless having a sophisticated selection
system if the choice of units is very limited. With a large database we often find that long con-
tiguous sections of speech are chosen, and this is one of the main factors responsible for the very
high quality of the best utterances. Often in unit selection, no signal processing modification is
performed, and we refer to this approach aspure unit selection. In fact, an alternative view of
unit selection is that it is aresequencing algorithm[84], which simply cuts up speech and rear-
ranges it. Thinking of unit selection this way can be helpfulit leads us to theprinciple of least
modification. This states that the naturalness of the original database is of course perfect, and that
any modification we perform, whether cutting, joining or using signal processing runs the risk of
making the original data sound worse. Hence our aim our aim should be to meet the specification
by rearranging the original data in as few ways as possible soas to try and preserve the “perfect”
quality of the original.
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16.1.2 The Hunt and Black Algorithm

A number of proposals were put forth in answer to these problems of managing larger databases
of units, enabling selection within a class of units, copingwith missing units and ensuring good
joins [387], [327], [503], [234]. However, in 1996 Andrew Hunt and Alan Black [227] proposed
a general solution to the problem which was the culmination of many years of unit selection work
at ATR labs. In this (now classic) paper, Hunt and Black put forward both a general framework
for unit selection and specific algorithms for calculating the various components required by the
framework1.

For easy comparison with second generation techniques, we will assume that we also use
diphones in unit selection, but as we will see in Section 16.2.1 a wide variety of other types are
possible. As before, the specification is a list of diphone itemsS=< s1,s2, ...,sT >, each described
by a feature structure. The database is a set of diphone units, U = {u1,u2, ...,UM}, each of which
is also described by a feature structure. Thefeature systemis the set of features and values used
to describe both the specification and the units, and this is chosen by the system builder to satisfy
a number of requirements. The purpose of the unit selection algorithm is to find the best sequence
of unitsÛ from the databaseU that satisfies the specificationS.

In the Hunt and Black framework, unit selection is defined as asearchthrough every possible
sequence of units to find the best possible sequence of units.There are several options as to how
we define “best”, but in the original Hunt and Black formulation this is defined as the lowestcost,
as calculated from two local components. First we have thetarget costT(ut ,st) which calculates
a cost ordistancebetween the specificationst and a unit in the data baseui . This cost is calculated
from specified values in feature structure of each. Second, we have thejoin cost, J(ut ,ut+1) which
is a measure of how well two units join (low values mean good joins). This is calculated for a pair
of units in the database, again from specified values in the units’ feature structures. The total
combined cost for a sentence is given by

C(U,S) =
T

∑
t=1

T(ut ,st)+
T−1

∑
t=1

J(ut ,ut+1) (16.2)

and the goal of the search is to find the single sequence of unitsÛ which minimises this cost:

Û = argmin
u

{ T

∑
t=1

T(ut ,st)+
T−1

∑
t=1

J(ut ,ut+1)

}

(16.3)

Section 16.6 will explain how to perform this search, but fornow we will simply note that the
above search can be performed by a Viterbi-style search (introduced in Section 15.1.7).

1 As such there are really a number of related ideas in this work, and we need to be careful in distinguishing these as
it is more the general framework proposed by Hunt and Black which has become standard, rather than the specific way
in which the system was configured. In our explanation then, we will propose a somewhat more general approach than
that put forth in the original paper, but in spirit this approach is a direct descendant.



490 Chapter 16. Unit Selection Synthesis

PHONEME n
F0
DURATION 50

121

PHONEME
F0
DURATION

123
70

t

PHONEME n
F0
DURATION 50

121
STATE 1

STATE 2

PHONEME n
F0
DURATION 50

121

PHONEME
F0
DURATION

123
70

t

PHONEME n
F0
DURATION 50

121
STATE 1

STATE 2

join

target
cost

units

cost
t t+1 t+2t−1

specification

s
t+1

s t

Figure 16.1 Diagram of Hunt and Black algorithm, showing one particularsequence of units and
how the target cost measures a distance between a unit and thespecification, and how the join cost
measures a distance between the two adjacent units.

The power of the Hunt and Black formulation as given in Equation 16.2 is that it is a fully
general technique for unit selection. We can generalise theidea of target and join costs in terms
of target and joinfunctions which don’t necessarily have to calculate a cost. The targetfunction
is so called because it gives a measure of well a unit in the database matches the “target” given
by the specification. The join function again can accommodate a wide variety of formulations all
of which can encompass the notion of how well two units join. Finally, the formulation of the
algorithm as a search through the whole space of units allowsus to ensure that the algorithm has
found the optimal set of units for the definitions of target and join functions that we have given.

Of course, the very general nature of this algorithm means that there is enormous scope in
how we specify the details. In the next sections, we will explore the issues of what features to use,
how to formulate the target function, the join function, theissue of the choice of base type and
finally search issues.

16.2 FEATURES

16.2.1 Base Types

The first “feature” we will examine is thebase type, that is type of units we will use in the
synthesiser. The base type chosen in second generation systems was often the diphone, as these
often produced good joins. In unit selection, the increasedvariability in the units means that we
can’t always rely on diphones joining well, and so the reasons for using diphones are somewhat
lessened. Indeed, from a survey of the literature, we see that almost every possible kind of base
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type has been used. In the following list we describe each type by its most common name2, cite
some systems which use this base type, and give some indication of the number of each type,
where we assume we haveN unique phones andM unique syllables in our pronunciation system.

frames Individual frames of speech, which can be combined in any order [204].

states Parts of phones, often determined by the alignment of HMM states [140], [138].

half-phones These are units which are “half” the size of a phone. As such, they are either units
which extend from the phone boundary to a mid-point (which can be defined in a number of
ways), or are units which extend from this mid-point to the end of the phone. There are 2N
different half-phone types [315].

diphones These units extend from the mid-point of one-phone to the mid-point of the next phone.
There are just less thanN2 diphones, as not all combinations occur in practice (e.g. /h-ng/)
[108], [273], [383], [99].

phones Phones or phonemes as normally defined. There areN of these [227], [54] [388]

demi-syllables The syllable equivalent of half-phones, that is units whicheither extend from a
syllable boundary to the mid point of a syllable (the middle of the vowel) or extend from this
mid-point to the end of the syllable. There are 2M demi-syllables [349].

di-syllables Units which extend from the middle of one syllable to the middle of the next. There
areM2 di-syllables.[86], [277]

syllables Syllables as normally defined [236] [388] [512]

words Words as normally defined [480], [416], [359].

phrases Phrases as normally defined [139].

The reason why a developer chooses one base type over anotherare varied, and is often
simply down to personal preference. Many systems use the “family” of units which have joins in
the middle of phones (half phones, diphones, demi-syllables) as these are thought to produce better
joins. Sometimes the phonology of the language is the main consideration; European languages
are often consider phoneme based, and therefore phones, diphones and half-phones are normal
choices. Chinese by contrast is often considered syllable based, and many systems in that language
use the syllable or variant as their main unit [190], [500], [93].

In addition tohomogeneoussystems which use a single type of unit, we haveheterogeneous
systems which use a mixture of two or more types of unit. One reason for using different types of
units is when we have a primary unit of one type, which requires some units of another type for
joining purposes; a good example of this is the phrase splicing system of Donovan [139] which
concatenates whole canned phrases with smaller units for names. The termnon-uniform unit
synthesiswas popular in the early development of unit selection as it was seen that the explicit
use of long sequences of contiguous speech was the key to improving naturalness [503]. For
the remainder of this chapter, we shall use continue to diphones for explanatory reasons, but it

2 One unfortunate aspect of base types is that there is no consistent naming scheme for types, and therefore the names
of the base types are somewhat haphazard.
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should be noted that in general the unit selection frameworkworks for all base types. We consider
again the issue of base type in Section 16.6.1 on search, and show in fact that so long as certain
conditions are met, the choice of base type does not have as big an impact on quality as other
factors in the setup of the system.

16.2.2 Linguistic and Acoustic features

Both the target and join functions operate on a feature structure of the units and specification and
conveniently we can use the feature structure formalism forboth. The Hunt and Black framework
doesn’t limit the type or nature of the features or their values in any way, so in principle we are
able to use any features we want.

Each unit has a waveform representation, i.e. the waveform found from the recordings of the
speaker. This in a senseis the fundamental representation of the unit. In addition we can have one
or more linguistic representations, and systems differ in how these representations are created. One
common technique is to use ascript which the speaker reads during the recording session. This
script may be raw text, annotated text, or text in a form that is close to the underlying words (i.e. all
ambiguity has been removed or marked). The script can then serve as a fundamental representation
from which other features can be derived. Another possibility is to usehand labelling where a
human labeller listens or views the recordings and makes annotations, for example to show where
phrase boundaries occur.

We can view both the waveform and text representations asoriginal features and from these
we can now generate a number ofderived features. From the waveform, we can derive any of the
acoustic representations introduced in Chapter12 by usingsignal processing algorithms. From the
text we can use automatic processes to generate other linguistic representations, but significantly,
we can just treat this text as input to the TTS system and use the TTP system to generate all
the linguistic representations normally used in live synthesis. This has the advantage that the
feature structures of the units will have the same type of information as the feature structures of
the specification, which will obviously help us in assessingtheir similarity.

Unlike the units, the specification items have no acoustic representation (after it is this we
are trying to generate) and so are impoverished with respectto the units in this regard. So in
choosing features for the join function, we to some extent have an easier problem in that we have
two entities of the same type with equal access to the same information. In the case of the target
function, we have one unit with both linguistic and acousticfeatures (the unit) and one with only
linguistic features (the target).

All specification items and units then have atarget feature structure that is used in the
target function. In addition, units have ajoin feature structure , or more precisely, aleft join
feature structure and aright join feature structure , one for each side of the unit. These feature
structures can be completely separate, but it is common for features to be shared (e.g. F0 is often
used in both the target and join feature structure). As with all the feature structures we consider,
each is an instance drawn from a defined feature system, comprising defined features and their
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values which can be categorical, binary, discrete or continuous. In the following, we use the term
feature combination to refer to a unique set of values for a feature structure. If any of the features
take a continuous value there will be an infinite number of feature combinations, but for simplicity
and without loss of generality we shall assume that all features in fact take discrete values, meaning
that there is a finite set of feature combinations within boththe target and join feature systems.

16.2.3 Choice of features

In choosing our features, we are free to use any features thatcan be obtained from the utterance
structure. Of course, the whole point of building the utterance structure has been to provide the
features for use at this point, so it is putting the cart before the horse to suggest that we are fortunate
that we can pick any features we have previously derived. Rather, we should think of the process
as one of deciding what features we really want in unit selection, finding what features we can
derive from the text input, and then formulating the rest of the system so as to provide these. It is
important to stress that the rest of the system really does serve to provide features for this stage;
all too often the process of TTS design is seen as one where thefeatures are somehow set in stone
(this is particularly common in systems which just provide pitch and timing as features), or one
where the features are first produced and just fed into the unit selection with little thought as to
what is really required. In using features from the utterance we have a choice as to whether we
simply use the values as they are or perform further processing.

As we will see in Section 16.3 each feature has a distance function associated with it and if
the features are used directly, these distance functions can become quite complicated. Hence it is
sometimes appropriate to perform further processing on thefeatures to convert them into a form
that simplifies the distance function. As a simple example, let us assume that we want to measure
F0 differences logarithmically; to do this we can either usethe absolute F0 value and perform the
log conversion in the function, or convert the F0 value to logform and store this in the specification
and units, so that the distance function can be a simply difference. Often this pre-processing of
features is beneficial as this can be performed offline and saves computation effort in the distance
function calculations at run time.

In general, we should see that in terms of the target function, the richer the features we use,
the more exact we can be in our requirements. So in a simple system we may just have a feature for
stress, whereas in a more detailed system we would have features for stress, intonation, phrasing,
emotion, speaking style and so on. It should be clear howeverthat we have a fundamental tradeoff
between precision and data sparsity. If we only have a small number of features we will quite
often get exactly the feature combination we want, whereas with a large, detailed feature system
we will rarely get exact matches. The number and type of features doesn’t affect the unit selection
algorithm itself, but we should note that for detailed feature combinations the target function has
to be “cleverer”, in that as it will rarely find an exact match it will have to find close matches. This
is not a simple process as we will see in Section 16.3. Target function complexities aside, there is
still considerable scope and discretion in what features wecan and should use, and we will now
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investigate this issue.

16.2.4 Types of features

One of the fundamental problems in unit selection is that thespecification items lack the acoustic
description(s) that would make matching them with units a fairly easy process. We can approach
this problem in two ways. Firstly, we can just ignore the factthat the units have acoustic features
and just match on the linguistic features alone. Alternatively, we can try and perform apartial
synthesis, where we attempt to generate some or all of the acoustic features and then match these
with the acoustic features derived by signal processing from the waveforms.

To demonstrate the issue of choice of feature system, let us consider how to represent in-
tonation in the specification. In second generation systemsand in some unit selection systems,
this is represented solely by the F0 contour (sampled in someappropriate way). But as we saw
in Sections 9.4, 9.5, when F0 contours are generated, they are generated from other features that
have been previously calculated. As we cannot actually generate new information, the F0 contour
is clearly just a transformation of the information contained in the original features into a different
form. Hence there is noa priori reason why we can’t just use the features we use to calculate the
F0 contour directly and forgo any actual F0 calculation.

How then should we choose one approach over the other? This comes down to a tradeoff
betweendimensionality reduction andaccuracy. If we consider the possible input features to
an F0 generation algorithm, we might have stress, accentuation, phrasing, and phonetic identity.
These multiple input features give rise to a F0 value, and in doing this we can see the value of
calculating the F0 value as it very succinctly captures and effectively summarises the values of the
other features. As we explained above, having a large numberof features incurs a considerable
cost in the complexity of the design of the target function and so, on its own this dimensionality
reduction is highly desirable. However, there are potential drawbacks to representing the prosody
this way. Firstly, any algorithm attempting this transformation process is bound to make errors, and
so the generated F0 will be a less accurate representation than the original features. Because of this
we have therefore to weigh up the benefits of dimensionality reduction against the disadvantages
of inaccurate generation. This really is an empirical matter and is dependent on the particular
F0 algorithms used. Two further points influence our decision in our choice of features. If we
generate an F0 contour from the higher level features and then use that alone, we are in fact stating
that theonly influence of these features is on the F0 contour. This is a verystrong claim and as
we explained in Chapter 9 the traditional view of prosody as only being expressed in pitch, timing
and phrasing is too restricted. These high level features are also likely to influence voice quality
and spectral effects and if these are left out of the set of specification features then their influence
can not be used in the synthesiser. This can lead to a situation where the high level features are
included in addition to the F0 contour. This adds even more complexity to the target function
design as any statistically formulated target function hasto consider the statistical dependencies
between the features. Finally, it can be argued that as features such as F0 are real valued, there
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is a natural distance metric between the specification and units and this simplifies the design of
the target function. To a certain extent, this is true, but when we consider the complexities of the
perceptual comparison of F0 values (whereby for instance listeners are much more sensitive to
peak and timing F0 differences than F0 differences in unstressed syllables) we see that this may
only provide partial help.

When we consider the issue of describing units with featureswe see that to some extent the
reverse problem is apparent. With units we have the waveformand so of course measure low-level
features such as F0 and timing very accurately. It is obtaining high-level features which is harder.
To see this consider the issue of finding values for stress. This can be done either by examining
the acoustics and determining stress on that basis, or by using the stress values of the unit’s word
from the lexicon, or a combination or both. Regardless, there is still some significant chance that
an error will be made.

The choice of features is therefore dependent on many factors and we cannot a priori say
that one approach is better than the others. However we should note that that there has been a
continual move in TTS from exact specification of low level features towards using higher level
features, see for example [65], [436], [92],[448], [103]. Given this, an approach where we use
high level features and leave the influence that they have on the speech up to a trainable target
function seems to be more in keeping with the principles of modern systems.

16.3 THE INDEPENDENT FEATURE TARGET FUNCTION FORMULA-
TION

16.3.1 The purpose of the target function

We will now turn to the issue of how to design a target function. The job of the target function is to
assess the suitability of a unit, and this can be formulated as a function which when given a specifi-
cation item and unit returns adistanceor cost. While there are other possible formulations, which
for instance simply rank the candidates (no “spacing” between each candidate is given) or where
we have a generative probabilistic model where we calculatethe probability that specificationst

generates unitui , we will limit ourselves here to the distance formulation. In the most general
sense this function will return a ranked list of all the unitsin the database, each with a score, cost
or distance. In practice though, we usually eliminate from consideration any unit which does not
match the base type of the specification. In other words, if our specification is a /n-iy/ unit, we
only consider units in database which have this base type. Weterm the set of all units which match
the base type as thefull set of candidates. The size of this set varies considerable, with sometimes
only one or two units for rare cases (e.g. /zh-uw/) to large numbers (in the thousands or tens of
thousands) for common units such as /s-ax/ or /ax-ng/); an average number however might be 500.
As the total number of candidates can be quite large, sometimes only a subset of this full set is
used in the search, in which case we call this the set ofsearch candidates.
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When examining the full set of candidates, if we are lucky we may find units that are exact
matches to the specification, and these will therefore have atarget cost of zero. Usually though
we find insufficient units with exact matches or no units with exact matches. As we increase the
number of features we wish to consider, low and zero match situations become the norm, so that
often we never have exactly the units we want. In such cases wehave to consider non-matching
units, and this is where the target cost really does its work.We might ask ourselves how units with
different feature combinations from the specification willsound: surely as they have different
features the listener will hear this and decide that the speech simply sounds wrong? It turns out
that the situation is not as bleak as just portrayed for two reasons. Firstly the acoustic space which
units from a particular feature structure lie often overlaps with the acoustic space from other units.
This means that although two units may have different feature combinations they do in fact have
the same acoustic representation. This many-to-one mapping is of course what makes speech
recognition difficult; it is well known that acoustic spacesassociated with one phone overlap with
those of other phones, and this extends to different featuredefinitions within phones as well. This
leads us to one aspect of the target cost definition, namely that it should be a measure ofhow
similar two units sound. If two units sound the same to a listener, then it is safe to use one in
place of the other. Significantly, in such cases the listenerwill not realise a unit with the “wrong”
feature combination is being used. A very good demonstration of the use of ambiguity is given in
Aylett [25] who uses a normal unit selection database to synthesise a type of speech which was
completely absent from the training data.

Often however, we will have neither exact feature matches, nor units which have different
features but the same acoustics. We therefore have to use units which definitely do sound different
from the specification. This leads us to the second aspect of target cost, which is a measure of
how muchdisruption is caused when one feature combination is used instead of another. In these
cases, we are not trying to “bluff” the listener that what they are hearing is true to the specification,
but rather to choose a unit that is different but “acceptable”. This is a subtle notion and somewhat
difficult to define, but to see this consider our initial decision to restrict ourselves to just using the
matching base types. If we wished to synthesize /n-iy/ and used a unit /m-aa/ the results would be
quite disastrous and the feeling of disruption - that the speech simply sounds wrong - is very strong.
Hence matching the phonemes is clearly very important. After this, simple experimentation shows
that features such as stress and phrasing and certain context features are also important to match.
After this, we then find that often finding a unit with exactly the right context isn’t so important, as
is the case for instance in finding a unit that has slightly lower or higher F0 than we ideally require.
In a sense, this idea of minimal disruption is what inspires the design of second generation diphone
databases. There we have to use one unit for all circumstances. While we know it is impossible to
pick a unit which will cover all eventualities, we instead pick one that is safe, and that causes least
disruption when used in the “wrong” context.

We can combine the principles of ambiguity and disruption minimisation into a single gen-
eral principle ofperceptual substitutability, where the idea is to define a target cost which when
comparing specification and unit gives a measure of how well one feature combination substitutes
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for another.

16.3.2 Defining a perceptual space

Upon consideration, we see that the nature of the target function is very general. Given the feature
combinations of the unit and specification item, the function could potentially calculate a separate
distance for every single possible difference in the feature combinations. Even for a modest num-
ber of features (say 20) this can quickly run into millions ofdifferent combinations, all of which
require a distance calculation.

Two main, quite different, approaches to the target cost function have been proposed. The
first, described in this section is called theindependent feature formulation (IFF) and was pro-
posed in the original Hunt and Black paper. Since then, many variations of this have been put
forward but all can be described in the same general form. Thesecond, described in Section 16.4,
is termed theacoustic space formulation (ASF)and shares many similarities with the HMM sys-
tems of Chapter 15. The fact that there are only two main target function formulations is probably
more due to historical accidents of system development thanbecause these are particularly salient
solutions to the problem. As we shall see, we can consider a more general formulation which
encompasses both these and many other potential formulations.

To examine these two main formulations, and to show demonstrate other possibilities, we
shall adopt a general formulation based onperceptual spaces. In this, we first define a perceptual
space in which each feature combination lies. This space is defined so that we can use a simple
distance metric (e.g. Euclidean) to measure the perceptualdistances between feature combina-
tions. Secondly, we define a mapping that specifies where eachfeature combination lies in this
space.

16.3.3 Perceptual spaces defined by independent features

In the IFF, a distance for each feature is calculated independently, weighted, and then the total
target cost is calculated as a function of these. In the original Hunt and Black paper, this is given
as

T(st ,u j) =
P

∑
p=1

wp
(

Tp(st [p],u j [p])
)

(16.4)

where

st is thetth specification, described by a feature combination of sizeP.

u j is a unit in the database, described by a feature combinationof sizeP.

st(p) is the value for featurep in the specificationst . Likewise withut [p]

Tp(x,y) is a function which returns the distance betweenx andy for the values of featurep.

T(st ,u j) is the total cost between the unit and the specification.



498 Chapter 16. Unit Selection Synthesis

STRESS
PHR FINAL

false

true

STRESS
PHR FINAL

false

true STRESS
PHR FINAL

false

true

STRESS
PHR FINAL

false

true

st
re

ss
phrase final

1

10

Figure 16.2 Diagram of perceptual space for two (P = 2) dimensions. The four unique combina-
tions of the two binary features lie at the four corners of thesquare.
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Figure 16.3 Diagram of perceptual space for three (P = 3) dimensions. The eight unique combi-
nations of the three binary features lie at the eight cornersof the cube.

Hence the total target costT is aManhattan distance, calculated by summingP sub-costs,
one for each featurep in the unit and item feature structures. Another mechanism is to allow each
sub cost to be calculated using any subset of the feature structure, and so the number of sub costs
and features is not necessarily equivalent. This however can be generalised to the above case by
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pre-processing the features.
An alternative formulation is to use theEuclidean distance[450].

T(st ,u j) =

√
√
√
√

P

∑
p=1

wp
(

Tp(st [p],u j [p])
)2

(16.5)

The sub-costs define separate distance functions for each ofthe features. For the categorical fea-
tures, this may simply be a binary decision saying whether they match or not. For the continuous
features such as F0, this may be some standard difference such as absolute or log distance. Some
feature differences are seen as more important than others:this is reflected in the choice of values
for the weightswp for each feature distance.

We can visualise this using our perceptual space formulation as follows. If we take a simple
feature system where every feature is binary valued, we see that the IFF defines a perceptual space
of dimensionalityP, where each axis represents exactly one feature. The features themselves map
onto the corners of a P-dimensional hypercube in this space.This is shown in Figure 16.2 for
P = 2 and Figure 16.3 forP = 3. In these Figures, we can clearly see that the more two feature
combinations differ the greater the distance between them.Continuous features have a single axis
too, and the metric chosen to measure their difference is used to scale the axis (so if the metric is
linear, then the axis just represents the feature values in their original form). For N-ary categorical
variables, we can use a single axis if the differences between the values can be ordered. Otherwise,
we simply encode the category values into a number of binary features (so that a category with 8
values would have 3 binary features), and use an axis for eachone as before.

The relative contribution of each feature is given by the setof weightswp. These have the
effect of scaling the feature axes in the perceptual space, shown in Figure 16.4. The difference
between the Manhattan distance (Equation 16.4) and the Euclidean distance (16.5) is that in the
Manhattan case the distance is composed of distances that run parallel to each of the axes. In the
Euclidean case, the shortest line is drawn between the two points and the length of this gives the
distance.

The IFF solves the problem of the complexity of the target function by its assumption of
feature independence. If we take an example feature set of 20binary variables, we see that in
the IFF, this requires setting 20 weights, whereas in a fullygeneral system this would require
220 > 1,000,000 separate weights.

16.3.4 Setting the target weights using acoustic distances

A number of ways have been proposed for setting the weights automatically. As the Hunt and
Black algorithm is not probabilistic, we can not directly use the most standard probabilistic training
technique of maximum likelihood. We can however investigate similar types of techniques which
try and set the parameters so as to generate data that is closest to a set of training data.

A maximum likelihood approach would be to find the set of weights W = {w1,w2, ...wp}
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that generates utterances which are closest to the trainingdata. To do this we require a distance
metric that measures the distance between a synthesised utterance and the natural utterance. As we
shall see in Section 16.7.2, defining such a distance is a difficult problem as it is in effect the same
problem as defining the target function itself; a good distance would be one where utterances
which are perceptually similar would receive a low score. For the time being however, let us
assume that we do in fact have a distance functionD that can tell us how similar two utterances
are. A further complication arises because the unit selection system isn’t a generative model in
the normal probabilistic sense. Rather it is a hybrid model that uses a function to select units
(which is not problematic) but then just concatenates the actual units from the database, rather
than generating the units from a parameterised model. This part is problematic for a maximum
likelihood type of approach. The problem arises because if we try and synthesise an utterance
in the database, the unit selection system should find those actual units in the utterance and use
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those. Exact matches for the whole specification will be found and all the target and join costs
will be zero. The result is that the synthesized sentence in every case is identical to the database
sentence3.

The solution to this then is to use aheld out test set, where we leave out say 10% of the
training data, and train on the remainder. When we now attempt to synthesize the test set, these
utterances aren’t of course present in the unit database andso meaningful synthesis is performed.

The Hunt and Black paper proposes this technique and uses a linear regression method to
set the weights. In one experiment they use a separate set of weights for each base type. For
each unit in the held out test set, they find theN closest units in the training data using a distance
metricD, which in their case is just the Euclidean distance between the cepstra of the original and
synthesized utterance. These are taken to be the units whichwe wish the target function to find for
us. A linear regression algorithm is then used to train a function that predicts the distances from
the sub-costs. The weightsW of this linear regression are then taken to be the sub-cost weights
themselves. In principle any function learning technique could be used in this manner, the idea
is to design a function that predicts the distances from the sub-costs and then use this to directly
or indirectly set the weights. Other approaches include theuse of neural networks [131], genetic
algorithms [9] and discriminative techniques [385].

Perceptual approaches

The weakness of the left-out data approach is that we are heavily reliant on a distance function
which we know only partially corresponds to human perception. A number of approaches have
therefore taken been designed to create target functions that more directly mimic human percep-
tion. One way of improving the distance metric is to use an acoustic representations based on
models of human perception; for example Tsuzaki [457] uses an auditory modelling approach.
But as we shall see in Section 16.7.2, even a distance function that perfectly models human au-
ditory perception is only part of the story; the categoricalboundaries in perception between one
discrete feature value and another mean that no such measureon its own can sufficiently mimic
human perception in the broader sense.

A more “global” perceptual technique is that to use real human judgments of similarities
between units to assist in the design of the target function.The most comprehensive approach to
this was proposed by Lee [292] who has listenersrank sentences and then trains a model to predict
the rankings. The parameters of this model are then taken as the weights. Although the actual
training technique is different (thedownhill simplex method as opposed to linear regression), the
framework of this is somewhat similar to the original Hunt and Black technique. The difference
now is that the system is trained to predict real human perception, not a distance based on acoustic

3 In fact, synthesising the training data is a very useful diagnostic tool in unit selection. In all cases, if we synthesizea
sentence in the training data, the speech synthesised should be exactly that that was recorded. If the unit selection picks
different units then this is often indicative that something has gone wrong. A common cause for this is that the TTS
system has produced different pronunciations, or that the prosody generated is very different from the natural prosody.
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measurements. Another approach is that advocated by Wouters and Macon [497] who played
listeners sets of pairs of words with one phoneme different and ask them to rank the differences.
In principle this technique could be extended to any difference in values for a feature, and the
resulting data would be a truly accurate reflection of human judgment of sound substitutability.
Toda et al [449] use a technique which uses subjective evaluations of individual sub-costs to train
the weights.

The only drawback with perceptual techniques is that they can be timely to implement, as
human subjects are involved in the training process. It can be argued however that the weights in
the IFF are in fact largely independent of the particular database being used; so once the weights
are found they can be used again, or as time goes on more and more experiments can be performed
which will add to the total quantity of data available for training.

Tuning by hand

A final approach to “training” the weights is to not attempt any automatic training at all but to
simply set the weights “by hand” [65], [108], [99]. Typically a system designer listens to some
synthesis output and using a mixture of previous knowledge and results from this listening, sets
each weight individually. Such an approach is of course anathema to all that we believe in the
modern world of machine learning, statistics and science, and it can be claimed that this is a
retrograde step back to the setting of rules by hand in formant synthesis.

We can however justify this approach to some extent. Firstlythere is significant evidence that
this produces the best results (and of course the real reasonwhy we believe in statistical rather than
knowledge based approaches is actually because they give better results). It should also be stressed
that in a typical system there may only be 10 or 20 weights, andthis is a manageable amount for
a person. By comparison with setting rules by hand in formantsynthesis, all we are doing here is
biasing a data driven system in a particular direction, and the setting of a few parameters is a long
way from settingeveryparameter by hand.

A final point is that nearly all machine learning approaches adopt anequal error rate ap-
proach to learning, in which one classification error is as bad as another. In real life of course,
we know this to be false (consider the relative importance ofrecognising the word “not” in the
sentence “I am definitely not guilty”), but this simplification is adopted in many machine learning
tasks with the idea that biases reflecting different degreesof error can be set independently. The
advantage of setting the weights by hand is that by using global judgments about how good the
speech sounds, we are implicitly defining which features aremost important to get right. As we
saw in Section 16.3.1, we can rank the importance of featuresindependent of any acoustic dis-
tances. This is probably most evident in word identity; no matter what effects the other features
have, any feature which causes a mis-recognition of a word islikely to be regarded as particularly
important to get right. When humans tune a system “by-hand” they are implicitly making judg-
ments of this type and incorporating them into the weights, and it is possible that it is this that is
responsible for the high quality of systems which set the weights by hand.
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16.3.5 Limitations of the independent feature formulation

The main design feature of the IFF is that it assumes the features operate independently. This
ensures that the number of parameters (weights) to be determined is very low, and hence easy
to learn from data or set by hand. The formulation doesn’t in general suffer from sparse data
problems, as there are nearly always enough examples of eachfeature present in the data.

The assumption that features operate independently is however very strong, and it is not
difficult to find instances where this falls apart. The starkest demonstration of this is that two
different feature combinations will always have a non-zerodistance: this clearly contradicts what
we know from above, namely that ambiguity is rife in speech and that there are frequent cases of
different feature combinations mapping to the same acoustics (and hence same sound). So long as
a weight is not zero (which would imply that that feature is irrelevant in every single case) the IFF
ensures that we can not make use of the power of ambiguity.

To show a real example of this, imagine our simple two featuresystem as shown in Figure
16.2. From this, we see that the feature combinations:
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give the largest distance (regardless of whether Manhattanor Euclidean distances are used).
In fact, it is well known that stressed and phrase final versions of a phone are longer than

the unstressed and non-phrase final versions. Imagine for sake of demonstration that both these
features double the length of the phone, then we would expectthe following duration values for
each feature combination:
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This clearly shows that
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both have the same duration value, which means that one is well suited to be used in place of the
other. But as we just saw the IFF gives the largest distance tothese, and furthermore, gives the
samedistance to two feature combinations which are entirely unsuitable.

These problems arise from the very severe constraints the IFF puts on the nature of features,
by insisting that all feature combinations with the same value for one feature lie on a single line.
It fails to take into account any interaction between features, and therefore is unable to make use
of ambiguity and other complex aspects of the feature to acoustic mapping.

16.4 THE ACOUSTICSPACE TARGET FUNCTION FORMULATION

Theacoustic space formulation (ASF)is a quite different way of defining the target function, so
different in fact that often it is regarded as a completely different way of performing unit selection.
This approach attempts a different solution to the problem of the specification items lacking an
acoustic description. The formulation uses apartial-synthesis function to synthesize an acoustic
representation from the linguistic features. Once this acoustic representation is obtained, a search
is used to find units which are acoustically similar to it. In general, the partial-synthesis function
do not go “all the way” and generate an actual waveform; this would amount to a solution of
the synthesis problem itself. Rather, an approximate representation is found, and synthesis is
performed by using real units that that are close to this.

We can also describe the ASF using the idea of perceptual spaces. The key idea of the ASF
is that an existing, predefined, acoustic space is taken to bethe perceptual space. Thus, rather
than define an abstract perceptual space, we use one that we can measure directly from speech
data. Often the cepstral space is used, but in principle any space derivable from the waveform is
possible. In the acoustic space, the distance between points is Euclidean, so that the only issue is
how to place feature combinations within this space. In the case of feature combinations for which
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we have plenty of units, we can define adistribution for this feature combination which we find
from the units. This can be done in a number of ways, but an obvious way to do this is to use the
observations to build an hidden Markov model (HMM). The simplest HMM would have one state,
whose observations would be modelled with a single multivariate Gaussian [54]. The means and
variances of this Gaussian can be calculated directly from the units in the usual way (i.e. Equation
15.17, 15.18). As the speech representing the feature combination will have dynamic properties, it
is also natural to consider using more than one state in the HMM; common choices are to use three
states as is standard in ASR [140], [138]. If a diphone base-type is used, we should also consider
using one state for each half of the unit. From these parameters, we can easily measure the target
cost by measuring the distances, in acoustic space, betweenthe model and any unit. The only
remaining problem now is how to calculate the distance if oneor both of the feature combinations
is unobserved.

16.4.1 Decision tree clustering

The key part of the ASF is the design of a partial-synthesis function that can take any feature
combination and map it onto the chosen acoustic space. The most common way of doing this is to
use the decision tree method, in more or less the same way it isused in HMM (see Section 15.1.9).
As context accounts for a significant level of variance within a phone model, using separate phone
models for each possible context greatly reduces the overall variance of the models. The problem
faced however is that while many of the required models have few or no observations in the
training data, their parameters still have to be estimated.The similarity with our problem can now
be seen: if we describe HMM context in terms of features, we see that the problem in ASR is one
where a set of model parameters are required for each unique feature combination, many of which
have not been included in the training data, whereas in unit selection the problem is we require
a distance between each unique feature combination, again many of which have not been seen in
any training data. In the ASF of unit selection, the decisiontree is trained in just the same way
as with HMMs, the only difference being that “prosodic” features such as stress, phrasing and so
on are included. While the method just described is now more or less standard, it is important to
note that the decision tree method itself is based on thecontext oriented clustering technique,
developed for speech synthesis by Nakajima and colleagues [327], [326]. This was later extended
and incorporated into the ASR-style decision tree method byDonovan and Woodland [140]. Other
systems of this type include [54], [115], [355], [220], [197], [381].

The usefulness of the tree is that it provides natural metrics of similarity betweenall feature
combinations, not just those observed. The clever bit is that the tree will always lead us to a
cluster even for feature combinations completely missing from the data. As with observed feature
combinations, we can just measure the distance between the means of these to give us the value
for our target function.

The main benefit of the ASF is that it does not assume that the features operate independently.
This therefore avoids two of the weakness of the IFF. Firstlywe can define complex feature depen-
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Figure 16.5 Diagram of 4 feature combinations lying in acoustic space, where only 2 dimensions of
the high dimensional acoustic space are shown for clarity. Note that unlike Figure 16.4, the positions of
the feature combinations are not determined by the feature values but rather by the acoustic definitions
of each feature combination. Hence, these can lie at any arbitrary point in the space. In this case, we
see that two feature combinations with quite different values lie close to each other, a situation which
would not be possible in the IFF. The dotted ellipses indicate the variances of the feature combinations,
which are used in some algorithms to measure distances.

dencies. Secondly, we can use ambiguity in speech to our advantage; it is the acoustic similarity
of two different feature structures which allows us to buildcomposite models in the first place. If
we compare Figure 16.7 to Figure 16.4 we see that now the positions of the feature combinations
are not defined by the values of the features, but rather by theacoustic space and the feature to
acoustic mapping. In Figure 16.7 we see that the two feature combinations which have no feature
values in agreement but which nonetheless sound very similar are now in fact close to each other
in the perceptual space.

We have some degree of choice as to how we actually use the decision tree to form the
target function. Firstly, we could just accept the units in the chosen cluster as candidates and
leave the process at that. An addition to this is to score eachunit in terms of its distance from
the cluster mean [54], in an attempt to somehow reward typical units within the cluster. If the
cluster size is small however, these approaches may lead to only a small number of units being
used as candidates. Alternatives include going back up the tree and accepting leaves which are
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Figure 16.6 Diagram of 4 feature combinations lying in acoustic space, where only 2 dimensions of
the high dimensional acoustic space are shown for clarity. Note that unlike Figure 16.4, the positions of
the feature combinations are not determined by the feature values but rather by the acoustic definitions
of each feature combination. Hence, these can lie at any arbitrary point in the space. In this case, we
see that two feature combinations with quite different values lie close to each other, a situation which
would not be possible in the IFF. The dotted ellipses indicate the variances of the feature combinations,
which are used in some algorithms to measure distances.

neighbours to the current one. Again, these can be given someextra cost to show that they are
further away from the specification than the original cluster. Finally, is its possible to expand any
cluster without reference to the tree. To do this, we decide how many candidates we require and
then simply find the nearestN units to the mean of the cluster. This can be done with or without
using the variances of the cluster.

16.4.2 General partial-synthesis functions

There are two main weaknesses to the decision tree technique. Firstly the assumption that an
acoustic space such as the cepstral space is a good approximation of the true perceptual space is
a very strong claim; we examine the full extent of this problem in Section 16.7.2. The second
weakness is a consequence of using decision trees and is not aweakness of the ASF itself. The
basic problem is that the decision tree divides the observations into fixed clusters by only taking
into account the particular feature combinations which areobserved: no thought is given to the
general shape of the space or the properties of the missing feature combinations. The decision tree
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(a) Decision tree behaviour of ASF for unobserved
feature combinations. In this figure, we have a
feature combination whose true position is given
by the point X. In the decision tree formulation,
we find the cluster which has the most feature val-
ues which match the unobserved feature combi-
nation. Once found, we use this cluster “as is” (in
effect we set a pointer from the unobserved feature
combination to the chosen cluster). All the units
in this cluster are used, even though some are a
considerable distance from the true value and are
further away than units in other clusters.
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(b) General projection function behaviour of ASF
for unobserved feature combinations. In this case,
we use a general function to generate a valueX̂
which is an estimate of where the unobserved
feature combination should lie in acoustic space.
Given this, we then find the closestN units, which
are shown in bold inside the ellipse. This tech-
nique has the advantage in that it finds the units
which are closest to the predicted value, and not
simply a whole cluster for a different feature com-
bination.

Figure 16.7 .

effectively assigns each missing feature combination to anobserved cluster; in computer terms we
can think of this as being a “pointer” from the missing feature combination to an observed one.
With this however it is possible to find a better set of units for the unobserved feature combination
by building a new cluster that doesn’t necessarily correspond to any existing one. This is shown
schematically in Figure 16.7a.

An alternative to the decision tree approach is to train a function that estimates an acoustic
point directly for a given feature combination. The difference between this and the decision tree
approach is that while the decision tree function gives an acoustic point for every feature combi-
nation, all the feature combinations which share the feature values in a branch of a tree are given
thesamepoint. In the general approach, all feature combinations can in principle generate unique
points in acoustic space, and so there is no assumption of equivalence. Given this generated point,
it is possible to find the closest N points to this and therefore form a new cluster. This is shown
schematically in Figure 16.7b. One solution to this is to usea neural network to learn this function
[437]. It can be argued that despite some often noted disadvantages to these algorithms, neural
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networks are quite suited to this task as they can easily accommodate binary input and generate
continuous vector output. The strength of the neural network is that it can learn the idiosyncrasies
of certain feature combinations while generalising over others. The use of a neural network is
only one possible solution to this; in principle any function learning algorithm could be used for
this task. While this helps solve the problem of the fixed clusters, it is still however reliant on the
assumption that the acoustic space is a good approximation to the true perceptual space.

16.5 JOIN FUNCTIONS

16.5.1 Basic issues in joining units

The purpose of the join function is to tell us how well two units will join together when concate-
nated. In most approaches this function returns a cost, suchthat we usually talk aboutjoin costs.
Other formulations are however possible, including thejoin classifier, which returns true or false,
and thejoin probability , which returns the probability that two units will be found in sequence.

Before considering the details of this, it is worth making some basic observations about
concatenation in general. We discussed the issue of micro-concatenation in Section 14.7, which
explained various simple techniques for joining waveformswithout clicks and so on. We also
use these techniques in unit selection, but now because the variance at unit edges is considerably
greater, we can’t use the concatenation method of second generation systems which solved this
problem by only using very neutral, stable units. Instead the because units have considerable
variability, we now also have to consider the issue ofmarco-concatenation, often simply called
the join problem.

Knowing whether two units will join together well is a complex matter. It is frequently the
case however that we do in fact find a “perfect” join (that is one that is completely inaudible). We
stress this as it is often surprising to a newcomer to TTS thatsuch manipulations can be performed
so successfully. Of course, many times when we join arbitrary sections of speech the results are
bad; the point is that there are a considerable number of cases where speech from completely
difference sentences and contexts can be joined with no audible join whatsoever. We strongly
suggest that anyone involved in unit selection should spendsome time just playing around with
joining waveforms in this way. Furthermore, when we examinesome objective representations
of the speech, such as the spectrogram, we canvisually clearly observe the join, but not audibly.
We mention these facts to show that in many cases considerable separation and recombination of
speech can be achieved with no noticeable effects; and this is of course a fortunate outcome for
our general concatenation framework.

The join feature issue is considerably more straightforward than with target features. Firstly,
we have access to both linguistic features and the true acoustic features; secondly as all units have
had their features measured and derived in the same way, we don’t have to worry about issues of
comparing generated acoustic values with ones determined by signal processing. In addition to



510 Chapter 16. Unit Selection Synthesis

Broad phonetic class Percentage of joins detected
Liquid 54.7
Glide 54.7
glottal fricative 54.3
nasal 47.4
unvoiced weak fricative 35.3
voiced weak fricative 23.3
unvoiced strong fricative 22.2
voiced strong fricative 13.6

Figure 16.8 How detectability of joins varies with phonetic class. FromSyrdal [428].

these “theoretical” advantages, experience has shown thatjoining units can be easier in practice:
in the best systems often there are virtually no bad joins.

The basic principle of the join cost is to use the features from the two units to decide whether
the join will be good or not. While this forms the basis of mostcalculations, it is common to
employ an additional “trick” whereby we use a separate routeand always assign a zero join cost
to any two units which were neighbouring in the original data. As these two units were “joined”
originally, we know that they form a perfect join and receivea cost of 0, regardless of what the
features or join cost proper tells us. This is a powerful addition, and it biases the search to choose
sequences of units that were originally concatenated. Thuswhile nearly all the joins we consider
in the search are chosen by the join cost proper, when we consider the joins of the units which are
actually chosen, we find many have be calculated by this othermethod.

In the following sections we describe techniques for deciding how well two units join, and
limit ourselves to doing this solely on the properties of theunits. In addition to this, we can also
use the techniques mentioned in Section 14.7 where we explored further techniques for smoothing
and interpolation of the units on either side of the join.

16.5.2 Phone class join costs

A significant factor is the type of phone that is being joined.In the formulations which join
in the middle of phone (e.g. diphone, half-phone) we are always joining units which share the
same phone across the boundary (e.g. we join a /s-iy/ to a /iy-n/). The identity of this phone has a
significant impact on the quality of the join as it appears that some phones are more sensitive and
others more robust to being chopped and recombined.

Syrdal and colleagues have conducted extensive formal studies of these effects [426], [428]
and showed that there is a basic hierarchy of phone classes, ranked by how often listeners can
detect a join. The results of this are shown in Table 16.8 and show that, regardless of the actual
units involved some phone types simply join better than others. Informally, we can think of this
as a type of “prior” on the join cost, which is used to bias the search to pick joins which fall in
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Euclidean Absolute Mahalanobis
MFCC 0.6 0.64 0.66
MFCC +∆ 0.55 0.55 0.50
LSF 0.63 0.64 0.64
LSF +∆ 0.63 0.64 0.58
Formant 0.59 0.58 0.55
Formant +∆ 0.46 0.46 0.62

Figure 16.9 Correlation of perceptual ratings of “goodness” of join with various acoustic measures
and distance functions for a single vowel /ey/. From Vepa et al [472].

the low detection classes (i.e. fricatives). Thisphone class join costshould play an important
part in any well designed join cost function; such an approach is taken by Bulyko and Ostendorf
[74] who use a phone class cost (termedsplicing cost in their paper) in addition to other costs
measured between actual units.

16.5.3 Acoustic distance join costs

It is clear that the acoustic differences between the units being joined have a significant
impact on how successful the join will be, and this observation is the basis of theacoustic distance
join cost. Perhaps the simplest way of implementing this is to comparethe last frame in the left
diphone with the first frame in the right diphone. For instance in Hunt and Black [227], two
cepstral vectors are compared.

This on its own is known to produce a number of bad joins, whichhas prompted an area
of research in which researchers have examined various acoustic measures and distance metrics.
Several studies investigated these with the aim of seeing which agreed best with human perception.
In doing so, two main approaches were used. In Klabbers and Veldhuis [250], [251], and Syrdal
[426] [428] the perceptual studies focused on asking listeners whether they could detect a join. A
second approach, used in Wouters and Macon, and Vepa et al [472] [470] [471] asked listeners to
rate the quality of the join on a scale. A typical set of results for this second approach is given in
Table 16.9.

Among the acoustic representations investigated were:

1. Cepstral coefficients (Section 12.3) [496]

2. LP Cepstral coefficients (12.5.6) [496]

3. Mel-scaled cepstral coefficients (MFCCs) (Section 12.5.7) [251], [472]

4. Line spectral frequencies (Section 12.5.5) [496], [472]

5. Perceptual linear prediction (Section 12.5.8)

6. Formants and formant like measures [472]

7. Linear prediction log area ratios (Section 12.5.4) [496]
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Among the metrics used to calculate the distances include:

1. Manhattan distance

D =
N

∑
i=1

abs(xi −yi)

2. Euclidean distance

D =

√
N

∑
i=1

(xi −yi)2

3. Mahalanobis distance. The Euclidean distance treats allcomponents of the vector equally,
whereas the Mahalanobis distance computes a distance whichscales each component by the
inverse of its variance. It can be thought of as a measure which normalises the space before
computing the distance.

D =

√
N

∑
i=1

(xi −yi

σi

)2

4. Kullback Leibler style distances. The Kullback Leibler divergence is a measure of “dis-
tance” between two probability distributions. From this, we can derive an expression which
calculates the distance between two spectral vectors [251], [472]:

D =
N

∑
i=1

xi−yi)log
xi

yi

16.5.4 Combining categorical and and acoustic join costs

The above studies shed interesting light on the relationship between acoustic measures and their
perception, but they also show that there seems to be an upperlimit as to how far this approach
can go. From Table 16.9, we see that thebestcorrelation between an acoustic cost and perceptual
judgment is only 0.66, which is far from the type of correlation that we would be happy to accept as
a scientific rule. Given the number of studies and that nearlyall the well known acoustic measures
(MFCCs, LSFs, formants etc) and all the distance metrics (Euclidean, Mahalanobis, Kullback-
Leibler) have been studied, we can be fairly sure that this area has been thoroughly investigated
and that combination of features and distance metric is likely to significantly improve on the results
in Table 16.9.

While it is possible that the distance metrics are at fault, amore likely explanation is that the
acoustic features alone don’t contain the information required. If we think about joins as a purely
low level phenomenon, this may be surprising, but in fact by only concentrating on acoustics we
may be enforcing low costs on units which are quite differentfrom a purely linguistic perspec-
tive. Recall from Section 7.3.2 that often the acoustic differences between linguistic categories are
slight, but as the listener always perceives these categorically, a slight difference across a category
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boundary may cause a big difference in perception. Hence small acoustic differences within cat-
egories may be fine, small acoustic differences across categories may not. The obvious thing to
do is to therefore include categorical/linguistic information in the join cost. By doing this, we are
saying that units which share the same stress value, or the same general phonetic context are likely
to produce good joins. Some systems have based their join costs entirely on linguistic features
[65], [14], [441], [442], and often the quality of the joins in these systems are as good as those
that use purely acoustic measures. A more common approach isto use a mixture of acoustic and
categorical features in the join cost [74], [108], [210], [427]. As far as we are aware, only one
serious study by [427] has looked at join functions which usecategorical features and this found
that the use these features in addition to acoustic featuresmade significant improvements.

One possible reason for this is that acoustic distances are limited in that they usually only
consider frames near the join, whereas we know that context effects can be felt over a distance of
two or three phones. As the categorical features often operate at the phone level or above, they
compensate for the short term nature of the acoustic features. As Coorman et al [108] state, it is
well known that vowels followed by an [r] are heavily influenced by the [r] and this fact alone is
useful in designing the join cost (where we could for instance have a sub-cost which states that
units to be joined should either both have an [r] context or both not have an [r] context). Syrdal
[427] investigates the listener responses of a mixed system.

16.5.5 Probabilistic and sequence join costs

Another way of improving on the basic acoustic distance joincost is theprobabilistic sequence
join function , which takes more frames into account than just those near the join. Vepa and King
[470] used a Kalman filter to model the dynamics of frame evolution, and then converted this into
a cost, measured in terms of how far potential joins deviatedfrom this model. A full probabilistic
formulation, which avoids the idea of cost altogether was developed by Taylor [438].

The Taylor technique uses a model which estimates the probability of finding a sequence
of frames, with the idea that if we find a high probability frame sequence across a join, this
indicates a natural sequences of frames which in turn implies a natural join. The model uses an
n-gram approach of the type used for HMM language models (seeSection 15.1.6). N-grams work
on discrete entities, and so frames have to quantised as a pre-processing step. This is done via
a codebook of the type used in discrete probability HMMs [511], [367], which uses a bottom
up clustering to quantise the data, followed by a mapping, which assigns any frame a number
corresponding to its nearest cluster. Given this, we can calculate the probabilityP(O) of observing
a sequence of frames:

P(O) = P(o1,o2,o3, ...oM)

The idea is to measure the probability of this for the sequence of frames across every pair of
candidate units across a join, and use the result as a measureof join quality in the search.P(O) is
too difficult to estimate in full, so we make the n-gram assumption and estimate this on a shorter
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sequence of frames (say 2 before and 2 after the join). The powerful thing about this approach is
that the model can be trained on all the data in the speech database, and not just examples near unit
boundaries. This often results in many millions or tens of millions of training examples, which
means that robust estimates ofP(O) can be obtained.

The general probabilistic sequence join function approachhas a number of advantages.
Firstly, it gets around a core weakness of the acoustic distance technique. There, frames which
are identical have a zero cost, and this in general is the onlyway in which a zero join cost can be
achieved. But in real speech, we see that this is hardly ever observed: the speech signal is changing
from frame to frame. The key point is that in natural speech, while the signal evolves from frame
to frame, all these frames “join” perfectly: in other words,if we separated these frames and re-
combined them, the joins would be perfect. But in none of these cases would the acoustic distance
between the frames be zero. Thus we have an enormous number ofcases where the perceptual cost
is clearly zero but the acoustic cost as measured by acousticdistances is not zero. This is shown
up in the trick whereby we set the join cost of units which wereoriginally side by side to be zero
(Section 16.5.1). While this is a very useful addition to theoverall system, it shows the inherent
weakness of an acoustic distance join cost, as naturally neighbouring units rarely get a zero cost
as calculated by that method. Secondly, we know that dynamicinformation is often important
in speech. While we can use dynamic features in an acoustic distance join cost, the probabilistic
sequence join function models this more directly. Finally,the probabilistic sequence join function
gives us a probability rather than a cost. Vepa and King [470]convert this back into a cost and use
in the standard way, but Taylor [438] shows this can be kept asa probability, which is one way of
formulating a unit selection system based on probabilitiesrather than costs.

Bellegarda [39] describes a join cost algorithm which uses sequences of frames, but in a quite
different way. Bellegarda’s approach defines a function foreach type of join, which in a diphone
system would be one for each phoneme. This technique is particularly interesting in that it works
on waveforms, and not any derived acoustic representation.This is so that the technique can solve
not only the macro-concatenation problems normally associated with join costs, but also micro-
concatenation problems such as phase mismatches. The algorithm works by forming a matrix for
each type of join where the rows represent the frames and the columns the instances of units. This
matrix captures all the acoustic information relevant to that type of join. Because the data is stored
as raw waveforms direct comparison is inadvisable (for all the usual reasons) and so a real valued
transform is performed by means of asingular value decomposition (SVD).The join cost is then
measured using the cosine of the angle between two vectors inthe matrix. The reason for using an
SVD is that it transforms the waveforms into representations where the most salient parts are most
prominent, but does so in a way that does not throw away phase information as would be the case
with any measure based on Fourier analysis. Bellegarda reports that this technique significantly
outperforms standard acoustic measures such as MFCCs in listening experiments.
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(c) The situation where the liner
region is negligibly small, mean-
ing that the join cost function ef-
fectively becomes a join classifier
where every join is either “good”
or “bad”.

16.5.6 Join classifiers

Another angle on the problem of why acoustic measures and perception correlate so badly is
to consider whether the notion of a joincost is really the correct formulation in the first place.
Coorman et al [108] show that using costs directly often contradicts basic properties of human
perception. They argue that it is good policy to ignore any objective cost differences below a
certain value as humans will not perceive such small differences. Additionally, they argue that
above a certain value, the costs are so high as to make any distinction between one high cost and
another meaningless: once the join sounds “terrible” thereis no point in making the distinction
between this and an even worse pair of units whose join is “truly appalling” etc. We can term
these thresholds thefloor value and theceiling value; their affect on the cost function can be seen
in Figure 16.5.6 and this formulation can apply to both target and join costs. For the case of join
costs this shows that there are basically three regions; thefirst where all units join perfectly, the
middle where units join well to a greater or lesser degree, and the third region where all units join
badly.

A more extreme view is to consider the middle region very small, such that we take the view
that units either join together well (we can’t hear the join)or they don’t (we can hear the join).
Then, the join cost becomes a function which returns a binaryvalue. Another way of stating this
is that the join function is not returning a cost at all, but isin fact aclassifierwhich simply returns
true of two units will join and false if they don’t. To our knowledge Pantazis et al [345] is the only
published study that has examined this approach in detail. In that study, they asked listeners to tell
if they could hear a join or not, and use this to build a classifier which made a decision based on
acoustic features. In their study, they used a harmonic model as the acoustic representation (see
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Section 14.4.2), and Fishers linear discriminant as the classifier [160],[45], but in essence, any
features or classifier would be amenable to this approach.

As with all the studies which directly use perceptual evidence, the amount of data available
for training is often very limited due to the high cost of collection. It is possible however to
consider classifiers which do not rely on making human judgments. Thissequence join classifier
has a similar philosophy to the probabilistic sequence joinfunction. We use the fact that our
entire speech corpus is composed of large amounts of naturally occurring perfect “joins”, as every
single example of two frames found side by side is an example of such. Therefore we have three
situations;

1. Two frames which occurred naturally and therefore form a good join.

2. Two frames which did not occur naturally but form a good join

3. Two frames which did not occur naturally but form a bad join

The goal of this approach is to use the data of case 1 (which we have plenty of) to build a classifier
that separates cases 2 and 3. In naturally occurring speech,we have of course only data of type 1,
but there are in fact machine learning techniques which are trainable on only positive data, or large
amounts of positive data and a small amount of negative data,which can be obtained as before
[298]. To our knowledge this approach has not been tried, butshould be worthy of investigation
as the very large amount of training data should allow for a robust classifier to be built.

16.6 SEARCH

Recall that in the Hunt and Black algorithm (Equations 16.2 and 16.3) the total cost of one se-
quence of units from the databaseU =< u1,u2, ...,uT > with the specificationS=< s1,s2, ...,sT >
is given by

C(Û ,S) =
T

∑
t=1

T(ut ,st)+
T

∑
t=2

J(ut ,ut−1) (16.6)

This calculates the cost for just one possible sequence of units. Our goal is of course to find the
single sequence of units in the database which gives the lowest cost:

Û = argmin{
T

∑
t=1

T(ut ,st)+
T

∑
t=2

J(ut ,ut−1)} (16.7)

and the issue of unit selection search concerns how to find this one best sequence of units from all
the possible sequences.

To give some idea of the scale of this, consider a typical casewhere we have say 20 words
in the input sentence which gives rise to 100 diphone items inthe specification. If we have 100
units for each diphone, this means that there are 100100 = 10200 unique possible sequences of
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t−a

t−a

t−a a−n

a−n

a−n

Figure 16.10 Diphone search, where every unit which has edge matches are linked in the network.

diphones. If we calculated Equation 16.2 for every sequencethis would still take an astonishing
length of time regardless of computer speed4. Luckily, we can employ the well knowndynamic
programming algorithm, a speciality of which isViterbi algorithm described in Section 15.1.5
This algorithm operates inN2T time, whereN is the number of units, andT is the length of the
specification sequence. This algorithm takes linear time inT, which is obviously an improvement
on the exponentialNT time of the exhaustive search.

As described in Section 15.1.5 the Viterbi algorithm seeks the highest probability path
through an HMM network. The only real difference between that and unit selection search is
that here we are trying to find thelowestcost path. This is in fact a trivial difference, and so the
Viterbi algorithm as previously described can be used directly to find the lowest cost sequence of
units in unit selection.

16.6.1 Base Types and Search

On the surface, it seems that the issue of what base type we should pick for our system (e.g.
phones, diphones, half-phones etc) is a fundamental designchoice. Here we will show that in fact,
so long as certain conditions are met, the choice of base typedoes not greatly affect the quality of
the final speech, but is really an issue of size and speed in thesearch.

Consider again the case of a diphone unit selection system. In a well designed system with
a good database, we should have at least one example of nearlyevery diphone. However, even in
the best systems it is sometimes the case that we have missingdiphones in our unit database, and
we need to be able to synthesize these at run time. A potentialsolution is to use the same approach
to missing data that we used in the target function formulation. Recall there that the problem was
that while we had plenty of examples of units for the requiredbase type, we did not have all of
the possible feature combinations within this. As this problem seems similar, one solution would
therefore be to use decision trees; adopting this for missing base types would mean for instance
that if we were missing the diphone /t-i/ we would simply use the units from a similar diphone,

4 For example if we could perform 10000 calculations per second, it would still take about a billion times the known
length of the universe to calculate all the costs. (This assumes that the universe is 16 billion years old. For those
creationist readers, the number is even larger!)
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Figure 16.11 Ergodic half-phone search. Here a-(n) means a half phone unit of the second half
of [a] in the context of a following [n], and n-(a) means a halfphone unit of [n] in the context of a
preceding [a].
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Figure 16.12 Partially connected Half phone search. Here only half-phones which match on con-
text are linked; this network is equivalent to the diphone network of case (a)

say /t-iy/. Experience however has shown that this approachis rarely successful; while listeners
may be “fooled” by using one feature combination instead of another, using an entirely different
phone combination is simply going too far; the listeners often hear this substitution and may even
misrecognise the word because of this.

An alternative solution, which we will adopt here, is calledunit back off . In this, weman-
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ufacturenew units from pieces of existing units. Thus instead of using a /t-iy/ unit instead of a
/t-ih/ unit, we instead use only the first part of /t-iy/, and join this to the second half of a /d-ih/ unit
to create the required /t-ih/ diphone. There is no standard way of doing this, but as the number of
missing diphones is often small, it is not too difficult to specify how to build the missing diphones
by hand. As in the example just given, we can use criteria suchas place of articulation to guide
us, and so advocate using a /d/ instead of a /t/.

In effect, for our missing diphones, we are using a half-phone solution. We maintain phone
identity, but use diphones where we have them and half phoneselsewhere. Now consider a half-
phone system in which we can assume that there are no missing half-phones (which is a fairly
safe assumption as we only have 2N base types for half phones but just less thanN2 base types
for phones, where N is the number of phonemes). In the construction of the diphone lattice, it is
standard to allow only diphone units whose base type matchesthe specification. In other words,
in the lattice all edges match in phone identity to be considered, so for instance if we have a set of
/t-ih/ candidates in slott, we will only consider diphones starting with /ih/ in slott + 1. In a half
phone lattice, we have more flexibility, in that while it makes sense that the phone middle of each
half phone must match across the boundary, we can in principle join any half-phone at the other
edge. This is shown in Figure 16.11. This would be the most general formulation, but if we adopt
this we see that the number of possible joins to be calculatedat each time slot is now very high.

If we haveN phonemes in our system, we will have 2N half phone base types, andN2

diphones. Assuming we have on average 500 units for each diphone base type, we would have on
average 250N units for each half phone base type. Thus if we consider every unit which matches
the specification, we now have 250N units at each time slot in the search for half-phones, compared
with 500 for diphones, so ifN = 40 this means we have, 10000 units, ie 20 times more units at each
slot. Given that the join function is calculated over every combination of units at a join, this means
that instead of 5002 = 250,000 join costs to calculate we now have(250N)2 = 100,000,000 joins,
400 times more. These calculations are of course for the samesized database, which means that
just by changing the base type, we now have to compute 400 times more join costs.

To speed up the search when dealing with half-phones, it is possible to restrict the type of
units for which we calculate the join cost. The simplest way to do this is to restrict the numbers of
joins in base types with plenty of units, so as only to consider joining units which have a matching
context at their edge. So for example, if we have a /-i/ half phone unit that is followed by a /t/ in the
original data, we only consider joining this to /t-/ units which are proceed by an /i/ in the original
data. We do this for all base types which have more than a threshold N number of units. For this
below this, we consider more and possible all possible joins. This is shown in Figure 16.12.

We should now see that in effect, the diphone formulation with the half-phone back-off, and
the half-phone formulation with restricted join possibilities are in fact identical in terms of what
speech is passed to the search. This equivalence between base types, back-off strategies and search
topologies can be shown for all base types which share the same type of join (e.g. this is true for
all those that allow joins in phone middles). This thereforeshows that the choice of base type
really isn’t as fundamental as it seems; the choices of whichfeatures to use and how to formulate
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the target and join functions are much more significant in determining final quality.
Using non-uniform units complicates the search somewhat asnow we don’t have a lattice

of time slots where each time slot aligns one-to-one with thespecification. We can however still
perform a fully optimal search. First we define a “grammar” which specifies which units can
follow which others (this grammar is no different from the rules which state which diphones or
half-phones can be joined). Next we expand each large unit into a number of nodes, equivalent to
the smallest base type in the system. This then gives a lattice with time slots and nodes as before,
which can be searched in the same manner as above. This further demonstrates that the impact
of unit choice is neutralised by the search; the resulting lattice is in many ways identical to one
constructed for a uniform unit system built around the smallest base type. In effect, all the non-
uniform system is doing is restricting the possible joins from all those that agree a basic phone
match to ones specified by the particular choice of non-uniform units.

16.6.2 Pruning

While the Viterbi search is clearly vastly superior to any exhaustive search, in its pure form it is
often still too slow for many practical applications. To speed up the search, we can use one or
more methods ofpruning , all of which reduce the number of unit sequences under consideration.
Pruning is a bit of an art: in the full Viterbi search we areguaranteedto find the lowest cost
sequence of units, and if we eliminate any of the possibly sequences from consideration, we run
the risk of eliminating the best path. With a little skill, knowledge and judgment, it is often possible
to configure a search which considers far fewer sequences, but still has the correct sequence within
it. Alternatively, it is often the case that while the singlebest path may not be found, a path with
a very close score to that is found instead. It is not always a disaster if the best path is missed,
this very much depends on whether or not there are plenty of paths close to the score of the best.
This in turn mostly depends on whether there are plenty of units which are close matches to the
specification; if not, we may only have a few close matching units and bad results will ensue if
these are not considered in the search. It should be stressedhowever, that there is no silver bullet
to pruning; if we remove any unit sequences from consideration there is always a risk that the best
unit sequence will not be found, and in cases with rare base types and feature combinations, the
consequences of this can be severe.

In considering issues of speed, recall that the Viterbi search operates by considering all
possible joins at each time slot. If we assume that there are the same number of units,N on the
right and left side of a join this gives usN2 join function calculations. We will useOJ to denote
the time taken for one join function, and so the total time forone set of join function isOJ(N2).
Each time slot requires a target function calculation for each unit, and if we useOT to denote the
time for a single target function calculation, the total time per time slot isOT(N). So immediately,
we see that the number of join calculations isN larger than the number of target calculations. For
larger values ofN, the target calculation will only have a significant impact on time if OT ≫OJ.
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16.6.3 Pre-selection

The first pruning technique we will consider is that ofpre-selection, where we aim to reduceN,
that is the number of candidates being considered during thesearch. In general, the target function
will return a score or cost for all the units of the base type, and so create a ranked list. It is easy
then to place a cut off at either the number of units passed to the search or the absolute score. It is
normally seen as better practice to define the cutoff in termsof numbers of units, as this ensures
an evenness in the search, and also incidentally allows us toensure thatN really is the same for
every time slot, thus allowing us to accurately predict the time taken in the search. This method
still requires a time ofOT(N) for each time slot, which may or may not be acceptable. If not,then
a two-pass strategy can be adopted (see below). To give an example, assume for simplicity that
O = OT = O j , and thatNT is the total number of units available, and that this equals 500. We see
that full search will takeO(NT) + O(N2

T) = 500.O+ 250,000.O = 250,500.O (which of course
demonstrates quite clearly that the join cost calculation dominates in the full search). Let us now
defineNC as the number of the chosen sub set of units to be passed, and set this to be 50. We still
have to calculate all the target costs (NT), but after doing so only pass the best 50 into the search.
This means that we now have a time ofO(NT)+ O(N2

C) = 500.O+ 502.O = 3000.O. And here
we see that while the join function time still dominates, it does not do so to the degree of the full
search. If we setNC lower still, say 10, we see that now the search takes 500.O+100.O = 600.O
where finally the target function time dominates. This of course is under the assumption that the
times for each join and target functions are equivalent; this is seldom true in practice, but it is hard
to make generalisations about which takes more time as this is very system specific.

16.6.4 Beam Pruning

In cases whereOT ≫ OJ, the above technique does not help us much as this always requires a
full set of target costs to be calculated. An alternative is to perform a different type of searching
known asbeam pruning, which dynamically prunes the candidates during search.

In beam pruning we move from time slot to time slot as before, but instead of enumerating
the full set of paths, we only enumerate theNb best paths. At a given time slot, after we have
calculated the join costs, for each node we have the best pathup to that point and the total score
of the best path that leads to that point. Now we sort these by total score, and discard all but the
top Nb paths. We then move to the next time slot by calculating all the join costs between these
Nb nodes and the full set ofN nodes in the next slot. This process is repeated until the search is
complete. Beam pruning reduces the number of target cost calculations fromTN to TNb and the
number of join cost calculations fromTN2 to TN.Nb.

16.6.5 Multi-pass search

The risk of employing the pre-selection technique is that wereduce the number of candidates
being considered in the search without taking the join function into account; the operation only
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considers target functions. Thus while the reduced list of candidates may have eliminated those
candidate with the highest target costs, the ones left may end up having the worst join costs.
A more sophisticated version of this is to employ amulti-pass searchwhere first we do a search
using all the candidates but using approximate and quick calculations of both costs. We then select
the candidates from the best paths and pass this onto a searchwhich uses the more sophisticated
(and slower) cost calculations. We are not even limited to doing two passes, in principle we can
perform as many as we need with each being more detailed than the ones before.

16.7 DISCUSSION

At time of writing, unit selection is judged the highest quality synthesis technique. Theintelligi-
bility of unit selection compares well with other techniques, and is sometimes better, sometimes
worse. Thenaturalnessof unit selection is generally consideredmuchbetter and is why the tech-
nique wins overall. Unit selection is not perfect however and a frequent criticism is that the quality
can be inconsistent. This is to a degree inherent in the technique: occasionally completely unmod-
ified originally contiguous sections of speech are generated which of course will have the quality
of pure recorded waveforms. On the other hand sometimes there simply aren’t any units which
are good matches to the specification or which join well. It isclear that synthesis of in these cases
will sound worse compared to the stretches of contiguous speech.

It is vital to note that the quality of the final speech in unit selection is heavily dependent on
the quality of the database used; much more so than with othertechniques. This makes assess-
ments of individual algorithms quite difficult unless they are using the same data. The point here
is that it is very difficult to conclude that say linguistic join costs are really better than acoustic
join costs just because a system which uses the former soundsbetter than one that uses the latter.
Only when such systems are trained and tested on the same datacan such conclusions be drawn.
This is not to say however, that using a good quality databaseis “cheating”; in fact it can be argued
that obtaining a high quality, large, speech database is thesingle most vital factor in making a unit
selection system sound good.

That the size of the database is a critical factor in determining overall quality shouldn’t be
too surprising: we know success largely rests on how many close or exact matches we find in
target costs, and so the more data we have the more likely we are to find such matches. That said,
it is difficult to come up with hard and fast rules about how much data we need. While bigger is
generally better,coverage, which is a measure of how diverse the units are in terms of their feature
combinations is a vital issue also. For instance, should we design the database so as to have a “flat”
coverage where we have at least one example of every feature combination, or should we design
it to have a “natural” coverage where the feature combinations are distributed according to how
often we will require them? These and other database issues will be dealt with in more detail in
Chapter 17.

It is useful to look at the trade off between the relative contributions of the data and unit



Section 16.7. Discussion 523

selection algorithms another way. We can imagine that for any given specification, there is a
single best set of units in the data. That is, if we had all the time in the world5 and could listen
to all the possibilities, we would always find one sequence ofunits that sounded the best. The
design of the unit selection algorithm then is concerned with finding this sequence automatically.
The design of the database on the other hand is a question of ensuring that there is at least one
good sequence of units for every specification. It is very hard to prove this in a formal manner,
but informally it appears to be the case that with a state-of-the-art system, most errors, or poor
sounding sequences of units, arise from algorithm rather than data problems. That is, if the search
produces a bad sequence of units, it is often possible to find other units that do in fact sound good.
This is actually quite encouraging, as it is logistically easier to work on algorithmic rather than
database improvements.

Whether unit selection remains the dominant technique is hard to say. While the systems
continually improve, and at a rapid rate, it is also worth noting that there are some fundamental
limits. Most importantly, while we recognise that the size of the database is a crucial factor in
creating high quality speech, there is a limit to how much onecan record from a single speaker.
Often it is simply not practical to record for weeks on end, and therefore improvement in quality
by database improvement alone is inherently limited.

16.7.1 Unit selection and signal processing

Once we have found the units by our search, the actual synthesis process is often trivial. In
pure unit selection, we have stored our units as waveforms, and so a simple overlap and add
technique at the waveform boundaries is sufficient. If we have stored the units in a more parametric
representation (e.g. LP coefficients and residuals), thesecan be synthesized in the same way as
with second generation diphone synthesis. Some systems perform spectral smoothing between
units, but again this can be performed with the same techniques as with second generation systems.

Some systems have a somewhat hybrid nature in that they perform unit selection as above,
but in addition perform prosodic modification by signal processing. In cases where for instance
the specification requires a unit with a particular F0 value and the database has no unit of this
value, it is possible to use signal processing to adjust the unit to the required value. If the degree
of modification is too high, poor quality will result, and in particular if the modified speech is
present in the same utterance as unmodified speech then a listener may be able to sense the shift in
quality. If the degree of modification is slight however, it is possible to use signal processing with
no adverse affect. A further possibility is to anticipate signal processing in the search. We do this
by giving lower priority (ie. weights) to the features we know we can compensate for with signal
processing.
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Figure 16.13 The effect of category boundaries on perception. The acoustic distance between units
a andb and betweenc andd is relatively high, and that of unitsb andc is relatively low. However
because unitsb andc belong to different linguistic categories they will be perceived to have the largest
perceptual distance.

16.7.2 Features, costs and perception

Here we make some observations about the nature of features and how they are employed in both
the target and join functions. Firstly, it is important to note that the term “perceptual” is often used
in a very general manner, which can lead to confusion over what we are actually talking about.
The main point is to not confuse any idea ofauditory perception withlinguistic perception. It is
well known that the ear cleverly processes the signals it receives and has a non-linear response
over the spectrum. While this can, and perhaps should be modelled, it is important to note that
this will only go so far, as “on top” of this sits an independent linguistic perceptual space which
behaves in a quite different manner.

To see this, consider the fact that within a base type there are many feature combinations,
and while there is anacousticcontinuum within the base type, as one moves from one point to
another, there may be sudden changes in the values of the categorical features. To take an example
consider Figure 16.13 where we consider the stress feature.If we have a feature system where
units are either stressed or unstressed, then while the acoustic values that determine stress may be
continuous, listeners will judge any given unit as being stressed or unstressed. Even if the acoustic
difference between two units is small, if one is judged stressed and the other unstressed, then a
bad join may ensue if these are concatenated as the listener perceives a mismatch in the identity of
the feature combination being used.

Another angle on the problem of why acoustic measures and perception correlate so badly is
that the cost function as normally portrayed contradicts basic properties of human perception. As

5 or many billions of times this to be frank.
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we saw in section 16.5.6, it is good policy to ignore any objective cost differences below a certain
value as humans will not perceive such small differences. Additionally, above a certain value, the
costs are so high as to make any distinction between one high cost and another meaningless.

16.7.3 Example unit selection systems

Here we review a few well known unit selection systems to givea feeling of how they use the
various components described in this chapter to effect fullsynthesis.

The ATR family and CHATR Advanced Telecommunications Research (ATR) labs in Kyoto
has played a particularly central role in the development ofunit selection. It was there that Yoshi-
nori Sagisaka proposed the idea of unit selection [387] and then demonstrated the significant in-
crease in naturalness that could be brought about by using larger units in synthesis [503]. A second
major development was the proposal by Naoto Iwahashi et al [234] to use a dynamic programming
framework for unit selection. From 1993, Alan Black and PaulTaylor developed the CHATR sys-
tem [56], which served as a general purpose synthesis systemand development platform, which
was to form the backbone of much ATR synthesis research. In 1996, Andrew Hunt and Alan Black
[227] published the unit selection framework used in this chapter, incorporating this into CHATR
and giving demonstrations in both English and Japanese. Partly because of the formulation itself
and partly because CHATR could speak English, this work gathered considerable attention; this
was the first time after all that anyone had succeeded in building a complete unit selection sys-
tem in English. Additionally, the system did not use signal processing for prosody modification
and thus can lay claim to being the first “pure” unit selectionsystem6. The CHATR implementa-
tion was not without faults, and was seen as notoriously inconsistent, but the quality of the best
speech it generated was so good as make people believe that a significant quality improvement
over second generation systems was possible.

Partly because of its institutional nature, where visitingresearchers would come for a few
months to a few years and then leave to another organisation,ATR spawned a whole “family tree”
of synthesis systems, including the Festival work at Edinburgh university [49] and the AT&T Next
Gen system [42], [104], which in turn spawned many other commercial systems. In fact, it is
probably true to say that the only major unit selection systems that are not in some way associated
with ATR are those of Laureate and Donovan (see below).

Laureate The Laureate system, developed by Andrew Breen and colleagues at BT labs in Eng-
land, was developed independently and simultaneously withthe original ATR systems, but was

6 In fact, I remember quite clearly listening to an early demo of the unit selection from CHATR (I had left ATR at this
stage). It sounded very impressive and natural, and I remember saying to Alan Black, “Well I admit this sounds good,
but you haven’t used any signal processing yet, and when you do it will degrade the speech quality significantly.” Alan
then told me he had no intention of using any signal processing, which was a shocking idea to me. Of course from my
own statement it is clear that not doing this was the obvious thing to do as the side effects of the signal processing were
the main source of the unnaturalness.
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only published for the first time in 1998 [65]. This has some similarity with the ATR systems, in
that it uses costs similar to the target and join cost, and also uses a dynamic programming search to
find the best sequence of units. Laureate has many other interesting features though; for example it
nearly exclusively used categorical features for its target and join costs. Laureate also used signal
processing in much the same way as second generation systems.

AT&T NextGen The NextGen system developed by AT&T labs directly used components from
CHATR, and so is included in the ATR family [42], [104]. The AT&T group however made sig-
nificant improvements in all aspects of the system, for example in issues of search [291] and the
perceptual design of the cost functions [426],[428]. The most significant impact of NextGen how-
ever, is that it can lay claim to being the first unit selectionsystem that actuallyworked. While
CHATR and other systems often produce good speech, there were many bad examples, and to
some extent the “jury was still out” regarding whether unit selection could be made sufficiently
reliable to be used as a replacement to second generation systems. To me, one of the most signifi-
cant moments in speech synthesis was at the Jenolan Caves Speech Synthesis Workshop in 1998.
There the theme of the workshop was evaluation, and the idea was that everyone would bring their
systems and test them on the same sentences and listening conditions. In listening to the various
systems, it soon became clear that the AT&T system was a clearwinner and had a naturalness that
was significantly better than any other system. This to me wasthe crossing of the Rubicon, after
this it became virtually impossible to argue that second generation systems were superior to unit
selection systems.

Cambridge University and IBM The HMM system developed by Rob Donovan initially at
Cambridge University [140], and then at IBM, is notable as one of the systems independent from
the ATR family. It was based on Cambridge University’s HTK ASR system, and used decision
trees to segment and cluster state sized units [138], [150],[196]. Particularly interesting recent
developments have concerned expressiveness and emotion intext-to-speech [151] [195].

RealSpeak The RealSpeak system [108] was another significant landmarkin that it was the
first commercial unit selection system to be deployed. RealSpeak achieved yet further heights
in terms of naturalness, and was showed that unit selection could be deployed in real time com-
mercial systems, proof that practical constraints such as database size and search speed could be
solved. Because of commercial acquisitions, today’s (2006) RealSpeak has brought together ideas
from many other systems, including the SpeechWorks system (itself a successor of the NextGen
system), the Nuance system (a successor of Laureate) and rVoice, described below.

rVoice rVoice was the TTS system developed by Rhetorical Systems, aspin-out from Edinburgh
University’s Centre for Speech Technology Research. rVoice was the leading system in terms
of naturalness in the period 2001-2004. Noteworthy aspectsof rVoice include it being the first
system to offer custom voices, meaning that Rhetorical could add any voice into the system and
consistently produce high quality results. The rVoice unitselection system was developed by
Matthew Aylett, Justin Fackrell, Peter Rutten, David Talkin and Paul Taylor.
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16.7.4 Further Reading

Despite being the dominant technique, there are few good review articles on unit selection. The
best sources of information are to read the papers associated with the above mentioned systems.

16.7.5 Summary

Unit selection framework

• Unit selection synthesis operates by selecting units from alarge speech database according
to how well they match a specification and how well they join together.
• The specification and the units are completely described by afeature structure, which can be

any mixture of linguistic and acoustic features.
• Two functions, normally defined as costs are used. The targetfunction/cost gives a measure

of similarity between specification and unit, and the join function/cost gives a measure of
how well two units join.
• A Viterbi style search is performed to find the sequence of units with the lowest total cost.

Target functions

• The independent feature formulation (IFF) calculates a weighted sum of sub-costs, where
each sub-costs concentrates on one or more features.
• The acoustic space formulation (ASF) which uses the acoustic distance between feature com-

binations to determine distance. A function is used to project from a feature combination to a
point in acoustic space, and this function is normal trainedfrom example data. A number of
techniques can be employed to estimate this point in acoustic space for feature combinations
unobserved during training.
• Both these formulations have weaknesses, and it is an unsolved problem how to calculate

and train target functions.

Join functions

• The join function tells us how well two units will join.
• Quite often units join perfectly, with no audible join whatsoever.
• Some types of phones class (e.g. fricatives) are easier to join than others (e.g. vowels) and a

good join function should account for this.
• An acoustic join cost which measures the acoustic distance across a join gives a reasonably

indication of how well two units will join.
• A linguistic join cost can be defined which looks at the differences between categorical/linguistic

features across a join. Acoustic and linguistic join costs cab be combined in a number of
ways.
• An alternative view is to see join functions as classifiers which give us a binary decision as

to whether two units will join well.
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• An further view is to define the join function as something which gives us a probability of
seeing the frames across a join, with the idea that high probability sequences will sound
good, and low probability ones will sound bad.

Features and costs

• The issue of which features to use in both the target and join cost is a complicated issue.
Factors include:

• High-level, linguistic features are often easy to determine, but lack natural distances and can
lead to an explosion in feature combinations.

• Low-level, acoustic features are usually easy to determinefor units, but very hard to deter-
mine for the specification.

• Measuring costs in acoustic space often does not agree with perception as a small acoustic
distance which crosses an important linguistic boundary may result in a large perceptual
distance



17 FURTHER ISSUES

This chapter contains a number of final topics which have beenleft until last because they span
many of the topics raised in the previous chapters.

17.1 DATABASES

Data-driven techniques have come to dominate nearly every aspect of text-to-speech in recent
years. In addition to the algorithms themselves, the overall performance of a system is increasingly
dominated by the quality of the databases that are used for training. In this section, we therefore
examine the issues in database design, collection, labelling and use.

All algorithms are to some extent data-driven; even hand written rules use some “data”;
either explicitly or in a mental representation where the developer can imagine examples and how
they should be dealt with. The difference between hand written rules and data driven techniques
lies not in whether one uses data or not, but how the data is used. Most data-driven techniques
have an automatic training algorithm such that they can be trained on the data without the need for
human intervention.

17.1.1 Unit Selection Databases

Unit selection is arguably the most data-driven techniquesas little or no processing is performed
on the data, rather it is simply analysed, cut up and recombined in different sequences. As with
other database techniques, the issue of coverage is vital, but in addition we have further issues
concerning the actual recordings.

There is no firm agreement on how big a unit selection system needs to be, but it is clear that
all other things being equal, the larger the better. As far aswe know, no formal studies have been
performed assessing the effect of database size on final unitselection speech quality. Informally,
it seems that about 1 hour of speech is the minimum and many systems make use of 5 hours or
more. Below 1 hour, data sparsity issues start to dominate, and as little can be done about data
sparsity in the unit selection framework, the problems can be quite serious.

In general, unit selection databases are acquired by havinga single speaker read a specially
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preparedscript. A number of approaches advocate that the script should be carefully designed
in order to have the most efficient coverage of phonetic contexts. Others advocate that the script
should rather be normal text materials (for example from a news service website) as these are more
representative of the language as a whole. Hybrid approaches are also possible where a special
set ofcore sentences is designed, which are supplemented with more natural materials from other
sources. If the TTS system is to be used for a particular application, it makes sense that the non-
core materials should come from that application. So for instance in a weather reading application,
the script might contain a core section to cover all phoneticeffects and then a series of weather
reports to ensure that common phrases such asEARLY MORNING MIST or HIGHS MID-60S or
RAIN OVER SCOTLAND occur.

In terms of the actual recording, we face two main issues; thechoice of speaker and the
recording conditions. Speaker choice is perhaps one of the most vital areas, and all commercial
TTS operations spend considerable time choosing a “good” speaker. The speaker must be able
to read the script accurately, without straining his or her voice, and keep their voice at a regular
style throughout. In addition, it makes sense to pick a speaker who has a “good” voice. This is
of course a very subjective matter, but there should be no doubt that some people have voices that
listeners greatly prefer over others, otherwise radio announcers, hosts, DJs and readers of talking
books would not be specifically chosen. No objective means ofselecting a good speaker is as yet
known, but a good idea is to play recordings of potential speakers to a target listening group and
ask them which they prefer. As a good unit selection system will sound very similar to the speaker
it is based on, selecting a speaker that a group of listeners like is a good step towards having the
final system sound good.

As far as recording conditions are concerned, it is highly desirable that these be as high
quality as possible as background noise, reverberations and other effects will all be heard in the
synthesized speech. In addition, it is essential to ensure that a consistency in recordings is main-
tained. The speaker should speak in the same tone of voice throughout, with a constant distance
kept between the microphone. That said, it is important not to put too much pressure on the
speaker to speak one way or another; the best results are obtained when the speaker is relaxed and
speaking in their natural voice.

17.1.2 Text materials

It is not always necessary to use data that has actually been spoken in TTS; for many of the text
modules text data alone will suffice. This is highly beneficial as it is much quicker and cheaper to
collect text data than speech data. Many public text corporaare available, but today by far the best
source of text material is on the internet. Many billions of words of data exist there, and so long
as copyright restrictions are adhered to, this can provide aplentiful supply of high quality data.
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17.1.3 Prosody databases

Great care must be taken when recording prosodic databases as the recording conditions can in-
fluence the speaker to the extent that the prosody is unrepresentative of real speech. In particular
it is inadvisable to instruct the speaker to speak differenttypes of pitch accent and so on as this
will inevitably lead to artificial exaguration of the intonation. It can even be argued that prosody
recorded in a studio will nearly always be artificial as the speaker is not engaged in a normal
discourse [81].

17.1.4 Labelling

Regardless of whether the data is to be used for homograph disambiguation, F0 synthesis, unit
selection or any other purpose, the data nearly always has tobe labelled. The labels differ from
component to component but often they are intended to represent the truth or gold standard in
terms of the linguistic content of the data, and this can be used in training and testing the modules.
The main issues in labelling concern:

1. What sort of linguistic description is needed?

2. What is the inventory of labels that we should select from?

3. How is the labelling to be performed?

The type of linguistic description is closely bound to the purpose of the component it is
being used for. As an example, for a homograph disambiguation module we would first list all
the homographs we know (e.g.BASS-FISH, BASS-MUSIC), identify all the tokens belonging to
each group e.g.bass, and then label each token we find of this type in a corpus as being either
BASS-FISH or BASS-MUSIC. As the nature of the problem is clearly expressed in the identity of
the token, we can even search for cases ofbass in raw text data and so specifically collect enough
examples for this particular case.

This may all seem rather obvious but it should be noted that this approach differs from more
traditional approaches where databases were labelled withgeneral linguistic labels (e.g. POS
tags), and used for a variety of purposes besides training TTS components. By labelling just the
type of information required by contrast, the database is more relevant to purpose to which it is
put.

In many cases the labelling is quite easy to perform. In the above example of homographs,
the relevant tokens are easy to identify, and the disambiguation easy to make. However, this is
not always the case. If we consider intonation labelling, described in Section 6.10.1 and Section
9.3, we see that the process is much more difficult. First, there is no commonly agreed theory of
intonation and hence there is no commonly agreed set of labels. The choice of which intonation
model to use is of course based on which model is used in the intonation component, but as this
may be decided on the availability of data, the two issues areintimately connected. As reported
in Section 6.10.1 , intonation labelling is one of the most difficult tasks, with labeller agreement
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figures being as low as 70%. If a database is labelled in this way, we face the issue of having a
high degree of noise in the labels, which will hamper training and testing.

17.1.5 What exactly is hand labelling?

An issue that is seldom addressed on the issue of labelling isthat of just what a labeller is doing
when he or she hand labels some data. One sees the terms “hand labelling” and “expert labeller”
quite frequently in this context, but what do these mean?

Here we take the position that there are really two types of labelling; intuitive andanalytical.
Intuitive labelling is where the human labeller makes a judgment using their own language ability,
but without using any explicit reasoning based on this. The homograph example above is a good
case of this. If we present the sentencehe plays bass guitar to someone and ask them
which wordbass corresponds to, they will quickly and certainly say that it is BASS-MUSIC. No
knowledge of linguistics or any of the issues involved is required to make this judgment. Now
consider a case where someone is asked which ToBI pitch accent is used on a word in a spoken
sentence. It is impossible to perform this task without specialist training; even most experienced
linguists or speech engineers would have trouble with this unless they had direct experience in
ToBI labelling itself.

Our position is that intuitive labelling is nearly always useful and reliable, whereas analyti-
cal labelling is usually neither. With intuitive labelling, we are in effect using a person’s in built,
natural linguistic ability to make a judgment. As most people are perfect speakers of their lan-
guage, tapping into this knowledge gives access to a very powerful knowledge source. The tasks
in TTS that come under this sort of labelling include homographs, sentence boundaries, semiotic
classification and verbalisation.

Analytic labelling normally relies on the labeller applying a set of procedures or labelling
rules to the data. Consider a case where a labeller is asked todecide whether a prosodic phrase
break should occur between two words in a spoken sentence. Todo this, the labeller must first be
instructed as to what a prosodic phrase break is. Next they need to have an explanation of how
to find one, and this may consist of clues such as “listen for lengthening at the ends of words”,
“examine pauses and see if these constitute phrase breaks” and so on. In many cases the labeller
will apply these rules easily, but in a significant number of cases the labeller will be in doubt,
and maybe further rules need be applied. It is here where the problem lies. From considerable
experience in labelling databases of all kinds and with all types of labels it is clear that there are a
large number of problematic cases where the “correct” labelis not immediately obvious. This can
often lead to labellers making spot judgments, and this can often lead to considerable inconsistency
in labelling, both between labellers and between differentsessions of the same labeller.

One of the main sources of difficulty in labelling is that the labelling model which provides
the labels to be chosen is in some sense lacking. As we saw in Section 9.3, there is an enormous
range of intonation models and theories, and while we reserve judgment on which one is better
than another, it is clear that they can’tall be right. A more accurate statement is that they all have
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good aspects but none are complete or an accurate model of thereality of intonation. Hence in
every labelling situation, in many cases the labeller is trying to force a square peg in a round hole,
and difficulties will always ensue.

The problem results in very poor labelling agreement. As previously stated, “good” agree-
ment in intonation labelling is considered to be 70% [406], which not only shows how poor the
agreement is but also how low the expectations in the community that this can be considered good.
Furthermore, experience has shown that the more complicated or difficult the labelling system is,
the longer this takes to perform, and the result may not only be an inaccurately labelled database
but one that was time consuming and expensive to collect. This situation strongly contrasts with
intuitive labelling where labellers usually make quick, effortless judgments with a high degree of
accuracy.

17.1.6 Automatic labelling

We believe there are two possible answers to these problems in analytical labelling. The reason
intuitive labelling works so well is that we are tapping a fantastic source of linguistic knowledge;
namely the labeller’s own language faculty. With analytical labelling however, while some intu-
itive aspects may be present, we are really asking the labeller to follow a set of rules. Labelling
schemes can be improved to some extent by specifying more andmore detailed rules; but this
has the effect of making the the labelling scheme more complicated. If however, the answer to
improved labelling is to specify more rules, why use humans at all? Instead why not use some-
thing that excels at following rules, namely a computer? Using a computer for analytical labelling
certainly has difficulties, but a major advantage is that consistency is guaranteed. Many processes
which make of the resulting labels would rather have a consistent set of labels with some inaccura-
cies than a set of labels with an unknown degree of consistency. In addition, automatic analysis is
of course much quicker and when training on multiple databases from many speakers, this speed
increase becomes invaluable. The pros and cons of automaticlabelling differ from problem to
problem, and there may still be cases where analytic hand labelling is better, but in our experi-
ence computer labelling is generally to be preferred. We should note however that this statement
only applies to analytical labelling; the ability of humansto perform intuitive labelling still greatly
out-performs automatic techniques.

17.1.7 Avoiding explicit labels

A second solution to the problem of inadequate human labelling is to ask whether we need the
labels at all. Older systems used a large number of modules, each of which had specific linguistic
inputs and outputs. More modern systems are in general more integrated, such that HMM and unit
selection systems often subsume tasks such as phonetic assimilation, F0 generation and timing
generation which existed in previous systems. This is not tosay that these modern systems have
no concept of (say) phonetic assimilation, but rather theseprocesses are carried outimplicitly in
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the system, and so no explicit rules of the type /n/→ /m/ in the context of a labial are needed. In
statistical terminology, we say that these processes are hidden, and that the levels of representation
in which these inputs and outputs occur are hidden variables. Hence a good system can learn these
implicitly and there is no need for explicit representationand hence no need for explicit labels in
training. Such an approach is taken, for example, in the SFC system of Bailly and Holm [31],
where the F0 is generated directly from functional input (e.g. syntax and semantics), bypassing
the need for intonation labels for pitch accents. Some concept of pitch accent is still present in the
model, but this is implicit and does not need labelled training data.

In conclusion, labelling should be performed in line with a module’s requirements. Intuitive
labelling is a useful and accurate method of labelling training data for modules. Analytical la-
belling is often best performed by computer, and in many cases can be avoided altogether by the
use of hidden variables in a module. Analytical labelling byexpert human labellers is best avoided
if at all possible.

17.2 EVALUATION

Throughout the book, we have made statements to the effect that statistical text analysis outper-
forms rule methods, or that unit selection is more natural than formant synthesis. But how do we
know this? In one way or another, we haveevaluatedour systems and come to these conclusions.
How we go about this is the topic of this section.

There is no single answer to the question of how or what to evaluate. Much synthesis re-
search has proceeded without any formal evaluation at all; the researchers simply examined or
listened to the output of a system and made an on the spot judgment. Beyond this, a number of
very specific tests have been proposed, and these are still employed by many in the field. The re-
sult is that testing in TTS is not a simple or widely agreed on area. Throughout the book, we have
adopted an engineering mentality to all issues; and we will continue to do so in this section. As
well as keeping a certain homogeneity, the field of engineering is very rich in the area of testing in
that real systems have to undergo rigourous testing before they are deployed. It therefore follows
that when interested in testing TTS systems designed for practical purposes, we can follow the
testing and evaluation procedures used in mainstream engineering.

The first question to ask is not what testing we should perform, but rather to specify a set of
user requirementsthat we expect or hope our system will meet. These will often be specific to an
application, so in a telephony system that reads addresses,we might state that the system should
be at least as good as a human in reading addresses. If the address reading application is simply to
confirm a user’s address we might be happy with significantly lower performance: so long as the
system reads an address that sounds something like the user’s address this may suffice. A screen
reader for the blind would be expected to read a very wide range of information accurately, and it
is quite likely in such a situation that the user would preferthe content to be read very accurately
but with an unnatural voice, than vice vera. Hence a good engineer will always state the user



Section 17.2. Evaluation 535

requirements first.
Once the user requirements have been stated, we can then moveon to the issue of how to

test whether a system meets these. Such tests are calledsystem testsas they test the overall
performance of the system. For the above examples, a test might include measuring how many
addresses drawn from a random sample are understandable by alistener. Often the results of
these can be surprisingly low, so another key part of a test would be to get a human to read the
same addresses. We may then find that the human struggles also, and the comparison between
human and machine may give a much better indication of the usefulness of a TTS system in an
application.

Testing the system as a whole may not always be the best approach; TTS developers may be
working on a specific component and may want to know how well itis performing and whether it
is performing better than a previous version. This sort of testing is calledunit testing as it tests
a particular “unit” or component in the system. Sometimes system testing is calledblack box
testing because the evaluation progresses without any knowledge of how the system operates, and
by contrast unit testing is sometimes calledglass boxtesting as we are “seeing inside” the system
(“box”) when doing the tests.

17.2.1 System Testing: Intelligibility and Naturalness

It is widely agreed that the two main goals of a TTS system are to sound intelligible and natu-
ral. This much is agreed, but defining exactly what we mean by intelligible and natural can be
somewhat trickier.

Considering the issue of intelligibility first, we have to define again what exactly our goals
are. For example, in many cases we may find that so long as the message isunderstoodit may
not be necessary for the listener to recognise every single word. It is often the case in normal
conversation that we get the “gist” of a message and miss someparts, and this may be accept-
able. In such casescomprehension testscan be used. Often comprehension is judged by asking
listeners to answer questions on speech they have just heard[425]. Other approaches attempt to
determine the comprehension in some other way, e.g. Swift etal REF describe a technique where
eye movement response times are measured.

17.2.2 Word recognition tests

A quite different approach focuses onword recognition and tests of this type are perhaps the
most common sort of intelligibility test. Here listeners are played words either in isolation or in
sentences and asked which word(s) they have heard. One groupof tests plays listeners similar
words and asks them to make distinctions. The most commonly used test is perhaps themodified
rhyme test (MRT) [221]. In this test, listeners are played a set of 50 groups 6 words each. The
words in each group are similar and differ in only one consonant and the users are asked to record
which word they have heard on a multiple choice sheet. A typical set of words might beBAD BACK
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BAN BASS BAT BATH. A number of tests have been developed for testing word intelligibility
at the sentence level. TheHarvard sentences[341] contain sentences such asTHESE DAYS A

CHICKEN LEG IS A RARE DISH, and have been designed to provide a test which follows the natural
distributions of phonemes in English. Care must be taken with sentence design in these tests as
listeners can quite often guess what word is coming next, which turns the test from a recognition
one to a verification one. To counter this,semantically unpredictable sentencesare often used
where the words in the syntax obey the “rules” of normal syntax, but where the sentences don’t
make any particular sense [181], [358], [414]. While some syntactic predictability is therefore
present, it is very difficult to guess correctly the word following the current one. Examples of
these include theHaskins sentences, such asTHE WRONG SHOT LED THE FARM[353].

It is arguable whether such tests have much value as real system tests as the types of words
or sentences being used have little validity in terms of a real world application. The tests are
certainly useful for diagnostic purposes and hence should really be considered as unit tests for
testing for instance a measure of raw consonant ability in a system. For real applications their use
is not recommended as the tests are not good samples of the type of material that a system might
actually be used for: highly confusable words only rarely occur in contexts where they might be
confused, and in general normal sentences are highly semantically predictable. Despite this, the
use of the MRT and semantically unpredictable sentences is unfortunately quite commonplace in
system evaluations. To see why these tests are inappropriate, consider a hypothetical situation
where a developer might build a system that couldonly read confusable isolated content words
well; this system could not synthesize sentences or function words. Such a system might score
very well on the MRT, but would clearly be useless as a real TTSsystem.

17.2.3 Naturalness tests

Most approaches to measuring naturalness adopt an assessment technique where listeners are
played some speech and simply asked to rate what they hear. Often this is in the form of amean
opinion score, where listeners indicate their assessments on a scale of 1 to 5 where 1 is bad, and
5 is excellent. These tests are fairly simple to perform and give a reasonably accurate picture of
a system’s performance. The main difficulty lies in how to interpret the results; specifically in
determining what the listeners are actually assessing. In principle, we would like the listeners to
state hownatural the system sounds, but it seems that in general listeners areactually recording
how much theylike the system. This can be seen in tests where real speech is included along with
synthetic speech [308]. Often the likability and naturalness of a system are highly correlated, but
problems can occur when we consider that different scores are achieved when real speech is being
used in the test. If naturalness were being assessed all realspeech would receive a perfect 5 rating;
but this is not the case: “pleasant” sounding voices outscore unpleasant or jarring voices.

A further problem can occur in that it is sometimes difficult to compare tests carried out at
different times and different conditions and just because asystem scores 3.5 in one test does not
necessarily mean it is better than another system that scored 3.2 in a different test. MOS tests are
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probably best seen as ranking tests, where if say five systemsare compared in a single test we
can rank them with confidence, but should be wary of comparingtheir absolute scores with other
tests. Some include some natural speech in MOS tests, as thisshould always achieve a score of 5
and hence “anchor” the scale. A common technique that bypasses the problem of absolute quality
judgments is to performcomparison tests. This is often done when a developer wishes to asses
the quality contribution from a new component or technique.The same sentence is played through
the old and new synthesiser and a listener is asked which is preferred (without of course knowing
which system is which) [463].

17.2.4 Test data

It is vital that thetest setused in testing is not used in training. If this is done, any automatic
algorithm will overfit the data meaning that it will show very good performance on this data,but
as it has not generalised, will show poor performance elsewhere. In addition, strictly speaking a
developer should not evenlook at the test data, as this may bias any design decisions. A com-
monly adopted solution is to have adevelopment test setwhich is used many times during the
development of an algorithm, and anevaluation test setwhich is saved and left unexamined, to
be used as a one-off test at the end of a development period. Ideally the size of the test sets should
be set on the basis of statistical significance such that results on one test set will be very close to
results on another.

17.2.5 Unit or Component testing

This type of testing is used by TTS developers to help them improve specific aspects or com-
ponents of the system they are working on [517]. Each system will of course have its own set
of components and hence we can’t provide a single exhaustivetesting framework which will en-
compass all systems. We can however identify several important areas in which testing can take
place.

When considering designing a test for a component, the two most important questions are:
is the output discrete or continuous, and is there a single correct answer. The easiest components
to assess are those with discrete outputs in which there is a single correct answer. Such compo-
nents are usually classifiers and include homograph disambiguation, semiotic classification, POS
tagging and LTS rules. The methodology for assessing these is to design a test set in which the
correct answers have been marked by hand. The components aregiven the text of the test sen-
tences as input and their output is compared to the truth of the hand marked versions. From this a
percentage accuracy can be computed.

The situation is more difficult in cases where there is more than one correct answer. This
arises in verbalisation, where for example there are many possible ways of converting3:15 into
words, for exampleTHREE FIFTEENor A QUARTER PAST THREE. One way of handling this is to
mark all the possible outputs for a test sentence. This can prove impractical, so an alternative is to
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assess the output “live” by a developer or test subject and see if the output is acceptable.
The problem is even more complicated when the output is continuous, as is the case in

F0 synthesis algorithms and when assessing the speech synthesis modules themselves. For F0
synthesis, an equivalent of the above tests is often used, where a set of real speech recordings
is used for the test corpus. The F0 contours of these, measured by a pitch detection algorithm,
are compared to the F0 contours produced by the system. Popular metrics include the Euclidean
distance and correlation measures [98]. The problem here isthat the Euclidean distance between
two contours only vaguely correlates with human perception. For instance, slight differences in
alignment may result in quite different perceptions in the listener, whereas large differences in F0
values between pitch accents may be irrelevant [269]. Further difficulties arise because nearly all
synthesis components have more than one valid answer. As with verbalisation, one solution is to
have multiple versions of the correct answer, but again too many sentences may be required to
make this a comprehensive solution.

It is when assessing speech itself that we are presented withthe most difficult problems. This
is not only continuous and has many correct answers, but worse than F0 comparison, there isn’t
even a simple distance metric (such as the Euclidean distance) which can help in such cases. Some
attempts at objective testing have been tried; for instanceby measuring the distances between cep-
stra of the synthetic and reference sentences, but this again suffers from the problem that such a
comparison only crudely compares with human perception. When assessing speech output listen-
ing tests are nearly always required. Even this can be problematic, as it is very hard to get normal
listeners (i.e. not linguists or speech engineers) to listen to just one aspect of the output. Alvarez
and Huckvale [12] conducted an extensive study of several systems along several dimensions (e.g.
listening effort, word distinguishability) and found a broad correlation, indicating that some idea
of overall quality was always present.

One solution to assessing components separately was made byBunnel et al [75] who de-
veloped a technique of transplanting prosody from one utterance to another, and by comparing
scores on all possible combinations could determine individual contributions to overall quality
separately. Hirai et al [204] describes a technique where listening tests are performed on fully au-
tomatic and hand corrected versions of sentences which helps to show which errors listeners judge
most harshly.. Sonntag and Portele [408] describe a technique where sentences are delexicalised
meaning that the listener could only listen to the prosody. Anumber of techniques where then
used to elicit and compare judgments from listeners.

One final point to consider when looking at unit testing is thedanger of local optimisation.
This can occur when the individual components each give a good score, but when combined do
not work together effectively, resulting in a poor overall performance. Wherever possible, unit
tests should be compared to system tests to ensure than an increase in score in a unit test does in
fact lead to an overall improvement in the system as a whole.
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17.2.6 Competitive evaluations

The speech recognition research community has long adopteda policy of competitive evalua-
tion where a number of different research groups run their systems on the same test data and
report results. In this way, performance differences between systems can easily been seen, and the
competitive nature of the evaluation program has been credited with driving forward progress.

At time of writing, the Blizzard Challenge [50], [40], [48] is becoming a recognised standard
in TTS testing. Blizzard involves testing a number of TTS systems on the same materials and at
the same time. This ensures the testing conditions are as even as possible. While this development
is new, if it can match the success of evaluation competitions in other areas of speech and language
processing it should have enormous positive benefits on the rate of progress in TTS.

17.3 AUDIOVISUAL SPEECHSYNTHESIS

In many real world situations, we communicate face-to-face. While speech, encoding language,
seemsto be the medium by which communication is primarily performed, face to face situations
provide a considerable amount of what is frequently callednon-verbal communication and it
is clear that people put significant value on this. In principle, everything in business could be
conducted over the telephone, but in fact busy people will travel considerable distances just to
engage in face to face communication.

It is natural then that many have considered the issue of how to automatically generate facial
and other non-verbal aspects of communication, so that in addition to the synthetic speech, a more
comprehensive communication process can be created. The field of audiovisual synthesis, also
known astalking heads is concerned with the artificial generation of natural looking faces by
means of computer graphics which speak in a realistic fashion. As such, the problem involves
creating realistic looking faces, animating them in realistic ways, and thensynchronizingtheir
movement and behaviour with a speech signal, to generate theillusion that the face is doing the
actual talking.

Developments in this field have mirrored those in speech synthesis to a considerable degree
and Bailly et al [30] give a review of the developments in thisfield1 Many early systems comprised
meshmodels in which the face and the vocal organs are described asa series of polygons whose
vertices are repositioned to create movement. In essence articulation is performed by moving the
points in the 3D mesh, and subsequently a face can be drawn by filling in the polygons in the mesh
and by other basic graphical techniques such as smoothing. The models can be rotated and viewed
from any angle and give a recognisable, but somewhat artificial looking talking head [346], [347],
[101], [41].

These models offer a basic set of movements which far exceedswhat a real face can achieve,
and so a research goal has to find the natural patterns of movements which constitute an effective

1 This section draws heavily on Bailly and Holms’ paper.
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set of control parameters. A basic problem concernswherein the overall process should the control
be manifested. While we may be able to build a realistic lip model that exhibits the correct degrees
of freedom for the lips, the lips themselves are the outputs of other more fundamental controls such
as speaking, smiling and other actions governed by other facial movements. An attractive solution
then is to use more fundamental controls based on articulatory degrees of freedom

An alternative approach is to create models which mimic the actual biomechanical properties
of the face, than simple rely of deformations of the grid [154], [354], [492], [493], [491]. This
is the parallel approach to articulatory synthesis described in Section 13.4, and the pros and cons
are just the same. While this in a sense is the “proper” and ultimate solution, the enormous
complexities of the muscle movements involved makes this a complex process. Furthermore, as
with articulatory synthesis, there is no single solution asto how complex each muscle model
should be; approaches range from simple models to close mimics. At present the computational
requirements and complexity of this approach rule it out forengineering purposes. It continues to
be an interesting field for scientific purposes though, as is articulatory synthesis itself.

These approaches are attractive from a modelling point of view, and offer a powerful means
of controlling all the movements of the face. On their own though, they don’t generate highly
natural faces; it is clear that a computer image is being viewed. Unlike speech however, highly
artificial, stylized faces are in many applications completely acceptable; for example in cartoons
or other types of animation. The annoyance factor which nearly everyone feels when listening
to highly unnatural speech is absent when viewing highly artificial faces. In many applications
however, more realistic face generation is required. To achieve this with the above techniques,
we can use a process oftexture mapping. Here we first obtain a 3D image of a real face (from
photographs at various angles), and identify a series of points on this which correspond to the
points on the mesh. The image can then be warped using the movements of the mesh [371].

Again following parallels in speech synthesis2 a number of data driven techniques have also
been developed. For example, TheVideo Rewrite approach [66] collects a series of video images
of a real face talking. The face is then divided up into sections and a unit selection style approach
of picking units and concatenating them together is used. A number of techniques specific to
graphics are use to cope with artefacts arising from the concatenation. A second approach is to
use statistical analysis to find the principle components offacial movement resulting in aeigneface
model (cf. Section 17.4.2 on eigenvoices). Once identified the eigenfaces can be linearly combined
to generate a full scale of facial patterns.

17.3.1 Speech Control

Turning to the issue of making the face talk, we see that any idea of co-production of the speech
signal and facial images is discarded, and instead the speech signal is taken as primary and used to
drive the control of the face.Visemesare the minimal set of distinct facial movements related to

2 Note, we are not making any claim that TTS wasfirst in any of these developments.
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speech. In general there are less of these than for phonemes,as dimensions of distinctive features
for speech which are not visible can be ignored. The most important of these is voicing, so that
/b/ and /p/ are represented by a single viseme, as are /k/ and /g/. The distinctiveness of facial
movements related to speech is what makes lip reading possible, and although the confusability is
inherently higher than for speech, the basic redundancy in language normally makes lip reading
possible by skilled practitioners. Generally the synchronization between speech and facial move-
ments is performed at the phone level, where each phone and its duration is given as input to the
process controlling the facial movements. Greater precision in synchronization (e.g. with stop
consonants) would potentially be possible if sub-phone units were used.

Just as with speech however, we do not have a discrete model where one viseme has one
facial shape which is held constant until the next viseme. Rather the face is in constant and smooth
motion. Furthermore, content plays an important part, justas with speech. One approach to
production realistic facial articulation is Cohen and Massaro’sco-production model [101] which
uses targets and interpolation techniques. A different approach is to collect a much larger set of
units in context and use patterns in the data to model the context effects.

17.4 SYNTHESIS OFEMOTIONAL AND EXPRESSIVESPEECH

Until recently, most synthetic speech was delivered in whatcan be described as a neutral style,
somewhat akin to the tone of voice that a television newsreader would use. Recently though there
has been considerable interest in going beyond this and building systems capable of generating
emotional or expressive speech. The interest in this is partly due to a realisation that synthesis
systems need to generate a wider range of affects to become fully usable in certain applications.
In addition, there is a general feeling that many of the problems of neutral speech synthesis while
not quite solved, are in the “end game”, and so researchers, as beings who like a challenge, are
moving on to some of these more advanced topics.

17.4.1 Describing Emotion

The scientific study of emotion can be seen as starting with Darwin [124] who postulated that
human emotions were innate, biological mechanisms which had existed before the development
of language. A key study was that performed by Ekman [152] whoconducted experiments across
cultures and showed that there is a considerable universality in human emotion. Ekman used what
are now called thebig six emotional categories ofdisgust, anger, fear, joy, sadness, andsur-
prise in his experiments and these have been widely adopted as a popular taxonomy of emotions.
Quite how emotions should be described though is a difficult topic; while we can all describe the
meanings given by terms such as “hesitancy”, “aggression”,“humiliation” and so on, it is quite a
different matter to come up with a solid scientific model of the full range of emotions. Practical
research has to proceed on some basis however, and the most common approaches are to adopt
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the six emotions described above or a subset of these, usually happiness, anger and sadness. An
alternative is to use the system developed by Schlosberg [393] who described emotion with the
three continuous variables ofactivation, evaluation andpower. The debate about defining a fun-
damental taxonomy of emotions will not be settled any time soon. Good reviews from a speech
perspective of the full range of theories of emotion and their interaction with language is given in
Cowie et al [113] and Tatham and Morton [432].

17.4.2 Synthesizing emotion with prosody control

The techniques for synthesizing emotion have followed closely the general developments in speech
synthesis algorithms. “First generation” techniques include the work by Murray [324] and Cahn
[79], [80] who used formant synthesisers, and as such we ableto vary every parameter of the syn-
thesizer as desired. The experimental paradigm used in these systems was to synthesize multiple
versions of the same sentence each with a different emotion,and then perform a listening test
where a subject has to make a forced choice as to which emotionhe or she is listening to. The
results of these systems are quite good, with most emotions being recognised with a fair degree of
accuracy. One of the problems with this approach though is that formant synthesis lends itself to
being able to generate quite distinct linguistic effects, but in doing so can create speech where the
“distance” between two categories is artificially large. Inother words, as with other aspects of for-
mant synthesis, intelligibility (that is distinctivenessof emotions) is achieved only at the expense
of naturalness.

A large number of “second generation” techniques have been developed [73], [521]. The
approach here is data driven in nature, where typically a database containing labelled emotional
speech is analysed to determine the characteristics of eachemotion. Often these are taken to
be the traditional prosodic dimensions of F0 and timing. Once these patterns are known, normal
speech can be converted into the emotional speech by using one of the signal processing techniques
described in Chapter 14 to change the F0 and timing. In forcedtests of the type described above,
these systems perform quite well, but again naturalness suffers to some extent because only the F0
and timing is being changed; other important factors such asvoice quality are often ignored.

As techniques become in general more data driven, the issue of how to collect emotional
data comes to the fore. There are basically two approaches. One can either collect natural, per-
haps spontaneous speech from a conversation and then label each sentence as to its emotional
content. This produces the most natural data, but has the difficulty that the speech then has to be
labelled, difficulties which should not be lightly dismissed as we saw in Section 17.1.4. Databases
collected in this way are described by Campbell [81] and Douglas-Cowie et al [112]. An alterna-
tive strategy is to have actors produce sentences intentionally spoken with particular emotions. As
the type of emotion is an “input” to this process then no labelling is required. This approach has a
different problem in that the resultant speech may not be particularly natural; an actor’s version of
a particular emotion may be too “hammed up”.
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17.4.3 Synthesizing emotion with voice transformation

A further approach, which may perhaps still be called secondgeneration is to use more general
signal processing techniques that change other aspects of the signal. The principle is still the
same; a general speech database is used to build a neutral sounding synthesizer, which can then
be adapted to sound as if speaking with a particular emotion.One way of achieving this is to
borrow from the field ofvoice transformation. The goal here is to take speech from one speaker
and transform it so that it sounds like another. The words areunchanged but every other part of
the signal can be adapted to sound like the new, target, speaker. It is beyond our scope to give
an account of this interesting field, the main point is that some of the techniques developed for
converting speech from one speaker to another can also be used to convert from oneemotionto
another [222], [246], [430], [458], [459], [120].

17.4.4 Unit selection and HMM techniques

There is nothing to stop the techniques just described beingused for unit selection synthesis [47].
The problem is not that the techniques would not create speech that reflects the desired emotion,
but rather that the whole approach of using signal processing to modify the signal may lead to
degradation which would lower the overall quality of the unit selection speech. The “pure” unit
selection technique would of course be to record all the normal material but a number of times,
once for each emotion. This is however nearly universally acknowledged to be impractical as
every additional emotion will mean that several hours of extra speech will have to be recorded. A
number of alternative solutions have therefore been put forth. Van Santen et al [466] describe a
hybrid scheme in which a general unit selection database is mixed with units recorded with specific
emotion states. Aylett [25] describes a system where a normal unit selection system (i.e. using
a normal database without signal processing) is used to synthesize particularly emphatic speech.
The result is quite convincing and works on the principle that in the natural distribution of units
will be ones thatwhen combinedcan produce effects quite different to the original speech.In
principle this technique could be extended to other emotions.

HMM synthesis arguably provides the best technique for synthesizing emotional speech
[458], [222], [230]. This requires far less data than unit selection so in principle can be used
in a situation where representative data from each requiredemotion is collected and used for sys-
tem training. Beyond this however, HMMs have a number of other advantages, primarily arising
from the ability of the model parameters to be modified. This implies that a small amount of target
data can be used to globally modify a normal HMM synthesizer to convey the emotion of the target
data. Furthermore, spectral and temporal parameters can bemodified as well as the F0. Finally,
HMM themselves may offer a solution to the emotion taxonomy problem. Shichiri et al [404] de-
scribe a system whereby they use a principle component technique to determining theeigenvoices
of a set of trained models. These effectively describe the main dimensions of variation within a
voice. Once found, their values can be altered and a number ofdifferent voices or emotions can
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be created. This is a purely data driven technique. The result is quite curious and the variations
soundalmostlike variations attributable to recognised emotions like happiness and sadness.

We are only in the very early stages of research into emotion in speech in general and speech
synthesis in particular. As such much current interest involves database collection and analysis
[22], [34], [81], [82], [112], [130] and ways to describe andcontrol emotion [150]. The study
of emotion and expression in speech synthesis will certainly grow into a rich and exciting major
topic of research.

17.5 SUMMARY

Databases

• Most modern synthesis techniques require a database.

• The quality of a unit selection databases is a critical factor in overall performance, with
special attention being required for choice of speaker and recording conditions.

• There are two types of human labelling, intuitive and analytical

• Intuitive labelling can be performed by non-specialists and draws on the labellers own lan-
guage faculty. It is generall very useful and accurate

• Analytical labeller also known as expert labelling is performed by a labeller following rules
and using a linguistic theory. In general it is error prone and best avoided.

• Analytical labelling can usually be performed better by a computer or can be avoided alto-
gether by use of hidden variables.

Evaluation

• A good testing regime is one where user requirements are specified ahead of time and tests
are subsequently designed to see if the system meets these requirements.

• Intelligibility testing is often performed with the modified rhyme test or semantically unpre-
dictable sentences. While these give a measure of word recognition, care should be taken
when using results from these tests to indicate performancein applications.

• naturalness is normally measured by mean opinion scores (MOS).

• Testing of individual components in TTS is often difficult due to there being continuous out-
puts, differences between objective measures and perception and components having more
than one correct answer.

Audio-visual synthesis

• This can be performed in a number of ways ranging from explicit models which afford a
large degree of control to data driven techniques which use video clips as basic units.
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Emotion

• There is no widely agreed set of emotions but common categories include the six emotions of
disgust, anger, fear, joy, sadness, surprise, or the three continuous dimensions of activation,
evaluation and power.

• “first generation” synthesis systems have specific rules foreach emotion type

• “second generation” techniques transplant prosody patterns of particular emotions onto neu-
tral speech

• voice conversion techniques can be used to transform speechfrom one emotion to another.

• HMM synthesis offers a powerful way to learn and manipulate emotion.



18 CONCLUSION

We finish with some general thoughts about the field of speech technology and linguistics and a
discussion of future directions.

18.1 SPEECHTECHNOLOGY AND L INGUISTICS

A new comer to TTS might expect that the relationship betweenspeech technology and linguistics
would parallel that between more traditional types of engineering and physics. For example, in
mechanical engineering, machines and engines are built based on the principles of dynamics,
forces, energy and so on developed in classical physics. It should be clear to a reader with more
experience in speech technology that this state of affairs does not hold between the engineering
issues that we address in this book and the theoretical field of linguistics. How has this state of
affairs come about and what is or what should be the relationship between the two fields?

It is widely acknowledged that researchers in the fields of speech technology and linguistics
do not in general work together. This topic is often raised atconferences and is the subject of
many a discussion panel or special session. Arguments are put forward for the lack of unity, all
politely agree that we can learn more from each other, and then both communities go away and
do their own thing just as before, such that the gap is even wider by the time the next conference
comes around.

The first stated reason for this gap is the “aeroplanes don’t flap their wings” argument. The
implication of this statement is that even if we had a complete knowledge of how human language
worked, it may not help us greatly as we are trying to develop these processes in machines, which
have a fundamentally different architecture. This argument certainly has some validity, but it does
not explain the rift, as we can point to many cases where some knowledge of human language
has proved useful and where we can identify other areas wherea break though in fundamental
knowledge would help greatly. A second stated reason is that“our goals are different”, and this
again is partly true. A quick glance at a linguistics journalwill show many papers on study
languages other than the main European and Asian languages.Furthermore, we find that some
areas of linguistic study (e.g. syntax) receive an enormousamount of attention, while others,
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such as prosodic phrasing, are rarely studied at all. This focus on particular areas is not of course
unique to our fields, there are many areas of physics which arekeenly investigated but which
have no immediate engineering purpose. A final reason which is often given is that there is a
“cultural divide”. This certainly exists; I am saddened by the fact that most linguists have little or
no understanding of how an HMM speech recognition system works, and that most engineers can
not read spectrograms or perform simple phonetic transcriptions. While it is unrealistic to expect
people in one field to understand the advanced concepts in another, the fact that many courses
regularly teach phonetics and HMMs to students shows that the concepts can not be too difficult
to grasp.

These reasons are certainly valid, but in my opinion, but don’t give the full picture. Consid-
ering the issue of differences in culture, it is important torealise that this was not always the case.
In the 1970s, most speech technology groups were a mixture ofpeople from linguistics, electrical
engineering, artificial intelligence and so on. The gap in culture started to develop then and has
been spreading ever since. The reason is quite clear, namelybecause the theories and models that
the linguists proposed proved not to work robustly enough for speech technology purposes. A
growing frustration was felt by the engineers who graduallybecame tired of implementing yet an-
other linguistic theory only to find that this did not work in areal system. This state of affairs was
stated by Fred Jelinek who famously said that “whenever I firea linguist our system performance
improves”. [238]. The question though iswhy did the knowledge of linguists prove so useless
(and indeed damaging as it diverted resources from other approaches)?

Linguistics itself is not a homogeneous field and there are many different schools and points
of view. For discussion purposes, we can divide the field verycrudely into a number of camps.
The most famous camp of all is the Chomskian camp, started of course by Noam Chomsky and
which advocates a very particular approach. Here data is notused in any explicit sense, quantitive
experiments are not performed and where little credence is put on explicit formal description of
the theories advocated1. While Chomskian linguistics was dominant from the 1960s onwards,
it is now somewhat isolated as a field, and rarely adopted as a model of language outside the
immediate Chomskian camp. We can identify another area of linguistics, which we shall call
experimental linguistics, which really should be the “physics of language” that would serve as
the scientific bedrock of speech engineering. By experimental linguistics we include the fields of
experimental phonetics, psycholinguistics, and many other areas of discourse and dialogue study.
Here traditional scientific methods of experimentation arerigorously used and so this field can not
be dismissed in the way the Chomskian field can. While accepting that to a certain extent the focus
of this field is often on different issues, we do though find that many studies are conducted in just
the areas that would be on benefit in speech synthesis. So why then are these studies ignored?

In my opinion, the answer lies in thecurse of dimensionality introduced in Section 5.2.1.

1 Note that in his early work (pre-1970s) Chomsky put considerable emphasis on formally describing his theories,
for example SPE [91] is full of explicit rules and formula. From this point on however, the formal side more or less
disappeared and recent work is not described in terms familiar to those from a traditional scientific background.
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To show this, let us consider just one example, of a topic in experimental linguistics which could
be of benefit in TTS. In Section 9.2.4 we introduced the issue of pitch accentalignment which
concerned how the peak in a pitch accent should align with thephones. There have been numerous
studies on this topic. To take one example, Ladd [21] conducted an experiment into the alignment
of pitch accents in Northern and Southern varieties of German. Several hypotheses were of in-
terest in the experiment, but the main goal of this and related work is to come up with a general
model, or set of rules, which describe how this alignment works. The work can’t be faulted in
its experimental design, procedures and methodology and the results show consistent patterns in
how speakers align designated points in the F0 contour to thephones; in conducting this and other
studies Ladd and colleagues have advanced our understanding of pitch alignment enormously. So
why then do such studies not form the basis of pitch alignmentalgorithms in TTS? What then is
the problem in applying this knowledge?

The problem lies in thegeneralisation or scalability of the results. While the results are
probably quite valid for the conditions in which they were measured, we simply can’t extrapolate
these results to other situations. For example, the phonetic contexts in which the accents appeared
were all of a particular type: what then do we do if we (as will definitely be the case in TTS) want
to synthesize a pitch accent for a different segmental context? The study concerns two varieties
of German, but what about the others? What about differencesin speaking rates? What happens
when the accented syllables are at different positions in the words or phrases or sentences? What
about different languages and do differences occur in conversational, informal or disfluent speech?
As we can see, the number of unknowns is vast, and while the studies carried out in this area suffice
to shed light on those areas; this amounts to only a tiny fraction in the types of situations that can
occur. Worse still, as we explained in Section 5.2.1, it is generally not the case that features operate
independently; so if we for instance adopted a tactic which is common in experimental linguistics
where we hold all variables (features) constant and then change just one, we might think that by
doing this for every feature we could build a complete model.But this would rarely suffice; the
features interact and hence studying the effect of each feature separately will not lead to complete
knowledge of the problem. These of course are exactly the same problems which occur in machine
learning; rarely do simple rules or simple classifiers (likenaive Bayes) work very well for exactly
this problem of feature interaction. Successful machine learning techniques then are those which
acknowledge problems of data sparsity, the interaction of features and the curse of dimensionality.
While no silver bullet yet exists in machine learning, at least the problem is clearly identified and
handled with the more sophisticated learning algorithms.

In my view then this is the main reason why linguistic knowledge of the traditional kind
does not andwill not be applicable in speech technology. I do not have an answer tothis problem,
but would at least argue that an acknowledgment of this fundamental difficulty of generalisation
and scalability as being the source of the problem. I certainly think that the field of experimental
linguistcs could benefit from engaging with the knowledge acquired in machine learning. Specific
machine learning techniques do not have to be adopted, but the procedures and understanding used
for dealing with complex, messy and sparse data would surelyhelp build more scalable models of
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human language.
I will finish though by saying that a solid knowledge of the basics of linguistics has been

invaluable to me in my own TTS research, and that in my view, a solid knowledge of acoustic
phonetics is one of the key skills required to build a good unit selection system. I would therefore
still recommend that anyone wishing to work in TTS should obtain a basic understanding of key
areas in linguistics.

18.2 FUTURE DIRECTIONS

In the words of Sam Goldwyn “Never make predictions, especially about the future” [489]. In
general when we look back on predictions of the future made inthe past, the comparisons between
our life now and the prediction are laughable. So considering the futility of making predictions it
would be easily forgivable if I were to forgo this section, but perhaps mainly to give future readers
just such a laugh, I will now state how I see the future of text-to-speech evolving.

Text analysis A sensible starting point for any prediction would be to extrapolate current trends.
To this extent, it is reasonable to assume that TTS will become entirely data driven. I think
it is incontestable that the front end, or text processing component will become entirely
statistical. In recent years the advances in statistical NLP have been enormous, fueled by the
use of search engines and the need to translate documents. I think many of these techniques
are directly applicable to TTS and will be adopted.

Integrated systems I think that systems will in general become more integrated,to the extent that
there may only be a single integrated text analysis component, and a single integrated speech
synthesis component. It is of course possible that a single system could do both, but from my
perspective I can’t see how this could be done. This will havethe greatest consequence on
the field of prosody. I don’t think that the traditional approach to prosody in TTS, where F0
contours and timings are generated by algorithm, has much future. This is because prosody
affects so much more in the signal, and for truly realistic prosody to be generated all aspects
of voice quality need to be modelled. As this is so intertwined with the phonetic aspects
of synthesis it makes sense to generate the phonetics, voicequality and prosody parts of
synthesis in an integrated fashion. This to some extent has already happened in many unit
selection and HMM systems. If explicit F0 modelling is stillused, it will be by statistical
algorithms such as Dynamic System models and HMMs; deterministic models such as Tilt
and Fujisaki will be used less.

Synthesis algorithms A harder prediction concerns speech synthesis algorithms.A few years
ago, unit selection seemed the dominant technique, but recently HMM synthesis has caught
up, and depending on how one evaluates the systems, HMM synthesis may even have the
edge at present. The main thing holding HMM synthesis back isthe signal processing al-
gorithms that are required to generate the speech from coefficient representations still have
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buzziness and other artefacts. Signal processing in TTS is now receiving much attention
after having been somewhat neglected at the height of unit selection. If these problems can
be overcome, I believe that HMM or other statistical synthesis techniques will become dom-
inant, as they allow so much more control over the synthesis than the inherently hit and miss
nature of unit selection.

Quality improvements In terms of overall quality and performance, I think that theproblems of
text analysis can be fully solved with today’s technology; all that is needed are good quality
databases and a concerted drive to increase performance. I also believe that the best synthesis
systems are close to being fully acceptable for certain styles of speaking, in particular the
neutral styles required for news reading. In more limited domains, e.g. weather reports,
systems are on the brink of passing Turing tests to the extentthat listeners can’t tell (or more
significantly don’t care) that they are listening to a TTS system. The overall problem is far
from solved however; the amount of data to train a unit selection system is unattractive for
quickly adding a new voice, and the range of speech styles that can be elicited is limited.

Concept-to-speechIn Section 3.4.2 we briefly mentionedconcept-to-speechsystems which are
systems which can directly take a structured linguistic input, bypassing all problems of text
analysis. Concept-to-speech systems have to a large extentfailed to take off, and it is not
entirely clear why this should be given the potential advantages. One reason may be that the
sophistication of dialogue systems and other systems whichuse language generation is not
yet at a level which could for instance make good use of discourse prosody. An alternative
explanation is that while text may be inherently ambiguous it is at least familiar and can even
be described as a “standard”, resulting in it still being an attractive interface to a system. So
regarding the future, the question isn’t so much whether concept-to-speech systems will play
a prominent role in future speech synthesis systems, but rather why they haven’t already done
so.

Relationship with linguistics Going back to the issue of the interaction between the fields of
speech technology and linguistics, we find many who believe that speech technology prob-
lems will only be solve by using the results of basic researchin linguistics. It should be no
surprise to the reader by now that I completely disagree withsuch an idea. To put my view
clearly the field of linguistics, as currently practiced, will neverproduce any research that
will facilitate a major leap forward in speech technology. This is for the reasons explained
above, that much of linguistics is not experimental and so has no real evidence to back up its
claims, and that part of linguistics which is experimental operates in a paradigm that makes
it results inherently difficult to scale because of the fundamental problems of the curse of
dimensionality.

In fact, my prediction is that just the opposite will occur, and the field of linguistics
will sooner or later cease to exist in its current form, and that the rigourous experimen-
tal, data-driven, formal, mathematical and statistical techniques developed in speech and
language technology will be adopted and start to provide theanswers to many of the long
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running problems in linguistics. This is already happeningto some extent, in that research
using probability is making inroads into mainstream linguistics (see [59] for instance). The
progress though is slow, and one gets the feeling that the researchers using probability in lin-
guistics do so somewhat apologetically. Hopefully this transition period will not be too long,
and that the techniques used in speech technology will quickly find their way into main-
stream linguistics. If this does in fact happen, the benefitswould be enormous for all, as,
for the first time, those in speech technology could start to use linguistic knowledge directly.
Furthermore, the use of these techniques in linguistics should solve many of the problems in
that field and lead to more accurate and rich knowledge of how human language works.

Applications The most difficult prediction concerns a topic which hasn’t be mentioned much in
the book, namely applications for TTS. After nearly 40 yearsof TTS research and system
building, it is fair to say that no “killer ap” for TTS has yet emerged. This is fundamental to
all aspects of research as it is ultimately the commercial use of TTS that funds and maintains
interest in the field. In the late 1990s many thought that telephony dialogue systems were
the killer ap for speech technology, and many companies achieved considerable success in
this area. At time of writing though, the market for this has been flat for several years, and
shows no sign of improvement. I am doubtful that dialogue systems will be a killer for TTS
or other speech technologies.

The use of the web will gradually replace nearly all automated telephony services and the
types of systems currently being used will be discontinued.If given a choice, people simply
do not want to converse with computers. The main problem withdialogue systems as they
currently stand is that they do not perform any realunderstanding. Hence the dialogues have
to be heavily constrained and managed or else low performance will result. What would
make dialogue systems genuinely popular would be where people could spontaneously and
naturally speak and beunderstood, in much the same way as they would talk to a real person.
This of course requires speech understanding technology which is many years away (perhaps
decades). TTS is simply a component in dialogue systems, butits adoption is inherently tied
up in the success of the overall systems

I have no real insight or ideas as to where the killer ap for TTSlies, or even if there is
one. This should not be interpreted as overly negative however, the history of technology is
full of sudden shifts and of technologies suddenly being found useful in areas their inventors
could never have imagined. Another perspective can be foundif we look at the use of
speech, and not just speech synthesis, in technology. Here we see that the use of pre-recorded
messages is widespread, from car navigation systems to computer games. If we in the speech
synthesis community can make TTS as good quality and as easy to use as recorded spoken
messages, then the technology will surely be adopted due to its increased flexibility. As
Moore [318] points out, one of the key problems is that all speech technology today is
that each component performs its function in a processing “vacuum”, and that the model of
communication described in Chapter 2 is ignored. Successful interaction by natural language
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can only occur when the components are sensitive to their role in the communication process.

18.3 CONCLUSION

This then concludesText-to-Speech Synthesis. Despite the continual exhortations to adhere to
engineering principles through the book, I will finish by saying that building TTS systems should
always be regarded as a fun activity. In academic life, I haveseen that virtually everyone regards
their own field as more important or more interesting than anyother. I will make no such claims
about TTS, but I will claim that there is something about making computers talk that is simplyfun
and that in this it may have an edge over some other activities. After doing this for 18 years I still
find it a great moment when a new system speaks for the first timeand I never fail to laugh at the
sometimes absurd output of even the best systems. The demonstrations of speech synthesis I give
at conferences nearly always attract a smile and often laughter, both with me and at me. I would
encourage any reader who has not yet built a system to have a go, as doing so sheds immediate
light on many ideas of how language and human communication works. And in doing so a new
convert might just agree that doing research and building systems in TTS is just about one of the
most enjoyable things you can do with your working time.



A PROBABILITY

This appendix1 gives a brief guidel to the probability theory needed at various stages in the book.
The following is too brief to be intended as first exposure to probability, but rather is here to act
as a reference. Good introductory books on probability include Bishop [45], [46] and Duda, Hart
and Stork [142].

A.1 DISCRETEPROBABILITIES

Discrete events are the simplest to interpret. For example,what is the probability of:

• it raining tomorrow?
• a6 being thrown on a die?

Probability can be thought of as the chance of a particular event occurring. We limit the range of
our probability measure to lie in the range 0 to 1, where

• Lower numbers indicate that the event islesslikely to occur, 0 indicates it willneveroccur.
• Higher numbers indicate that the event ismorelikely to occur, 1 indicates that the event will

definitelyoccur.

We like to think that we have a good grasp of both estimating and using probability. For simple
cases “will it rain tomorrow?” we can do reasonably well. However as situations get more compli-
cated things are not always so clear. The aim of probability theory is to give us a mathematically
sound way of inferring information using probabilities.

A.1.1 Discrete Random Variables

Let some event have haveM possible outcomes. We are interested in theprobability of each of
these out comes occurring. Let the set of possible outcomes be

X = {v1,v2, . . . ,vM}
1 Nearly all this appendix is taken from the lecture notes of Mark Gales given for the MPhil in Computer Speech, Text
and Internet Technology at the University of Cambridge.
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The probability of a particular event occurring is

pi = P(x = vi)

wherex is a discreterandom variable. For a single die there are 6 possible events (M = 6)

X = {1,2,3,4,5,6}

For a fair die (for example)

p1 =
1
6
, p2 =

1
6

and so on.

A.1.2 Probability Mass Function

It is more convenient to express the set of probabilities:

{p1, p2, . . . , pM}

as aprobability mass function (PMF), P(x). Attributes of a probability mass function (PMF):

P(x)≥ 0; ∑
x∈X

P(x) = 1

In words:

1. The first constraint means that probabilities must alwaysbe positive (what would a negative
probability mean?).

2. The second constraint states that one of the set of possible must occur.

From these constraints it is simple to obtain

0≤ P(x)≤ 1

A.1.3 Expected Values

There are usefulstatistics that may be obtained from PMFs. Theexpected values(think of it as
an average) is often extracted

E {x}= ∑
x∈X

xP(x) =
M

∑
i=1

vi pi

This is also known as themean:

µ= E {x}= ∑
x∈X

xP(x)
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The mean value from a single roll of a die is

µ= 1
1
6

+2
1
6

+3
1
6

+4
1
6

+5
1
6

+6
1
6

= 3.5

The expected values over functions and linear combinationsof the random variable are

E { f (x)} = ∑
x∈X

f (x)P(x), E {α1 f1(x)+ α2 f2(x)}= E {α1 f1(x)}+E {α2 f2(x)}

A.1.4 Moments of a PMF

Thenth moment of a PMF is defined as

E {xn}= ∑
x∈X

xnP(x)

The second moment and thevariance are often used. The variance is defined as

Var{x} = σ2 = E
{
(x−µ)2}= E

{
x2}− (E {x})2

i.e. it is simply the difference between the second moment and the first moment squared. An
attribute of the variance is

σ2≥ 0

Again taking the example of the die, the second moment is

E
{

x2}= 121
6

+221
6

+321
6

+421
6

+521
6

+621
6

= 15.1667

Therefore the variance is

σ2 = 15.1667−3.5×3.5 = 2.9167

A.2 PAIRS OF DISCRETE RANDOM VARIABLES

For many problems there are situations involving more than asingle random variable. Consider
the case of 2 discrete random variables,x andy. Herey may take any of the values of the setY .
Now instead of having PMFs of a single variable, thejoint PMF , P(x,y) is required. This may be
viewed as the probability ofx taking a particular valuesand ytaking a particular value. This joint
PMF must satisfy

P(x,y) ≥ 0, ∑
x∈X

∑
y∈Y

P(x,y) = 1

Take a simple example of the weather - whether it rains or not on 2 particular days. Letx be the
random variable associated with it raining on day 1,y on day 2. The joint PMF may be described
by the table
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P(x,y) rain sun
rain 0.4 0.2
sun 0.3 0.1
total 1.0

A.2.1 Marginal Distributions

Given the joint distribution it is possible to obtain the probability of a single event. From the joint
PMFmarginal distributions can be obtained as

Px(x) = ∑
y∈Y

P(x,y), Py(y) = ∑
x∈X

P(x,y)

For ease of notationPx(x) is written asP(x) where the context makes it clear. Take the rain and
sun example

P(x,y) rain sun
rain 0.4 0.2 0.6
sun 0.3 0.1 0.4
total 0.7 0.3 1.0

Hence

P(x = rain) = 0.6

P(x = sun) = 0.4

and similarly for the marginal distribution fory.

A.2.2 Independence

An important concept in probability isindependence. Two variables are statistically independent
if

P(x,y) = P(x)P(y)

This is very important since it is only necessary to know the individual PMFs to obtain the joint
PMF. Take the “sun and rain” example. Is whether it rains or noon the second day independent of
the first day. Take the example of raining on both days and assume independence

P(x = rain,y = rain) = P(x = rain)P(y = rain)

= 0.6×0.7 = 0.42

6= 0.4

So from the joint PMF the two random variables arenot independent of one another.
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A.2.3 Expected Values

The expected values of two variables is also of interest.

E { f (x,y)} = ∑
x∈X

∑
y∈Y

f (x,y)P(x,y)

This follows directly from the single variable case.

A.2.4 Moments of a joint distribution

Using vector notation where

x =

[
x
y

]

The first moment is defined as

µµµ= E {x}=

[
E {x}
E {y}

]

= ∑
x∈{X Y }

xP(x)

A.2.5 Higher-Order Moments and covariance

In the same fashion as single variable distributions, higher-order moments can be considerd. The
one of most interest is the second-order moment

E
{

xx′
}

= ∑
x∈{X Y }

P(x)xx′

This can be used to find thecovariance matrix as

ΣΣΣ = E
{
(x−µµµ)(x−µµµ)′

}

=

[
E
{
(x−µx)

2
}
E {(x−µx)(y−µy)}

E {(x−µx)(y−µy)} E
{
(y−µy)

2
}

]

The covariance matrix may also be expressed as

ΣΣΣ = E
{

xx′
}
−µµµµµµ′

Covariance matrices arealwayssymmetric.
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A.2.6 Correlation

For two random variablesx andy the covariance matrix may be written as

ΣΣΣ =

[
σxx σxy

σxy σyy

]

=

[
σ2

x σxy

σxy σ2
y

]

where

σxy = E {(x−µx)(y−µy)}

andσ2
x = σxx. The correlation coefficient,ρ, is defined as

ρ =
σxy

σxσy

This takes the values

−1≤ ρ≤ 1

In general whenρ = 0 the two random variables are said to beuncorrelated. Note that indepen-
dent random variables are always uncorrelated (you should be able to simply show this).

A.2.7 Conditional Probability

The probability of an event occurringgiven that some event has already happened is called the
conditional probability .

P(y|x) =
P(x,y)
P(x)

This is simple to illustrate with an example. From the “sun and rain” example: “What is the
probability that it will rain on the second daygiven it rained on the first day?” From the above
equation and using the joint and marginal distributions

P(y = rain|x = rain) =
P(x = rain,y = rain)

P(x = rain)

=
0.4
0.6

= 0.6667

It is worth noting that when thex andy are independent

P(y|x) =
P(x,y)
P(x)

= P(y)
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A.2.8 Bayes’ Rule

One important rule that will be used often in the course isBayes’ Rule. This is a very useful way
of manipulating probabilities.

P(x|y) =
P(x,y)
P(y)

=
P(y|x)P(x)

P(y)

=
P(y|x)P(x)

∑x∈X P(x,y)

=
P(y|x)P(x)

∑x∈X P(y|x)P(x)

The conditional probabilityP(x|y) can be expressed in terms of

• P(y|x) the conditional probability ofy givenx
• P(x) the probability ofx

A.2.9 Sum of Random Variables

What happens if two random variables are added together?

• Mean: the mean of the sum of 2 RVs is

E {x+y}= E {x}+E {y}= µx +µy
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• Variance: The variance of the sum of 2 independent RVs is

E
{
(x+y−µx−µy)

2} = E
{
(x−µx)

2}+E
{
(y−µy)

2}+2E {(x−µx)(y−µy)}
= σ2

x + σ2
y

A.2.10 The chain rule

The chain rule computes joint probabilities from conditional probabilities :

P(x,y,z) = P(x|y,z)P(y|z)P(z)

To see why this holds, consider the what happens when we expand out the conditional probabilities
with their definitions from Bayes rule:

P(x,y,z) =
P(x,y,z)
P(y,z)

P(y,z)
P(z)

P(z)

Each of the terms numerator cancels the previous terms denominator, leaving us with a simple
expression that P(X, Y, Z) equals itself.

A.2.11 Entropy

It would be useful to have a measure of how “random” a distribution is. Entropy,H, is defined as

H = −∑
x∈X

P(x) log2(P(x))

= E

{

log2

(
1

P(x)

)}

• log2() is log base 2, not base 10 or natural log.

• By definition 0log2(0) = 0.

For discrete distributions the entropy is usually measuredin bits. One bit corresponds to the
uncertainty that can be resolved with a simple yes/no answer. For any set ofM possible symbols

• the PMF which has themaximum entropy is the uniform distribution

P(x) =
1
M

• the PMF which has theminimum entropy is the distribution where only a single probability
is non zero (and so must be one).
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A.3 CONTINUOUS RANDOM VARIABLES

Not everything in life is discrete. Many examples occur, forexample

• the correlation between height and weight?
• precisely when the last student arrives at a lecture
• speech recognition...

Continuous random variables are not as easy to interpret as discrete random variables. We usu-
ally convert them into discrete random variables, for example we quote our height to the nearest
centimetre, or inch.

A.3.1 Continuous Random Variables

As continuous random variables are being considered, the probability of aparticular event oc-
curring is infintely small. Hence the probability of an eventoccurring within a particular range
of values is considred. Rather than having a PMF aprobability density function (PDF), p(x) is
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used, wherex is now a continuous variable. This has the property

P(x∈ (a,b)) =
Z b

a
p(x)dx

In words this says that the probability that the random variable x lies in the rangea to b is the
integral of the probability density function betweena andb. Consider a very small range,(a,a+
∆x), then it is possible to write

p(a) ≈ P(x∈ (a,a+ ∆x))
∆x

From this it is simple to see that

p(x) ≥ 0,
Z ∞

−∞
p(x)dx= 1

As a simple example, ceonsider the case where

p(x) =

{
2(1−x), 0≤ x≤ 1
0, otherwise

What isP(x∈ (0.25,0.75)) for this distribution?
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A.3.2 Expected Values

In a similar fashion to the discrete case the expected valuesof continuous random variables can be
obtained

E { f (x)} =
Z ∞

−∞
f (x)p(x)dx

This naturally leads to the moments of continuous variables. For example the mean,µ, is defined
as

µ= E {x} =
Z ∞

−∞
xp(x)dx

For the simple example overleaf

µ=

Z ∞

−∞
xp(x)dx=

Z 1

0
x(2(1−x))dx=

1
3

Similarly the higher order moments and variance may be calculated (any doubts work this out).
The same rules apply for continuous variables as discrete variables for linear combinations.

A.3.3 Gaussian Distribution

The most commonly used distribution (for reasons explainedlater) is theGaussian(or Normal)
distribution. This has the form

p(x) =
1√

2πσ2
exp

(

−(x−µ)2

2σ2

)

Looking at the first few moments of a Gaussian distribution

E {x0}= E {1} = 1, E {x1}= µ, E {x2}= σ2 +µ2

A.3.4 Uniform Distribution

Another distribution is theuniform distribution . This is defined as

p(x) =

{ 1
b−a, a≤ x≤ b
0, otherwise

Again it is simple to compute the moments of the uniform distribution. For the example above

E {x} =
Z ∞

−∞
xp(x)dx=

Z 3

1

1
2

xdx= (9−1)/4 = 2
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A.3.5 Cumulative Density Functions

In addition to PDFs we sometimes use cumulative density functions (CDFs). These are defined as

F(a) = P(x≤ a) =

Z a

−∞
p(x)dx

But from earlier

p(a) ≈ P(x∈ (a,a+ ∆x))
∆x

=
F(a+ ∆x)−F(a)

∆x

So in the limit∆x→ 0

p(a) =
dF(x)

dx

∣
∣
∣
∣
a

In words the value of the PDF at pointa is the gradient of the CDF ata. The above figure shows
the Gaussian and associated CDF.

A.4 PAIRS OF CONTINUOUS RANDOM VARIABLES

All the aspects of discrete distributions have continuous equivalents.

• Marginal distributions : By analogy

px(x) =
Z ∞

−∞
p(x,y)dy
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• Conditional probability :

p(y|x) =
p(x,y)
p(x)

=
p(x,y)

R ∞
−∞ p(x,y)dy

• Independence: For two random variables to be independent of one another

p(x,y) = p(x)p(y)

The same definition for correlation coefficient is used. It isinteresting to look at uncorrelated vs
independent data.

A.4.1 Independence vs Uncorrelated

Consider data generated by the following functionx =

[
r cos(θ)
r sin(θ)

]

θ is uniformly distributed in the range(0,2π) andr is Gaussian distributed,µ = 1.0 andσ = 0.1.
From this data:

ΣΣΣ =

[
0.50 0.00
0.00 0.50

]

The data is uncorrelated -Is it Independent?
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A.4.2 Sum of Two Random Variables

In some situations (consider adding some noise to a clean speech signal) the distribution of the
sum of two independent random variables,x andy, is required Let

z= x+y

pz(z) is required given thatpy(y) andpx(x) are known (in the same fashion as PMFs the subscripts
on the PDFs have been added to make the distribution clear). From previous results it is easy to
obtain

• the mean (even ifx andy are not independent)

• the variance

The expression for the complete PDF ofz is required. This may be obtained byconvolving the
two distributions

pz(z) = px(x)⊗ py(y) =

Z ∞

−∞
px(x)py(z−x)dx

A.4.3 Entropy

For discrete RVs entropy was used as a measure of how “random”a distribution is. For continuous
RVs entropy,H, is defined as

H = −
Z ∞

−∞
p(x) log(p(x))dx

= E

{

log

(
1

p(x)

)}

Note:

1. log() is the natural log, not base 10, or base 2.

2. By definition 0log(0) = 0.

Entropy of continuous random variables is measured in nats (compare to bits for the discrete
distributions). It is worth noting that of all the continuous distributions having meanµand variance
σ2 the distribution with the greatest entropy is the Gaussian distribution. (Try and compute the
entropy of a Gaussian distribution).

A.4.4 Kullback-Leibler Distance

It will be useful to measure how “close” two distributions are. One measure if the Kullback-Leibler
distance (or relative entropy). This is defined as

DKL(p(x),q(x)) =

Z ∞

−∞
q(x) log

(
q(x)
p(x)

)

dx
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This has the attribute that

DKL(p(x),q(x)) ≥ 0

and

DKL(p(x),q(x)) = 0

if, and only if, p(x) = q(x). Note that Kullback-Liebler distance is not necessarily symmetric, nor
necessarily satisfy the triangular inequality (will be discussed later in the course).
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Symbol Example wordTranscription Symbol Example wordTranscription
b BEE B iy l LAY L ey
d DAY D ey r RAY R ey
g GAY G ey w WAY W ey
p PEA P iy y YACHT Y aa t
t TEA T iy iy BEET b IY t
k KEY K iy ih BIT b IH t
dx MUDDY m ah DX iy eh BET b EH t
jh JOKE JH ow k ey BAIT b EY t
ch CHOKE CH ow k ae BAT b AE t
s SEA S iy aa BOT b AA t
sh SHE SH iy aw BOUT b AW t
z ZONE Z ow n ay BITE b AY t
zh AZURE ae ZH er ah BUTT b AH t
f FIN F ih n ao BOUGHT b AO t
th THIN TH ih n oy BOY b OY
v VAN V ae n ow BOAT b OW t
dh THEN DH e n uh BOOK b UH k
hh HAY HH ey uw BOOT b UW t
m MOM M aa M er BIRD b ER d
n NOON N uw N ax ABOUT AX b aw t
ng SING s ih NG axr BUTTER b ah d axr

Figure B.1 Definition of modified TIMIT phoneme inventory for General American, with example
words
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Symbol Word initial exampleWord final example Symbol Word initial exampleWord final example
p PIP RIP j YIP -
t TIP WRIT ii HEAT PEEL

k KIP KICK ih HIT PILL

b BIP RIB ei HATE PATE

d DIP RID e HET PET

g GAP RIG aa HEART PART

ch CHIP RICH a HAT PAT

dz GYP RIDGE uu HOOT POOT

m MIP RIM u FULL PUT

n NIP RUN ou MOAT BOAT

ng * RING uh HUT PUTT

f FOP RIFF oo HAUGHT CAUGHT

th THOUGHT KITH o HOT POT

s SIP REECE ai HEIGHT BITE

sh SHIP WISH au LOUT BOUT

v VOTE SIV oi NOISE BOIL

dh THOUGH WRITHE i@ HEAR PIER

z ZIP FIZZ e@ HAIR PEAR

zh VISION u@ SURE PURE

h HIP - @@ HER PURR

l LIP PULL @ CHINA ABOUT

r RIP CAR w WIP -

Figure B.2 Definition of British English MRPA phoneme inventory, with example words

æ �V*℄ �•�•�<•�•T•'• u•5•
o• • =•�•�•�•Œ•a•

œ•�•ø•e•

y•i •

Figure B.3 IPA Vowel chart. The position of each vowel indicates the position of the tongue used to
produce that vowel. Front vowels are to the left, back vowelsto the right. Where a unrounded/rounded
pair occurs, the unrounded version is on the left.
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Bilabial Labiodental Dental Alveolar Post-alveolarRetroflex Palatal Velar Uvular Pharyngeal glottal

Plosive p b t d P � c , k g q � b
Nasal m 4 n 9 7 8 :
Trill B r R

Tap/Flap D F
Fricative C 	 f v S � s z M ` L _ CX jX X  [ K #  h $

Lateral fricative / 1
Approximant Y G H j 6

Lateral approximant l 0 \ L

Figure B.4 IPA Consonant chart. Where there is a unvoiced/voiced contrast, the unvoiced symbol
is shown on the left.
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abbreviations, decoding, 98

Abjab writing system, 34–5

acoustic models of speech production, 309–40

about the acoustic models, 309, 339–40

assumptions discussion, 336–40

components of the model, 309–11

models with vocal-tract losses, 335–6

nasal cavity modelling, 333–5

oral cavity sound source positions, 335

radiation models, 330

source and radiation effects, 336

see also glottis/glottal source; sound, physics of;

vowel-tube models

acoustic representations, 156–9

spectogram, 157–9

spectral analysis/frequency domain analysis,

156

spectral envelope, 156–7

acoustic-space formulation (ASF), 485, 493–7

acoustic theory see sound, physics of; vowel-tube

model

acoustic waves, 316–18

acronyms, decoding, 99

adapting systems if TTS, 50

addition paradigm, 71

Advanced Telecommunications Research (ATR),

512–14

affective communication, 8–9

affective prosody, 17, 123–4

affricates, 153, 201

air-flow measurement (mouth air flow), 155

algorithms and features, 79–82

hand written algorithms, 80

see also text-classification algorithms

allophones, 162

allophonic variation, 166–7

all-pole modelling, assumptions, 337–8

alphabetic writing, 34

alternative spellings, decoding, 98

alveolar, 154

ambiguity issues, 22

different words, same form, 54

homograph ambiguity, 22

AM model see autosegmental–metrical (AM)

intonation model

analogue signals, 262–78

aperiodic signals, 262

complex exponential sinusoid, 266–9

complex numbers, 268

conjugate symmetric complex amplitudes, 268–9

Euler’s formula, 266–8

Fourier series/synthesis/analysis, 265–6, 269–70

frequency, 264–5

frequency domain, 270–5

frequency range, 274

fundamental frequency (F0), 148, 265

harmonic frequency, 265

periodic signals, 262–9, 305–7

phase shift, 264

quasi-periodic signals, 262

sinusoid signals, 263–9

time domain, 270

waveforms, 262

see also Fourier transform

APL (Anderson, Pierrehumbert and Liberman)

synthesis scheme, 246

applications, future of, 538

approximants, 154, 201

arbitraryness, 15

architectures for TTS, 71–5

addition paradigm, 71

associative arrays (maps), 72

atomic values, 72–3

autosegmental phonology of data structures, 73

Delta formulation/structure, 74

dictionaries, 72

finite partial functions, 72

heterogeneous relation graph (HRG) formalism,

72–5

list/tree/ladder relations, 73

lookup tables, 72

overwrite paradigm, 71

utterance structure, 71

articulatory gestures, 406

articulatory phonetics see speech

production/articulatory phonetics
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articulatory phonology, 183, 406

articulatory physiology, 406

articulatory synthesis, 405–7

ASCII encoding, 70

aspiration, 168

assimilation effect, 167

associative arrays (maps), 72

assumed intent for prosody, 49–50

atomic values, 72–3

audio-visual speech synthesis, 527–9

about audiovisual synthesis, 406–7, 527–8

and speech control, 528–9

texture mapping, 528

visemes, 528

auditory scales, 351–2

augmentative prosody, 18, 125–6

autocorrelation function, for pitch detection, 381

autocorrelation source separation method, 360–1

automatic labelling, 521

autosegmental-metrical (AM) intonation model,

227, 237–9

analysis with, 248

APL synthesis scheme, 246

data-driven synthesis, 247–8

deterministic synthesis, 246–7

prediction of labels from text, 246

synthesis with, 245–8

and the ToBI scheme, 247, 248

autosegmental phonology, 73, 183

auxiliary generation for prosody, 49–50

bag-of-features approach, 84

Baum–Welch algorithm, 449

Bayes’ rule, 86–7, 545

beam pruning, 509

bilabial constriction, 154

Blizzard Challenge testing, 526

boundary accents/tones, 121, 236, 238

braille, 27

break index concept, 115

British English MRPA phoneme inventory, 554

British intonation school, 227, 236–7

Campbell timing model, 258

canned speech, 43–4

cepstra

linear-prediction cepstra, 369

mel-frequency cepstral coefficient (MFCC), 370

cepstral coefficients, synthesis from, 429–31

cepstrum speech analysis, 353–7

as deconvolution, 355–6

definition, 353

discussion, 356–7

the magnitude spectrum as a signal, 353–5

for pitch detection, 379

chain rule, 546

channel/medium (means of conversion), 13

character

character-to-phoneme conversion, 55

definition, 54

encoding schemes, 69–70

CHATR system, 513

Cholskey decomposition technique, 359

Chomskian field, 534

classical linear-prediction (LP) synthesis, 399–405

about LP synthesis, 399

a complete synthesiser, 403–4

formant synthesis comparison, 399–400

impulse/noise source model, 400–1

LP diphone-concatenative synthesis, 401–3

source modelling, 378

source problems, 404–5

classification see text-classification algorithms

classifiers, F0 models, 228

clitics, 60–1

closed-phase analysis, 374–7

instants of glottal closure points, 374

pre-emphasis, 375

cluster impurity, 88

coarticulation, 168

Cocke–Younger–Kasami (CYK) algorithm, 104

collocation rule, 84

colouring effect, 167

common-form model of TTS, 5–6, 38

communication processes, 18–23

ambiguity issues, 22

common ground issues, 20

dialogue turns, 18

effectiveness factor, 19–20

efficiency factor, 19–20

encoding/decoding, 18–19, 21–2

Grice’s maxims, 20

homograph ambiguity, 22

information–theoretic approach, 23

message generation, 18–21

messages, 18

semiotics, 23

speech, redundancy in, 21

text decoding/analysis, 22

understanding, 19, 22–3

communication, types of, 8–13

about communication, 8, 23–5

affective communication, 8–9

iconic communication, 9–10

interpreted communication, 8

meaning/form/signal, 12–13

signals, 13

symbolic communication, 10–12

see also human communication

comparison tests, 524

competitive evaluations, 526

complex numbers, 268
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component/unit testing, 525–6

compound-noun phrases, 116–17

compound prosodic domains theory, 114

comprehension tests, 523

compression, lossless and lossy, 215

computational phonology, 184

concatenative synthesis, 401–3

issues, 431–2

macro-concatenation, 431, 497

micro-concatenation, 431

optimal coupling, 432

phase mismatch issues, 431–2

concept-to-speech systems, 42–3

future of, 537

conditional probability, 545

conjugate symmetric complex amplitudes, 268–9

consonants, 153–5

affricates, 153

alveolar, 154

approximants, 154

bilabial, 154

difficult consonants, 199–200

fricatives, 153

glides, 154–5

IPA charts, 555

labiodental, 153

nasal stops, 153

obstruent, 154

oral stops, 153

context-free grammars (CFGs), 102–4

context-orientated-clustering, 495

context-sensitive modelling, 451–4

context-sensitive rewrite rule, 83–4

context-sensitive rules, 182

context-sensitive synthesis models, 461–3

continuants, 150

contractions, 60

convolution sum, 292

correlation coefficient, 544

covariance matrix, 439

covariance method, 358–60

coverage (in unit-selection synthesis), 510

cumulative density functions, 549–10

curse of dimensionality, 81, 534

databases, 517–22

automatic labelling, 521

avoiding explicit labels, 521–2

hand labelling, 519–21

and labelling, 519–21

prosody databases, 518–19

text materials, 518

unit-selection databases, 517–18

data-driven intonation models, 250–4

about data-driven models, 250–1

dynamic-system models, 252–3

functional models, 254

HMM models, 253–4

SFC model, 254

unit-selection synthesis, 251–2

data-driven synthesis, 247–8, 435, 470–1

see also hidden Markov model (HMM)

data sparsity problem, 81, 193

decision lists, 85–6

decision trees, 87–8, 221, 452–5

clustering, 494–6

decoding/encoding messages, 18–19,

21–2

text decoding/analysis, 22

see also text decoding/analysis

delta formulation/structure, 72

delta/velocity coefficients, 438–9

dental constriction, 154

dependency phonology, 183

deterministic acoustic models, synthesis with,

248–50

Fujisaki superimpositional models, 249

Tilt model, 249–50

deterministic phrasing prediction, 130–1

deterministic content function (DCF), 130

deterministic content function punctuation

(DCFP), 131

deterministic punctuation (DP), 130

verb-balancing rule, 131

deterministic synthesis models, 246–7

dialogue turns, 18

dictionaries, 72

digital filters, 288–94, 308

about digital filters, 288–9

convolution sum, 292, 293–4

difference equations, 289

FIR filter, 289

IIR filter, 289

impulse response, 289–91

linearity principle, 289

linear time-invariant (LTI) filter, 288

recursive filters, 289

scaling, 288–9

superposition, 289

third-order filters, 289

transfer function, 293–4

and the z-transform, 293–4

digital filters, analysis/design, 294–305

about digital filter design, 304–5

anti-resonances, 303

characteristics, 298–304

complex-conjugate pairs of poles, 300–2

polynomial analysis (poles and zeros), 294–7

practical properties, 304–6

resonance/resonators, 300

skirts of poles, 302

and the z-domain transfer function, 297–8
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digital signals, 278–84, 307

digital representations, 280

digital waveforms, 279

discrete Fourier transform (DFT), 281–2

discrete-time Fourier transform (DTFT), 280–1

and the frequency domain, 283–4

Laplace transform, 283

Nyquist frequency, 279

sample rate/frequency, 279

z-transform, 282–3

diphone-concatenative synthesis, 401–3

diphone inventories, 414

diphones from speech, 414–15

diphone unit-selection system, 505

diphthongs, 153, 201

discourse-neutral renderings, 116

discrete Fourier transform (DFT), 281–2

discreteness, 15–16

discrete random variables, 540–1

discrete-time Fourier transform (DTFT), 280–1

discrete-tube model, assumptions, 337

distinctiveness of speech issues, 171–2

downdrift/declination, 230–3

duality principle, 15

duration synthesis modelling, 463–4

Dutch intonation school, 237

dynamic-system synthesis models, 252–3

dynamic-time-warping (DTW) technique, 219,

469

ease of data acquisition, and synthesis with

vocal-tract models, 407

egressive pulmonic air stream, 147

eigenface model, 528

electoglottography/laryngography, 155, 383

electromagnetic articulography (EMA), 156

electropalatography, 155

emotional speech synthesis, 529–31

describing emotion, 529

with HMM techniques, 531

with prosody control, 529–30

with unit selection, 531

with voice transformation, 530

emotion axes, 123

emphasis, 118–19

encoding/decoding messages, 18–19, 21–2

engineering approach to TTS, 4

engine/rule separation, 83

entropy, 546–7, 552

epoch detection, 381–4

electroglottograph, 383

epoch-detection algorithm (EDA), 381

instant of glottal closure (IGC), 382–3

laryngograph/laryngograph signals (Lx signals),

383–4

pitch-synchronous analysis, 381

epoch manipulation for TD-PSOLA, 417–20

equivalent rectangular bandwidth (ERB) auditory

scale, 352

Euclidean distance, 486

Euler’s formula, 266–8

evaluation, 522–6

about evaluation, 522–3

see also tests/testing

exceptions dictionaries, 208

expressive speech see emotional speech synthesis

feature geometry, 183

features and algorithms, 79–82

filter-bank speech analysis, 352–3

filters see digital filters

finite-impulse-response (FIR) filter, 289

finite partial functions, 72

first-generation synthesis see vocal-tract models,

synthesis with

forced alignment, 468

formants (speech resonance), 159–60

formant synthesis, 388–99

about formant synthesis, 388–9

consonant synthesising, 392–4

copy synthesis technique, 394–6

Klatt synthesiser, 394–5

lumped-parameter speech generation model,

389

parallel synthesisers, 392

phonetic input, 394–7

quality issues, 397–9

serial/cascade synthesisers, 391–2

single formant synthesis, 390–1

sound sources, 389–90

formant tracking, 370–2

form/message-to-speech synthesis, 42

Fourier series/synthesis/analysis, 265–6, 269–71

Fourier transform, 275–8

discrete Fourier transform (DFT), 281–2

discrete-time Fourier transform (DTFT), 280–1

duality principle, 278

inverse Fourier transform, 277–8

scaling property, 277

sinc function, 277

frame shift in speech analysis, 346–7

frequency, 264

angular frequency, 265

frequency domain, 270–5, 307

analysis/spectral analysis, 156

for digital signals, 283–4

for pitch detection, 381

fricatives, 153

Fujisaki intonation model, 227, 239–42

Fujisaki superimpositional models

analysis with, 250

synthesis with, 249
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fundamental frequency (F0), 148, 265

and pitch, 225

see also pitch detection/tracking

fundamental frequency (F0) contour models, 227–9

acoustic model, 228

classifiers, 228

regression algorithms, 228

target points, 228

Gaussian mixture models, 469

Gaussian/normal distribution/bell curve, 436–8, 549

general partial-synthesis functions, 496–7

generative models, 89–90

glides, 154–5

off-glides, 155

on-glides, 155

glottis/glottal source, 148, 330–3

assumptions, 338–9

glottal-flow derivative, 333

Lijencrants-Fant model, 332

open/return/closed phases, 330–1

parameterisation of glottal-flow signals, 379

government phonology, 183

graphemes, 28

definition, 54–5

TTS models, 39

grapheme-to-phoneme (G2P) conversion, 55,

218–22

with decision trees, 221

dynamic time warping (DTW), 219

G2P algorithms, 208, 218

G2P alignment, 219

memory-based learning, 220–1

NetTalk algorithm, 219–20

neural networks, 219–20

pronunciation by analogy, 220–1

rule-based techniques, 218–19

rule ordering, 219

statistical techniques, 221–2

with support-vector machines, 221

Grice’s maxims, 20

hand labelling, 519–21

hand written algorithms, 80

harmonic/noise models (HNMs), 426–9

harmonics, 148–9

Harvard sentences, 523

Haskins sentences, 523

heterogeneous relation graph (HRG) formalism,

72–5

hidden Markov model (HMM)

about the HMM, 89–91, 435, 471–3

and intonation synthesis, 253–4

and phrasing prediction, 133–5

hidden Markov model (HMM) formalism, 435–56

about HMM formalism, 435–6

acoustic representations, 439–40

backoff techniques, 444

Baum–Welch algorithm, 449

context-sensitive modelling, 451–4

covariance matrix, 439

decision trees, 452–5

delta delta/ acceleration coefficients, 439

delta/velocity coefficients, 438–9

diagonal covariance, 439

discrete state problems, 454–5

forced-alignment mode, 448

forward–backward algorithm, 449–50

as generative models, 440–3

generative nature issues, 455–6

independence of observations issues, 454

language models, 444

linearity problems, 455

recognising with HMMs, 440–3

self-transition probability, 440

smoothing techniques, 444

states of phone models, 440

training HMMs, 448–51

transition probabilities, 440

triphone models, 451

Viterbi algorithm, 444–8

see also observations for HMMs

hidden Markov models (HMMs), labelling

databases with, 465–8

about labelling, 465

alignments quality measurement, 470

dynamic-time-warping (DTW) technique, 469

forced alignment, 468

Gaussian mixture models, 469

phone boundaries determination, 468–70

phone sequence determination, 467–8

word sequence determination, 467

hidden Markov models (HMMs), synthesis from,

456–64, 514

about synthesis from HMMs, 456–7

acoustic representations, 460–1

context-sensitive models, 461–3

duration modelling, 463–4

example systems, 464

likeliest observations for a given state sequence,

457–60

hidden semi-Markov model (HSMM), 464

homographs, 56

abbreviation homographs, 54

accidental homographs, 54

ambiguity issues, 22, 46

decoding, 98

disambiguation, 79, 99–101

homograph disambiguation, 56

part-of-speech homographs, 54

resolution of, 53

true homographs, 54
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homonyms, 58

pure homonyms, 58

homophones, 56–7

human communication, 13–18

about human communication, 13–14

affective prosody, 17

augmentative prosody, 18

see also linguistic levels; verbal communication

Hunt and Black algorithm, 477–9, 504

iconic communication, 9–10

impulse/noise models

classical LP prediction, 378

classical LP synthesis, 400–1

independence concept, 543

independent feature formulation (IFF), 485

infinite-impulse–response (IIR) filter, 289

information–theoretic approach, 23

inside–outside algorithms, 105

instant of glottal closure (IGC) points, 374, 382–3

integrated systems, future of, 536

intelligibility issues, 3, 48–9, 510, 523

International Phonetic Association (IPA)

alphabet, 163–5

consonant chart, 555

symbol set (IPA alphabet), 163–5

interpreted communication, 8

interpreting characters, 69–71

intonational phonology, 121

intonational phrases, 114

intonation behaviour, 229–36

boundary tones, 236

downdrift/declination, 230–3

nuclear accents, 230

pitch accents, 230, 234–6

pitch range, 233–4

tune, 229–30

intonation synthesis, 225–9

about intonation, 225, 259–61

F0 and pitch, 226

F0 synthesis, 229

intonational form, 226–7

intonational synthesis, 225

micro-prosody, 229

pitch-accent languages, 227

tone languages, 227

intonation theories and models, 236–45, 250–4

about data-driven models, 250–1

autosegmental–metrical (AM) model, 237–9

British school, 227, 236–7

data driven models, 250–4

Dutch school, 237

F0 contour models, 227–9

Fujisaki model, 227, 239–42, 250

intonational phonology, 237

INTSINT model, 239

phonological versus phonetic versus acoustic,

244–5

purpose, 244

superimpositional models, 242

superimpositional versus linear, 245

Tilt model, 227, 242–4

ToBI scheme, 237

tones versus shapes, 245

traditional model, 236–7

see also autosegmental–metrical (AM) intonation

model; data-driven intonation models;

deterministic acoustic models, synthesis with

intonation and tune, 121–2

prediction issues, 139

INTSINT intonation model, 239

inverse filtering, 372

IPA see International Phonetic Association (IPA)

ISO 8859, 70

java speech markup language, 69

join functions, 497–504

about joining units, 497–8

acoustic-distance join costs, 499–500

categorical and acoustic join costs, 500–1

join classifiers, 497, 502–4

join costs, 497–8

join detectability, 498

join probability, 497

macro-concatenation issue, 497

phone-class join costs, 498–9

probabilistic and sequence join function, 501–2

sequence join classifier, 503

singular-value decomposition (SVD), 502

splicing costs, 499

Kalman filter, 252

Klatt deterministic rules, 256–7

Klatt synthesiser, 394–5

Kullback–Leibler distance, 552

labelling databases, 519

automatic labelling, 521

avoiding explicit labels, 521–2

hand labelling, 519–21

see also hidden Markov models (HMMs),

labelling databases with

labiodental constriction, 153

language models, 444

N-gram language model, 444

language origin, and pronunciation, 223

Laplace transform, 283

laryngograph/laryngograph signals (Lx signals),

383–4

larynx, 148

Laureate system, 513

least modification principle, 477
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letter sequences, decoding, 99

Levinson–Durbin recursion source-filter separation

technique, 361–2, 367

lexemes, inflected forms, 59

lexical phonology/word formation, 179–81

lexical stress, 116, 186–9

lexicons, 63, 207–18

compression, lossless and lossy, 215

computer lexicons, 207

exceptions dictionaries, 208

formats, 210–12

grapheme-to-phoneme algorithms, 208

language lexicons, 207

memorising the data, 209

offline lexicon, 213–14

orthographic and pronunciation variants,

210–12

orthography–pronunciation lexicons, 207

over-fitting data, 209

quality of, 215–16

as a relational database, 210–11

rules for, 208–10

simple dictionary formats, 210

speaker’s lexicons, 207

system lexicon, 214–15

unknown word problems, 216–18

Lijencrants–Fant model for glottal flow, 332, 374,

376

limited-domain synthesis systems, 44

linear filters, assumptions concerning, 337

linear-prediction cepstra, 369

linear-prediction (LP) PSOLA, 423–4

linear-prediction (LP) speech analysis, 357–65

about linear prediction, 357–8

autocorrelation method, 360–1

Cholskey decomposition method, 359

covariance method for finding coefficients,

358–60

Levinson-Durbin recursion technique, 361–2

perceptual linear prediction, 370

spectra for, 362–5

Toeplitz matrix, 361

linear-prediction (LP) synthesis see classical

linear-prediction (LP) synthesis;

residual-excited linear prediction

linear time-invariant (LTI) filters, 288, 310

for nasalised vowels, 333–4

line-spectrum frequencies (LSFs), 367–9

linguistic-analysis TTS models, 39

linguistic levels, 16–17

morphemes/morphology, 16

phonetics/phonology, 16

pragmatics, 17

semantics, 16–17

speech acoustics, 16

syntax, 16

linguistics/speech technology relationship, 533–6

future of, 537–8

log area ratios, 367

logographic writing, 34

logotomes/nonsense words, 415

log power spectrum, 343–4

lookup tables, 72

lossless tube, assumptions, 338

LP see linear-prediction (LP) . . .

lumped-parameter speech generation model, 389

machine-readable phonetic alphabet (MRPA)

phoneme inventory, 204–5

machine translation, 1

macro-concatenation, 497

magnetic resonance imaging (MRI), 156

Manhattan distance, 486

marginal distributions, 543

markup languages, 68–9

java speech markup language, 69

speech synthesis markup language (SSML), 69

spoken text markup language, 69

VoiceXML, 69

maximal onset principle, 185

MBROLA technique, 429

meaning/form/signal, and communication, 12–13

meaning-to-speech system, 42–3

mean opinion score, 524

medium (means of conversion), 13

mel-frequency cepstral coefficients (MFCCs), 370,

429–31, 439

mel-scale, 351

memorising the data (machine learning), 209

memory-based learning, 220–1

message/form-to-speech synthesis, 42

messages, 18

message generation, 20–1

metrical phonology, 114, 120, 183

metrical stress, 188

micro-prosody, 229

minimal pair principle/analysis, 163, 197–9, 204

mis-spellings, decoding, 98

model effectiveness, and synthesis with vocal-tract

models, 407

models of TTS, 37–41

common-form model, 38

comparisons, 40–1

complete prosody generation, 40

full linguistic-analysis, 39–40

grapheme form, 39

phoneme form, 39

pipelined, 39

prosody from the text, 40

signal-to-signal, 39

text-as-language, 39

modified rhyme test (MRT), 523, 524
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modified timit ascii character set, 166

modularity, and synthesis with vocal-tract models,

407

moments of a PMF, 542

monophthongs, 153

morphemes/morphology, 16

morphology, 222–3

derivational, 59, 222

inflectional, 222

morphological decomposition, 222–3

and scope, 59

MRPA phoneme inventory, 204–5

multi-band-excitation (MBE), 427

multi-centroid analysis, 371

multi-pass searching, 509

naive Bayes’ classifier, 86–7

names, pronunciation, 223

nasal cavity modelling, 333–5

nasalisation colouring, 167

nasal and oral sounds, 150

nasal stops, 153

natural-language parsing, 102–5

Cocke–Younger–Kasami (CYK) algorithm, 104

context-free grammars (CFGs), 102–4

probabilistic parsers, 104–5

statistical parsing, 105

natural-language text decoding, 46–7, 97–101

about natural-language text, 97–8

acronyms, 99

homograph disambiguation, 99–101

letter sequences, 99

non-homographs, 101

naturalness issues/tests, 3, 47–8, 510, 523, 524

mean opinion score, 524

natural phonology, 183

NetTalk algorithm, 219–20

neural networks, and G2P algorithms, 219–20

neutral vowel sound, 152–3

NextGen system (AT&T), 513–14

n-gram model, 91

non-linear phonology, 183

non-linguistic issues, 32–3

non-natural-language text decoding, 92–7

about non-natural-language text, 92

parsing, 95

semiotic classification, 92–4

semiotic decoding, 95

verbalisation, 95–7

nonsense words/logotomes, 415

non-standard words (NSWs), 106

non-uniform unit synthesis, 480

nuclear accents, 230

null/neutral prosody, 18

number-communication systems, 33

Nyquist frequency, 279

observations for HMMs, 436–8

covariance matrix, 437

Gaussian/normal distribution/bell curve,

436–8

multivariate Gaussian, 437

probabilistic models, 436

probability density functions (pdfs), 436

standard deviation, 436

variance, 436

obstruent consonants, 154

offline lexicon, 213–14

open-phase analysis, 377–8

optimal coupling, 432

optimality theory, 183

oral cavity, 152

sound source positions, 335

oral and nasal sounds, 150

oral stops, 153

over-fitting data, 209

overwrite paradigm, 71

palatalisation, 180

parameterisation of glottal-flow signals, 379

parsing/parsers, 53, 95, 103

probabilistic parsers, 104–5

statistical parsing, 105

see also natural-language parsing

partial-synthesis function, 493

part-of-speech (POS) tagging, 82, 88–92

generative models, 89–90

hidden Markov model (HMM), 89–91

n-gram model, 91

observation probabilities, 90

POS homographs, 88

syntactic homonyms, 88–9

transition probabilities, 90

Viterbi algorithm, 92

perceptual linear prediction, 370

perceptual substitutability principle, 485

periodic signals, 262–9, 305–7

phase mismatch issues, 431–2

phase shift, 264

phase-splicing systems, 44

phone-class join costs, 498–9

phoneme inventories, 204–5

British English MRPA, 554

modified TIMIT for General American,

553

phonemes

and graphemes, 28

and verbal communication, 14, 16, 161–4

phoneme TTS models, 39

phones

about phones, 162–4

definitions, 553–5

phonetic similarity principle, 197–9
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phonetics/phonology, 16

phonetic context, 167

phonetic variants, 57

see also phonological theories; phonology;

phonotactics; speech production/

articulatory phonetics

phonological theories, 181–4

articulatory phonology, 183

autosegmental phonology, 183

computational phonology, 184

context sensitive rules, 182

dependency phonology, 183

feature geometry, 183

government phonology, 183

metrical phonology, 183

natural phonology, 183

non-linear phonology, 183

optimality theory, 183

The Sound Pattern of English (SPE), 181–2

phonology, 172–89

about phonology, 172, 189–91

lexical stress, 186–9

maximal onset principle, 185

metrical phonology, 114

palatalisation, 180

phonological phrases, 114

syllabic consonants, 184

syllables, 184–6

word formation/lexical phonology, 179–81

see also phonological theories; phonotactics

phonotactics, 172–9

distinctive features, 174

feature structure, 174–9

phonotactic grammar, 172–7, 207

primitives issues, 176

syllable structures, 176–7

phrasing prediction, 129–36

classifier approaches, 132–3

deterministic approaches, 130–1

experimental formulation, 129–30

HMM approaches, 133–5

hybrid approaches, 135–6

precision and recall scheme, 130

phrasing/prosodic phasing, 112–15

about phrasing, 112–13

phasing models, 113–15

pictographic writing, 34

pipelined TTS models, 39

pitch-accent languages, 121, 227

pitch accents, 230, 234–6

alignment factors, 235–6, 534–5

height factors, 235

pitch detection/tracking, 379–81

pitch-detection algorithms (PDAs), 379

pitch-marking, 381

pitch range, 233–4

pitch-synchronous overlap and add (PSOLA)

techniques, 415–21

about PSOLA, 415–16, 421

epoch manipulation, 417–20

time-domain PSOLA (TD-PSOLA), 416–17

pitch-synchronous speech analysis, 347, 381

polynomial analysis (poles and zeros), 294–7

post-lexical processing, 223–4

pragmatics, 17

pre-processing, 52

pre-recorded prompt systems, 43

probabilistic models, 436

probabilistic parsers, 104–5

probabilistic and sequence join function, 501–2

probability density functions (pdfs), 436

probability mass functions (PMFs), 541

probability theory, continuous random variables,

547–50

cumulative density functions, 549–50

expected values, 548–9

Gaussian (normal) distribution, 549

uniform distribution, 549

probability theory, discrete probabilities, 540–42

discrete random variables, 540–1

expected values, 541–2

moments of a PMF, 542

probability mass functions (PMFs), 541

probability theory, pairs of continuous random

variables, 550–2

entropy for, 552

independent versus uncorrelated, 551

Kullback–Leibler distance, 552

sum of two, 551–2

probability theory, pairs of discrete random

variables, 542–7

Baye’s rule, 545

chain rule, 546

conditional probability, 545

correlation, 544

entropy, 546–7

expected values, 543

higher-order moments and covariance, 544

independence, 543

marginal distributions, 543

moments of a joint distribution, 544

sum of random variables, 545–6

problems in text-to-speech, 44–50

adapting systems, 50

assumed intent for prosody, 49–50

auxiliary generation for prosody, 49–50

homograph ambiguity, 46

intelligibility issues, 48–9

natural language text decoding, 46–7

naturalness, 47–8

syntactic ambiguity, 46–7

text classification/semiotic systems, 44–6
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Processing documents, 68–71

character encoding schemes, 69–70

interpreting characters, 69–71

see also markup languages

productiveness property, 15

prominence, 115–21

data and labelling, 119–21

discourse prominence patterns, 118–19

emphatic prominence, 119

nuclear prominence, 116

prominence shift, 117–18

prominence systems, 119–21

syntactic prominence patterns, 116–18

prominence prediction, 136–9

compound-noun phrases, 136–7

data-driven approaches, 138–9

function-word prominence, 138

pronunciation, 192–224

about pronunciation, 192–3, 224

abstract phonological representations,

196–7

by analogy, 220–1

data sparsity problem, 193

language origin issues, 223

morphology, 222–3

names, 223

phonemic and phonetic input, 193–4

phonetic input problem, 194–5

post-lexical processing, 223–4

structured phonemic representation, 195–6

see also grapheme-to-phoneme (G2P) conversion;

lexicons

pronunciation, a phonological system for, 197–207

about phonological system development, 197

affricates, 201

approximants/vowel combinations, 201–2

difficult consonants, 199–200

diphthongs, 201

glides, 201–2

inventory defining, 203–4

minimal pairs principle/analysis, 197–9, 204

MRPA phoneme inventory, 204–5

phoneme inventory, 204–5

phoneme names, 204–6

phonetic similarity principle, 197–9

phonotactics/phonotactic grammar, 207

rhotic/non-rhotic accents, 202

simple consonants and vowels, 197–9

syllabic issues, 206–7

syllable boundaries, 206

TIMIT phoneme inventory, 203–4

prosodic hierarchy, 114

prosodic interaction, 146

prosodic meaning and function, 122–7

prosodic style, 127

prosodic and verbal content, 30–1

prosody

about prosody, 14

affective, 17

augmentative, 18

null/neutral, 18

in reading aloud, 36–7

prosody, determination from text, 127–9

augmentative prosody control, 128

prosody and human reading, 127–9

prosody and synthesis techniques, 128–9

TTS models, 40

prosody, prediction from text, 53, 111–45

about prosody, 111–12, 144–5

affective prosody, 123–4

augmentative prosody, 125–6, 142

intonational-tune prediction, 139

intonation and tune, 121–2

labelling schemes/accuracy, 139–41

linguistic theories/prosody, 141–2

phrasing, 112–15

prosodic meaning and function, 122–7

prosodic phase structures, 113

prosodic style, 127

real dialogues, 143–4

speaker choice/variability, 142–3

suprasegmentality, 124

symbolic communication, 126–7

underspecified text, 142

see also phrasing prediction; prominence;

prominence prediction; prosody

determination

pruning methods, 508–9

beam pruning, 509

PSOLA see pitch-synchronous overlap and add

(PSOLA) techniques

punctuation

status markers, 65

and tokenisation, 65–6

underlying punctuation, 66

pure unit selection, 477

quality improvements, future of, 537

radiation models for sound, 330

assumptions, 338

Reading aloud, 35–7

prosody in, 36–7

and silent reading, 35–6

style issues, 37

verbal content, 37

RealSpeak system, 514

reduced stress, 187

redundancy, in speech, 21

reflection coefficients, 366–7

regression algorithms, F0 contour models, 228

resequencing algorithms, 477
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residual analysis, for pitch detection, 381

residual-excited linear prediction, 421–4

about residual excited LP, 421–3

linear-prediction PSOLA, 423–4

residual manipulation, 423

residual manipulation, 423

residual speech signals, 372–4

error signals, 372

inverse filtering, 372

resonance, 159

formants, 159–60

resonant systems, 311–13

rhotic/non-rhotic accents, 202

rVoice system, 514

scope and morphology, 59

secondary stress, 187

second-generation synthesis systems, 412–34

about second-generation systems, 412–13, 433–4

cepstral coefficients, synthesis from, 429–31

concatenation issues, 431–2

diphone inventory creation, 414

diphones from speech, 414–15

MBROLA technique, 429

speech units in, 413–15

see also pitch-synchronous overlap and add

(PSOLA) techniques; residual-excited linear

prediction; sinusoidal models techniques

segments, 162

semantics, 16–17

semiotic classification, 45, 79, 92–4

open-class rules, 93

specialist sub-classifiers, 93

and translation, 45–6

semiotic decoding, 95

semiotics, 23

semiotic systems, 33–4

sentences, 14, 62–3

sentence-final prosody, 67

sentence splitting, 53, 67–8

style manuals, 68

sentential stress, 186–7

sequence join classifier, 503

signal processing and unit-selection, 511

signals

and communication, 13

see also analogue signals; digital signals;

transforms

signal-to-signal TTS models, 39

sinc function, 277

singular-value decomposition (SVD), 502

sinusoidal models techniques, 424–9

about sinusoidal models, 424–5

harmonic/noise models (HNMs), 426–9

multi-band-excitation (MBE), 427

pure sinusoidal models, 425–6

sinusoid signals, 263–5

Sound Pattern of English, The (SPE), 181–2

sound, physics of, 311–19

acoustic capacitance, 317

acoustic impedance, 317

acoustic inductance, 317

acoustic reflection, 318

acoustic resistance, 317

acoustic waves, 316–18

boundary conditions, 315

lossless tubes, 317

resonant systems, 311–13

sound propagation, 317

speed of sound, 316

standing waves, 314

travelling waves, 313–15

see also vowel-tube model

sound sources see speech production/articulatory

phonetics

source/filter model of speech, 151

source-filter separation see cepstrum speech

analysis; filter-bank speech analysis;

linear-prediction (LP) speech analysis

source-filter separation assumptions, 338

source signal representations, 372–9

closed-phase analysis, 374–7

impulse/noise models, 378

open-phase analysis, 377–8

parameterisation of glotta-flow signals, 379

residual signals, 372–4

speaker choice/variability, 142–3

spectral analysis/frequency domain analysis, 156

spectral-envelope, 156–7

and vocal-tract representations, 362–72

spectral representations of speech, short term, 343–5

envelopes, 345

spectrograms, 157–9

in speech analysis, 348–51

speech, disfluences in, 30

speech acoustics, 16

speech, communicative use principles, 160–72

about communicating with speech, 161–2

allophones, 162

allophonic variation, 166–7

aspiration, 168

assimilation effect, 167

coarticulation, 168

colouring effect, 167

continuous nature issues, 169–70

distinctiveness issues, 171–2

IPA alphabet, 163–5

minimal pair, 163

modified timit ascii character set, 166

nasalisation colouring, 167

phonemes, 161–4

phones, 162–4
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speech, communicative (cont.)

phonetic context, 167

segments, 162

targets, 168–9

transcriptions, 170–1

speech production/articulatory phonetics, 146–56

about speech production, 146–7

consonants, 153–5

continuants, 150

egressive pulmonic air stream, 147

examining speech production, 155–6

fundamental frequency (F0), 148

harmonics, 148–9

larynx, 148

neutral vowel sound, 152–3

oral cavity, 152

oral and nasal sounds, 150

source/filter model of speech, 151

stop sounds, 150

timbre, 149

unvoiced sounds, 150

velum, 150

vocal folds, 148

vocal organs, 147

vocal-tract filter, 150–1

vowels, 151–3

see also acoustic models of speech production;

glottis/glottal source

speech recognition, 1, 22

speech, redundancy in, 21

speech signals analysis, 341–86

about speech analysis, 341, 384–6

spectral-envelope and vocal-tract representations,

362–72

see also cepstrum speech analysis; epoch

detection; filter-bank speech analysis;

linear-prediction (LP) speech analysis; pitch

detection; source signal representations

speech signals analysis, short term, 341–52

auditory scales, 351–2

envelopes, 345

equivalent rectangular bandwidth (ERB) scale,

352

frame lengths and shifts, 345–9

mel-scale, 351

pitch-asynchronous analysis, 347

pitch-synchronous analysis, 347

spectral representations, 343–5

spectrograms, 348–51

time-frequency tradeoff, 346

windowing, 342–5

Speech synthesis markup language (SSML), 69

speech technology/linguistics relationship, 533–6

future of, 537–8

speech/writing comparisons, 26–35

component balance, 31–2

form comparisons, 28–9

non-linguistic contents, 32–3

number-communication systems, 33

physical natures of, 27–8

prosodic and verbal contents, 30–1

semiotic systems, 33–4

speech spontaneity, 30

usage of each, 29–30

speed of sound, 316

SPE (The Sound Pattern of English), 181–2

splicing costs, 499

spoken text markup language, 69

standard deviation, 436

standing waves, 314

statistical parsing, 105

status markers, 65

stochastic signals, 288

stop sounds, 150

stress in speech, 116

lexical stress, 116, 186–9

metrical stress, 188

reduced stress, 187

secondary stress, 187

sentential stress, 186–7

strict layer hypothesis, 114

style manuals, 68

sum of random variables, 545–6

sums-of-products model, 257–8

superimpositional intonation models, 242

superposition of functional contours (SFC) model,

254

support-vector machines, 221

suprasegmentality, 124

syllables, 184–6

boundaries, 206

syllabic consonants, 184

syllabic writing, 34

symbolic language/communication, 10–12,

126–7

combinations of symbols, 11–12

synonyms, 57–8

syntactic ambiguity, 46–7

syntactic analysis, 102

syntactic homonyms, 88–9

syntactic prominence patterns, 116–18

syntactic trees, 102

syntax, 16

syntactic hierarchy, 16

syntactic phrases, 16

synthesis

articulatory synthesis, 405–7

synthesis algorithms, future of, 536–7

synthesis specification, 387–8

see also classical linear-prediction (LP) synthesis;

formant synthesis; hidden Markov models

(HMMs), synthesis from; second-generation

synthesis systems; vocal-tract models,

synthesis with
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synthesis of prosody see autosegmental-metrical

(AM) intonation model; data-driven

intonation models; deterministic acoustic

models, synthesis with; intonation . . . ;

timing issues

system lexicon, 214–15

system testing, 523

tagging, 82–3

talking-head synthesis, 406–7, 527

see also audio-visual speech synthesis

targets, 168–9

tests/testing, 523–6

Blizzard Challenge testing, 526

comparison tests, 524

competitive evaluations, 526

Harvard sentences, 523

Haskins sentences, 523

modified rhyme test (MRT), 523, 524

naturalness tests, 524

semantically unpredictable sentences, 523

system testing, 523

test data, 525

unit/component testing, 525–6

word-recognition tests, 523–4

text analysis, future of, 536

text anomalies, 105

text-as-language TTS models, 39

text-classification algorithms, 79–92

ad-hoc approaches, 83

bag-of-features approach, 84

cluster impurity, 88

collocation rule, 84

context-sensitive rewrite rule, 83–4

curse of dimensionality, 81, 534

data driven approach, 80

decision lists, 85–6

decision trees, 87–8

deterministic rule approaches, 83

engine/rule separation, 83

features and algorithms, 79–82

hidden Markov model (HMM), 89–91

naive Bayes’ classifier, 86–7

part-of-speech (POS) tagging, 82, 88–92

probabilistic approach, 80

statistical approach, 80

tagging, 82–3

trigger tokens, 84–5

unsupervised approach, 80

word-sense disambiguation (WSB), 82–3

text decoding/analysis, 22, 52–3, 78–110

about text decoding, 78–9, 105–10

see also natural-language parsing;

non-natural-language text decoding;

text-classification algorithms

text materials, 518

text normalisation, 44, 106

text segmentation and organisation, 63–8

about text segmentation, 52–3, 75–7

sentence splitting, 67–8

tokenisation, 64–7

see also architectures for TTS; processing

documents; sentences; words

text-to-speech (TTS)

about text-to-speech, 1–2, 26, 50–1

basic principles, 41

common-form model, 5–6

development goals, 3

engineering approach, 4

intelligibility issues, 3

naturalness issues, 3

purposes, 2

see also models of TTS; problems in

text-to-speech

texture mapping, 528

third-generation techniques see hidden Markov

model (HMM); unit-selection synthesis

Tilt intonation model

analysis with, 250

synthesis with, 227, 242–4, 249–50

time-domain PSOLA (TD-PSOLA), 416–17

pitch-scale modification, 416–17

time-scale modification, 416

time-frequency tradeoff, in speech analysis,

346

time invariance, assumptions concerning, 337

timing issues, 254–9

about timing, 254–5

Campbell model, 258

durations, 254

Klatt rules, 256–7

nature of timing, 255–6

phase-final lengthening, 256

sums-of-products model, 257–8

TIMIT phoneme inventory, 203–6, 553

modified timit ascii character set, 166

ToBI intonation scheme, 237, 247, 248

Toeplitz matrix, 361

token, definition, 54

tokenisation, 53, 64–7

and punctuation, 65–6

tokenisation algorithms, 66–7

tone languages, 124, 227

tonemes, 121

transcriptions, 170–1

transfer-function poles, 364–5

transforms, 284–8, 307

about transforms, 284

analytical analysis, 287

convolution, 287

duality for time and frequency, 284–5

frequency shift, 286

impulse properties, 285

Laplace transform, 283
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transforms (cont.)

linearity, 284

modulation, 286

numerical analysis, 287

scaling, 285

stochastic signals, 288

time delay, 286

z-transform, 282–3

see also Fourier transform

translation from semiotic classification, 45–6

tree-banks, 105

trigger tokens, 84–5

triphone models, 451

tune and intonation, 121–2

understanding, 19, 22–3

uniform distribution, 549

unit back-off searching, 505–8

unit/component testing, 525–6

unit-selection databases, 517–18

speaker choice issues, 518

unit-selection synthesis, 474–516

about unit selection synthesis, 251–2, 474–9,

510–11, 515–16

ATR family contribution, 512–14

CHATR system, 513

concatenation of units, 477

coverage, 510

extending from concatenative synthesis, 475–7

features, cost and perception, 511–12

HMM system, 514

Hunt and Black algorithm, 477–9

Laureate system, 513

NextGen system (AT&T), 513–14

principle of least modification, 477

pure unit selection, 477

RealSpeak system, 514

resequencing algorithms, 477

rVoice system, 514

signal processing issues, 511

see also join functions

unit-selection synthesis, features, 479–84

base types, 479–10

dimensionality reduction/accuracy tradeoff, 483

feature choosing, 481–2

feature combination structures, 481

feature types, 482–4

hand labelling technique, 480–1

heterogeneous systems, 480

homogeneous systems, 480

intelligibility issue, 510

join feature structure, 481

left/right join feature structure, 481

linguistic and acoustic features, 480–1

naturalness issues, 510

non-uniform unit synthesis, 480

original/derived features, 481

partial synthesis, 482

script technique, 480

target feature structure, 481

unit-selection synthesis, searching, 504–9

about searching, 504–5

beam pruning, 509

diphone unit-selection system, 505

half-phone solution, 506–7

Hunt and Black algorithm, 504

multi-pass searching, 509

pre-selection, 508–9

pruning methods, 508–9

unit back-off solution, 505–6

Viterbi algorithm/search, 504–5, 508

unit-selection synthesis, target function formulation,

484–93

about the target function, 484–5

acoustic-space formulation (ASF), 485, 493–7

context-orientated-clustering, 495

decision-tree clustering, 494–6

disruption issues, 485

distance/cost issues, 484

equal-error-rate approach to learning, 491

Euclidean distance, 486

feature axis scaling, 488

full set of candidates, 484

general partial-synthesis functions, 496–7

hand tuning, 491

independent feature formulation (IFF), 485–8

independent-feature formulation limitations,

491–3

Manhattan distance, 486

perceptual approaches, 490–1

perceptual space formulating/defining, 485–6

perceptual substitutability principle, 485

search candidates set, 484

target weights setting, 488–91

unknown words

decoding, 98

problems with, 216–18

unvoiced sounds, 150

UTF-8, 71

UTF-16, 71

utterance structure, 71

variance, 436

velum, 150

verbal communication, 14–16

arbitraryness, 15

discreteness, 15–16

duality, 15

phonemes, 14

productiveness, 15

sentences, 14

words, 14
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verbalisation, 95–7

verb-balancing rule, 131

visemes, 528

Viterbi algorithm, 92, 444–8, 504–5, 508

vocal organs, 147

vocal-tract

filter, 150–1

sound loss models, 335–6

straight tube assumptions, 337

transfer function, 310–11

vocal-tract models, synthesis with, 387–411

about synthesis with vocal-tract models, 387,

407–11

ease of data acquisition, 407

effectiveness of models, 407

modularity issues, 407

synthesis specification, 387–8

see also articulatory synthesis; classical

linear-prediction (LP) synthesis; formant

synthesis; residual-excited linear prediction;

vowel-tube models

vocal-tract and spectral-envelope representations,

362–72

voice transformation, and synthesizing emotion, 530

VoiceXML, 69

vowel sounds, 151–3

diphthongs, 153

monophthongs, 153

neutral vowel, 152

vowel-tube models, 319–30

about the vowel tube, 319

all-pole resonator model, 329–30

discrete time and distance, 320

junction special cases, 322–3

junction of two tubes, 320–2

multi-tube vocal-tract model, 327–9

reflection coefficient, 322

single-tube vocal-tract model, 325–7

transmission coefficient, 322

two-tube vocal-tract model, 323–5

windowing, 342–5

word formation/lexical phonology, 179–81

word-recognition tests, 523–4

words, 14

ambiguity issues, 54

defining in TTS, 55–9

definitions/terminology, 54–5

form issues, 53–4

hyphenated forms, 61–2

shortened forms, 61

slang forms, 61

word variants, 57

word-sense disambiguation (WSB), 82–3

writing see speech/writing comparisons

writing systems, 34–5

Abjab, 34–5

alphabetic, 34

logographic, 34

pictographic, 34

syllabic, 34

z-transform, 282–3

and digital filters, 293–4, 297–8
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